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Review

» Last time: explored least squares for univariate and
multivariate regression.

» Introduced matrices, linear algebra and derivatives.

» This time: introduce basis functions for non linear
regression models.



Outline

Basis Functions



Basis Functions

Nonlinear Regression

» Problem with Linear Regression—x may not be linearly
related to y.

» Potential solution: create a feature space: define ¢(x)
where ¢(-) is a nonlinear function of x.

» Model for target is a linear combination of these nonlinear
functions
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Quadratic Basis

» Basis functions can be global. E.g. quadratic basis:
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Figure: A quadratic basis.



Quadratic Basis

» Basis functions can be global. E.g. quadratic basis:
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Figure: A quadratic basis.



Quadratic Basis

» Basis functions can be global. E.g. quadratic basis:
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Figure: A quadratic basis.



Functions Derived from Quadratic Basis

f(x) = wy + wox + wsx?
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Figure: Function from quadratic basis with weights w; = 0.87466,
wy, = —0.38835, w3 = —2.0058 .



Functions Derived from Quadratic Basis

f(x) = wy + wox + wsx?
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Figure: Function from quadratic basis with weights w; = —0.35908,
wy = 1.2274, w3 = —0.32825 .



Functions Derived from Quadratic Basis

f(x) = wy + wox + wsx?
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Figure: Function from quadratic basis with weights w; = —1.5638,
wy = —0.73577, w3 = 1.6861 .



Radial Basis Functions

» Or they can be local. E.g. radial (or Gaussian) basis

$;(x) = exp( (x— #;) )
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Figure: Radial basis functions.



Radial Basis Functions

» Or they can be local. E.g. radial (or Gaussian) basis

$;(x) = exp( (x— #;) )
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Figure: Radial basis functions.



Radial Basis Functions

» Or they can be local. E.g. radial (or Gaussian) basis
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Figure: Radial basis functions.



Functions Derived from Radial Basis
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Figure: Function from radial basis with weights w; = —0.47518,
wy = —0.18924, w3 = —1.8183 .



Functions Derived from Radial Basis
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Figure: Function from radial basis with weights w; = 0.50596,
wy, = —0.046315, w3 = 0.26813 .



Functions Derived from Radial Basis
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Figure: Function from radial basis with weights w; = 0.07179,
wy = 1.3591, ws = 0.50604 .



Basis Function Models

» A Basis function mapping is now defined as

f(Xi) = Z qubi,]- +C
j=1



Vector Notation

» Write in vector notation,

fxi) =wTgi+c



Log Likelihood for Basis Function Model

» The likelihood of a single data point is

1 (vi — w' )’
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» Leading to a log likelihood for the data set of

Y (yi - w i) .
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» And a corresponding error function of
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Expand the Brackets
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Multivariate Derivatives Reminder

» We will need some multivariate calculus.

da'™w a
dw
and dwTA
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T = (A + A )W
or if A is symmetric (i.e. A =AT)
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Differentiate

Differentiating with respect to the vector w we obtain

JL -
2w p) —ﬁZq)yz [Zw?]w
i=1
Leading to

n -1y
= [Z Dip/ ] Y by
i=1 i=1

Rewrite in matrix notation:
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Update Equations

» Update for w".
-1
w=(0T®) @7y
» The equation for ¢>" may also be found
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Polynomial Fits to Olympics Data
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Left: fit to data, Right: model error. Polynomial order 0, model
error -4.2717, 62 = 0.268, ¢ = 0.518.



Polynomial Fits to Olympics Data
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Left: fit to data, Right: model error. Polynomial order 1, model
error -26.86, 62 = 0.0503, ¢ = 0.224.



Polynomial Fits to Olympics Data
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Left: fit to data, Right: model error. Polynomial order 2, model
error -30.662, 02 = 0.0380, ¢ = 0.195.



Polynomial Fits to Olympics Data
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Left: fit to data, Right: model error. Polynomial order 3, model
error -34.015, 02 = 0.0296, 0 = 0.172.



Polynomial Fits to Olympics Data
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Left: fit to data, Right: model error. Polynomial order 4, model
error -35.231, 02 = 0.0271, 0 = 0.165.



Polynomial Fits to Olympics Data
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Left: fit to data, Right: model error. Polynomial order 5, model
error -37.138, 02 = 0.0235, 0 = 0.153.



Polynomial Fits to Olympics Data
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Left: fit to data, Right: model error. Polynomial order 6, model
error -38.016, 02 = 0.0220, 0 = 0.148.



Reading

» Section 1.4 of Rogers and Girolami.
» Chapter 1, pg 1-6 of Bishop.
» Chapter 3, Section 3.1 of Bishop up to pg 143.
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