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What is Machine Learning?

data + model = prediction

» data: observations, could be actively or passively acquired
(meta-data).

» model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

» prediction: an action to be taken or a categorization or a
quality score.
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y = mx +c
pointl: x=1,y=3
3=m+c
point2: x =3,y =1
1=3m+c
point3: x =2,y =25
25=2m+c






SUR LES PROBABILITES. 3

riens. L'opinion contraire est une illusion de Pesprit
qui, perdant de yue les raisons fugitives du choix de la
volonté dans les choses indifférentes, se persnade qu'elle
sest déterminde d'elleméme et sans motifs.

Nous devons donc envisager I'état présent de I'uni-
vers, comme Ueflet de son état antévienr, et comme la
cause de celui gui va suivre. Une intelligence qui, pour
un instant donné, connaitrait toutes les forees dont la
natuve est animée, ot la sitnation respective des dtres
«qui la composent, si d'aillenrs elle était assex vaste pour
soumettre ces donndes & Panalyse, embrasserait dans la
méme formule les mouvemens des plus grands corps de
I'nnivers et ceux du plus léger atome : rien ne serait
incertain pour elle, ct Iavenir comme le passé, serait
preésent & ses yeux. L'esprit humain oflre, dans In per-
fection quil a su donmer & I'Astronomie, une faible
esquisse de cette intelligence, Ses découvertes en Méca-
nigue et en Geométrie, jointes i celle de la pesanteur
universelle, l'ont mis & portée de comprendre dans les
mémes expressions nnn]yliqur‘_ﬁ‘ les dtats passés ot futnrs
du systéme du monde. En appliqnnhtl 2 méme méthode
& quelques autres objets de ses conn:uxsancu il est par
vetiu & i des lois géndrales, les phé ne
observés, el & prévoir ceux que des clrconstnnuus don-
nées doivent faire éclore. Tous ces eiforts dans la ve-
he de la vérité , tendent i le rapprocher sans cesse
utelligence que nous venons de conceveir, mais
dont il restera toujours infiniment éloigné. Getle ten-
dance propre i Pespice humaine, est ce qui la rend
supérielire aus Animaux ; et ses progrés en ce genre.,

distinguent les nations et les sitcles, et font Jenr veri-
talde glulre
Rappelons-nons x||| "autrefois, et i une époque qui



4 A PHILOSOPHICAL ESSAY ON PROBABILITIES.

other, we say that its choice is an effect without a cause.
It is then, says Leibnitz, the blind chance of the
Epicureans. The contrary opinion is an illusion of the
mind, which, losing sight of the evasive reasons of the
choice of the will in indifferent things, belicves that
choice is determiined of itself and without metives.

We ought then to regard the present state of the
universe as the effect of its anterior state and as the
cause of the one which is to follow. Given for one
instant an intelligence which could comprehend all the
forces by which nature is animated and the respective
situation of the beings who compose it—an intelligence
sufficiently vast to submit these data to analysis—it
would embrace in the same formula the mevements of
the greatest bodies of the universe and those of the
lightest atom; for it, nothing would be uncertain and
the future, as the past, would be present to its cyes.
The human mind offers, in the perfection which it has
been able to give to astronomy, a feeble idea of this in-
telligence. Its discoveries in mechanics and geometry,
added to that of universal gravity, have enabled it to
comprehend in the same analytical expressions the
past and future states of the system of the world.
Applying the same method to some other objects of its
knowledge, it has succeeded in referring to general laws
observed phenomena and in foreseeing those which
given circumstances ought to produce. All these efforts
in the search for truth tend to lead it back continually
to the vast intelligence which we have just mentioned,
but from which it will always remain infinitely removed.
‘This tendency, peculiar to the human race, is that
which renders it superior to animals; and their progress
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Review: Basic Probability



Probability Review I

» We are interested in trials which result in two random
variables, X and Y, each of which has an ‘outcome’
denoted by x or y.

» We summarise the notation and terminology for these
distributions in the following table.

Terminology Notation Description
Joint P(X=x,Y=y) ‘The probability that
Probability X=xandY =y
Marginal P(X =x) ‘The probability that
Probability X = x regardless of Y’
Conditional P(X=x|Y=y) ‘The probability that
Probability X = x given that Y =y’

Table: The different basic probability distributions.



A Pictorial Definition of Probability
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Figure: Representation of joint and conditional probabilities.



Different Distributions

Terminology Definition Notation
Joint limyoe 225 P(X=3,Y =4)
Probability
Marginal limy— oo ”XN: P(X =5)
Probability

Conditional  limy_eo % P(X=3|Y =4)
Probability

Table: Definition of probability distributions.



Notational Details

v

Typically we should write out P (X = x,Y = y).

v

In practice, we often use P (x, y).

v

This looks very much like we might write a multivariate
function, e.g. f(x,y) = §

» For a multivariate function though, f (x, y) # f (y, x).
» However P (x, y) = P (y, x) because
PX=xY=y)=P(Y =y, X=x).

» We now quickly review the ‘rules of probability’.



Normalization

All distributions are normalized. This is clear from the fact that
Y.« x = N, which gives

Y P = Z}‘\[”x - % - 1.

A similar result can be derived for the marginal and conditional
distributions.



The Sum Rule

Ignoring the limit in our definitions:

» The marginal probability P (y) is % (ignoring the limit).
» The joint distribution P (x, y) is nj{’[y .

> 1y = Y Myy SO

My N
N N’
X

in other words

P(y) =) P(xy).

This is known as the sum rule of probability.



The Product Rule

> P(xly)is ;
Xy
n,
» P(x,y)is
oy _ Moy My
N n, N

or in other words

P(x,y) =P(xly) P(y).

This is known as the product rule of probability.



Bayes’ Rule

» From the product rule,

P(y,x)=P(x,y) =P(xly) P(v),
SO
P (ylx) P (x) = P (xly) P ()
which leads to Bayes’ rule,

P(xly)P(y).

Pylr) = — o)



Bayes” Theorem Example

» There are two barrels in front of you. Barrel One contains
20 apples and 4 oranges. Barrel Two other contains 4
apples and 8 oranges. You choose a barrel randomly and
select a fruit. It is an apple. What is the probability that the
barrel was Barrel One?



Bayes’ Theorem Example: Answer I

» We are given that:

P(F = AB = 1) =20/24

P(F = AB = 2) =4/12
P(B =1) =05
P(B = 2) =0.5



Bayes’ Theorem Example: Answer I1

» We use the sum rule to compute:
P(F=A)=P(F=AB=1)PB=1)

+P(F = A|B = 2)P(B = 2)
=20/24 % 0.5 + 4/12 X 0.5 = 7/12



Bayes’ Theorem Example: Answer I1

» We use the sum rule to compute:

P(F = A) =P(F = AIB = 1)P(B = 1)
+P(F = AB = 2)P(B = 2)
=20/24 x 0.5 +4/12 x 0.5 = 7/12

» And Bayes’ theorem tells us that:

P(F=AB=1PB=1)
P(E = A)
20/24x05

T 7/12

PB=1F=A)=

=5/7



Reading & Exercises

Before Friday, review the example on Bayes Theorem!

» Read and understand Bishop on probability distributions:
page 12-17 (Section 1.2).

» Complete Exercise 1.3 in Bishop.



Distribution Representation

» We can represent probabilities as tables

Yy

0

1

2

P(y)

0.2

0.5

0.3




Figure: Histogram representation of the simple distribution.



Expectations of Distributions

\4

Writing down the entire distribution is tedious.

» Can summarise through expectations.

GOTPED W0
Yy

Consider:

v

y 01 ]2
P(y) | 02|05 |03

We have (y)P(y) =02x04+05%x1+03x2=1.1
This is the first moment or mean of the distribution.

v

v



P(y)

Figure: Histogram representation of the simple distribution including
the expectation of y (red line), the mean of the distribution.



Variance and Standard Deviation

» Mean gives us the centre of the distribution.

Consider:

v

y 01 ]2
v | 0] 1] 4
P(y) | 02]05][03

Second moment is <y2>P(y) =02x0+05x1+03x4=17

Variance is (y?) = (y)* = 1.7 = 1.1 X 1.1 = 049

Standard deviation is square root of variance.

v

v

v

v

Standard deviation gives us the “width” of the
distribution.



P(y)

Figure: Histogram representation of the simple distribution including
lines at one standard deviation from the mean of the distribution
(magenta lines).



Expectation Computation Example

» Consider the following distribution.

Yy

1

2

3

P(y)

0.3

0.2

0.1

0.4

» What is the mean of the distribution?




Expectation Computation Example

» Consider the following distribution.

y | 1] 2]3] 4
P(y) [03]02]01]04

» What is the mean of the distribution?

» What is the standard deviation of the distribution?




Expectation Computation Example

v

Consider the following distribution.

y | 1] 2]3] 4
P(y) [03]02]01]04

What is the mean of the distribution?
What is the standard deviation of the distribution?

Are the mean and standard deviation representative of the
distribution form?

v

v

\4



Expectation Computation Example

v

Consider the following distribution.

y | 1] 2]3] 4
P(y) [03]02]01]04

What is the mean of the distribution?
What is the standard deviation of the distribution?

Are the mean and standard deviation representative of the
distribution form?

v

v

\4

v

What is the expected value of —log P(y)?



Expectations Example: Answer

» We are given that:

y 1 2 3 4
P(y) 03 | 02 | 01 | 04
T 1 1 9 16

—log(P(y)) | 1.204 | 1.609 | 2.302 | 0.916

v

Mean: 1 Xx03+2x02+3%x01+4%x04=26

Second moment: 1 X0.3+4x02+9x0.1+16x04 =284
Variance: 84 —2.6 X2.6 = 1.64

Standard deviation: V1.64 = 1.2806

Expectation —log(P(y)):
0.3 x1.204 + 0.2 x 1.609 + 0.1 X 2.302 + 0.4 x 0.916 = 1.280

v

v

v

v



Sample Based Approximation Example

» You are given the following values samples of heights of
students,

i 1 2 3 4 5 6
yi | 1.76 | 1.73 | 1.79 | 1.81 | 1.85 | 1.80

» What is the sample mean?




Sample Based Approximation Example

» You are given the following values samples of heights of
students,

i 1 2 3 4 5 6
yi | 1.76 | 1.73 | 1.79 | 1.81 | 1.85 | 1.80

» What is the sample mean?

» What is the sample variance?



Sample Based Approximation Example

» You are given the following values samples of heights of

students,

i

1

2

3

4

5

6

Yi

1.76

1.73

1.79

1.81

1.85

1.80

» What is the sample mean?

» What is the sample variance?

» Can you compute sample approximation expected value of

—log P(y)?




Sample Based Approximation Example

» You are given the following values samples of heights of

students,

i

1

2

3

4

5

6

Yi

1.76

1.73

1.79

1.81

1.85

1.80

» What is the sample mean?

» What is the sample variance?

» Can you compute sample approximation expected value of

—log P(y)?

» Actually these “data” were sampled from a Gaussian with
mean 1.7 and standard deviation 0.15. Are your estimates

close to the real values? If not why not?




Sample Based Approximation Example: Answer

» We can compute:

i 1 2 3 4 5 6

yi | 1.76 1.73 1.79 1.81 1.85 1.80

yiz 3.0976 | 2.9929 | 3.2041 | 3.2761 | 3.4225 | 3.2400
» Mean: 1.76+l.73+1‘7946—1.81+1.85+1‘80 —1.79

» Second moment:

3.0976+2.9929+3.2041+3.2761+3.4225+3.2400 _
: = 3.2055

» Variance: 3.2055 — 1.79 x 1.79 = 1.43 x 1073
» Standard deviation: 0.0379

» No, you can’t compute it. You don’t have access to P(y)
directly.




Reading

» See probability review at end of slides for reminders.
» Read and understand Rogers and Girolami on:
1. Section 2.2 (pg 41-53).
2. Section 2.4 (pg 55-58).
3. Section 2.5.1 (pg 58-60).
4. Section 2.5.3 (pg 61-62).
» For other material in Bishop read:
1. Probability densities: Section 1.2.1 (Pages 17-19).
2. Expectations and Covariances: Section 1.2.2 (Pages 19-20).
3. The Gaussian density: Section 1.2.4 (Pages 24-28) (don’t
worry about material on bias).
4. For material on information theory and KL divergence try
Section 1.6 & 1.6.1 of Bishop (pg 48 onwards).
» If you are unfamiliar with probabilities you should
complete the following exercises:
1. Bishop Exercise 1.7
2. Bishop Exercise 1.8
3. Bishop Exercise 1.9
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