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What is Machine Learning?

data

+ model = prediction

I data: observations, could be actively or passively acquired
(meta-data).

I model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

I prediction: an action to be taken or a categorization or a
quality score.
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y = mx + c

point 1: x = 1, y = 3

3 = m + c

point 2: x = 3, y = 1

1 = 3m + c

point 3: x = 2, y = 2.5

2.5 = 2m + c









6 A PHILOSOPHICAL ESSAY ON PROBABILITIES.

height: "The day will come when, by study pursued

through several ages, the things now concealed will

appear with evidence; and posterity will be astonished

that truths so clear had escaped us.
' '

Clairaut then

undertook to submit to analysis the perturbations which

the comet had experienced by the action of the two

great planets, Jupiter and Saturn; after immense cal-

culations he fixed its next passage at the perihelion

toward the beginning of April, 1759, which was actually

verified by observation. The regularity which astronomy
shows us in the movements of the comets doubtless

exists also in all phenomena. -

The curve described by a simple molecule of air or

vapor is regulated in a manner just as certain as the

planetary orbits
;
the only difference between them is

that which comes from our ignorance.

Probability is relative, in part to this ignorance, in

part to our knowledge. We know that of three or a

greater number of events a single one ought to occur
;

but nothing induces us to believe that one of them will

occur rather than the others. In this state of indecision

it is impossible for us to announce their occurrence with

certainty. It is, however, probable that one of these

events, chosen at will, will not occur because we see

several cases equally possible which exclude its occur-

rence, while only a single one favors it.

The theory of chance consists in reducing all the

events of the same kind to a certain number of cases

equally possible, that is to say, to such as we may be

equally undecided about in regard to their existence,
and in determining the number of cases favorable to

the event whose probability is sought. The ratio of



y = mx + c + ε

point 1: x = 1, y = 3

3 = m + c + ε1

point 2: x = 3, y = 1

1 = 3m + c + ε2

point 3: x = 2, y = 2.5

2.5 = 2m + c + ε3
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Probability Review I

I We are interested in trials which result in two random
variables, X and Y, each of which has an ‘outcome’
denoted by x or y.

I We summarise the notation and terminology for these
distributions in the following table.

Terminology Notation Description
Joint P

(
X = x,Y = y

)
‘The probability that

Probability X = x and Y = y’
Marginal P (X = x) ‘The probability that

Probability X = x regardless of Y’
Conditional P

(
X = x|Y = y

)
‘The probability that

Probability X = x given that Y = y’

Table: The different basic probability distributions.



A Pictorial Definition of Probability
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Figure: Representation of joint and conditional probabilities.



Different Distributions

Terminology Definition Notation

Joint limN→∞
nX=3,Y=4

N P (X = 3,Y = 4)
Probability

Marginal limN→∞
nX=5

N P (X = 5)
Probability

Conditional limN→∞
nX=3,Y=4

nY=4
P (X = 3|Y = 4)

Probability

Table: Definition of probability distributions.



Notational Details

I Typically we should write out P
(
X = x,Y = y

)
.

I In practice, we often use P
(
x, y

)
.

I This looks very much like we might write a multivariate
function, e.g. f

(
x, y

)
= x

y .

I For a multivariate function though, f
(
x, y

)
, f

(
y, x

)
.

I However P
(
x, y

)
= P

(
y, x

)
because

P
(
X = x,Y = y

)
= P

(
Y = y,X = x

)
.

I We now quickly review the ‘rules of probability’.



Normalization

All distributions are normalized. This is clear from the fact that∑
x nx = N, which gives∑

x
P (x) =

∑
x nx

N
=

N
N

= 1.

A similar result can be derived for the marginal and conditional
distributions.



The Sum Rule

Ignoring the limit in our definitions:

I The marginal probability P
(
y
)

is
ny

N (ignoring the limit).

I The joint distribution P
(
x, y

)
is

nx,y

N .
I ny =

∑
x nx,y so

ny

N
=

∑
x

nx,y

N
,

in other words
P
(
y
)

=
∑

x
P
(
x, y

)
.

This is known as the sum rule of probability.



The Product Rule

I P
(
x|y

)
is

nx,y

ny
.

I P
(
x, y

)
is

nx,y

N
=

nx,y

ny

ny

N

or in other words

P
(
x, y

)
= P

(
x|y

)
P
(
y
)
.

This is known as the product rule of probability.



Bayes’ Rule

I From the product rule,

P
(
y, x

)
= P

(
x, y

)
= P

(
x|y

)
P
(
y
)
,

so
P
(
y|x

)
P (x) = P

(
x|y

)
P
(
y
)

which leads to Bayes’ rule,

P
(
y|x

)
=

P
(
x|y

)
P
(
y
)

P (x)
.



Bayes’ Theorem Example

I There are two barrels in front of you. Barrel One contains
20 apples and 4 oranges. Barrel Two other contains 4
apples and 8 oranges. You choose a barrel randomly and
select a fruit. It is an apple. What is the probability that the
barrel was Barrel One?



Bayes’ Theorem Example: Answer I

I We are given that:

P(F = A|B = 1) =20/24
P(F = A|B = 2) =4/12

P(B = 1) =0.5
P(B = 2) =0.5



Bayes’ Theorem Example: Answer II

I We use the sum rule to compute:

P(F = A) =P(F = A|B = 1)P(B = 1)
+ P(F = A|B = 2)P(B = 2)

=20/24 × 0.5 + 4/12 × 0.5 = 7/12

I And Bayes’ theorem tells us that:

P(B = 1|F = A) =
P(F = A|B = 1)P(B = 1)

P(F = A)

=
20/24 × 0.5

7/12
= 5/7
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Reading & Exercises

Before Friday, review the example on Bayes Theorem!

I Read and understand Bishop on probability distributions:
page 12–17 (Section 1.2).

I Complete Exercise 1.3 in Bishop.



Distribution Representation

I We can represent probabilities as tables

y 0 1 2
P
(
y
)

0.2 0.5 0.3
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Figure: Histogram representation of the simple distribution.



Expectations of Distributions

I Writing down the entire distribution is tedious.
I Can summarise through expectations.〈

f (y)
〉

P(y) =
∑

y
f (y)p(y)

I Consider:
y 0 1 2

P
(
y
)

0.2 0.5 0.3
I We have

〈
y
〉

P(y) = 0.2 × 0 + 0.5 × 1 + 0.3 × 2 = 1.1
I This is the first moment or mean of the distribution.
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Figure: Histogram representation of the simple distribution including
the expectation of y (red line), the mean of the distribution.



Variance and Standard Deviation

I Mean gives us the centre of the distribution.
I Consider:

y 0 1 2
y2 0 1 4

P
(
y
)

0.2 0.5 0.3

I Second moment is
〈
y2

〉
P(y)

= 0.2 × 0 + 0.5 × 1 + 0.3 × 4 = 1.7

I Variance is
〈
y2

〉
−

〈
y
〉2 = 1.7 − 1.1 × 1.1 = 0.49

I Standard deviation is square root of variance.
I Standard deviation gives us the “width” of the

distribution.
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Figure: Histogram representation of the simple distribution including
lines at one standard deviation from the mean of the distribution
(magenta lines).



Expectation Computation Example

I Consider the following distribution.

y 1 2 3 4
P
(
y
)

0.3 0.2 0.1 0.4
I What is the mean of the distribution?

I What is the standard deviation of the distribution?
I Are the mean and standard deviation representative of the

distribution form?
I What is the expected value of − log P(y)?
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Expectations Example: Answer

I We are given that:

y 1 2 3 4
P
(
y
)

0.3 0.2 0.1 0.4
y2 1 4 9 16

− log(P(y)) 1.204 1.609 2.302 0.916
I Mean: 1 × 0.3 + 2 × 0.2 + 3 × 0.1 + 4 × 0.4 = 2.6
I Second moment: 1 × 0.3 + 4 × 0.2 + 9 × 0.1 + 16 × 0.4 = 8.4
I Variance: 8.4 − 2.6 × 2.6 = 1.64
I Standard deviation:

√
1.64 = 1.2806

I Expectation − log(P(y)):
0.3 × 1.204 + 0.2 × 1.609 + 0.1 × 2.302 + 0.4 × 0.916 = 1.280



Sample Based Approximation Example

I You are given the following values samples of heights of
students,

i 1 2 3 4 5 6
yi 1.76 1.73 1.79 1.81 1.85 1.80

I What is the sample mean?

I What is the sample variance?
I Can you compute sample approximation expected value of
− log P(y)?

I Actually these “data” were sampled from a Gaussian with
mean 1.7 and standard deviation 0.15. Are your estimates
close to the real values? If not why not?
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Sample Based Approximation Example: Answer

I We can compute:

i 1 2 3 4 5 6
yi 1.76 1.73 1.79 1.81 1.85 1.80
y2

i 3.0976 2.9929 3.2041 3.2761 3.4225 3.2400

I Mean: 1.76+1.73+1.79+1.81+1.85+1.80
6 = 1.79

I Second moment:
3.0976+2.9929+3.2041+3.2761+3.4225+3.2400

6 = 3.2055
I Variance: 3.2055 − 1.79 × 1.79 = 1.43 × 10−3

I Standard deviation: 0.0379
I No, you can’t compute it. You don’t have access to P(y)

directly.



Reading

I See probability review at end of slides for reminders.
I Read and understand Rogers and Girolami on:

1. Section 2.2 (pg 41–53).
2. Section 2.4 (pg 55–58).
3. Section 2.5.1 (pg 58–60).
4. Section 2.5.3 (pg 61–62).

I For other material in Bishop read:
1. Probability densities: Section 1.2.1 (Pages 17–19).
2. Expectations and Covariances: Section 1.2.2 (Pages 19–20).
3. The Gaussian density: Section 1.2.4 (Pages 24–28) (don’t

worry about material on bias).
4. For material on information theory and KL divergence try

Section 1.6 & 1.6.1 of Bishop (pg 48 onwards).
I If you are unfamiliar with probabilities you should

complete the following exercises:
1. Bishop Exercise 1.7
2. Bishop Exercise 1.8
3. Bishop Exercise 1.9
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