Objective Functions

Neil D. Lawrence

Department of Computer Science
Sheffield University

6th October 2015

Outline

Supervised Learning

Classification

- We are given data set containing "inputs", \mathbf{X}, and "targets", y.
- Each data point consists of an input vector $\mathbf{x}_{i, \text { : }}$ and a class label, y_{i}.
- For binary classification assume y_{i} should be either 1 (yes) or -1 (no).
- Input vector can be thought of as features.

Classification Examples

- Classifying hand written digits from binary images (automatic zip code reading).
- Detecting faces in images (e.g. digital cameras).
- Who a detected face belongs to (e.g. Picasa).
- Classifying type of cancer given gene expression data.
- Categorization of document types (different types of news article on the internet).

The Perceptron

- Developed in 1957 by Rosenblatt.
- Take a data point at, \mathbf{x}_{i}.
- Predict it belongs to a class, $y_{i}=1$ if $\sum_{j} w_{j} \mathbf{x}_{i, j}+b>0$ i.e. $\mathbf{w}^{\top} \mathbf{x}_{i}+b>0$. Otherwise assume $y_{i}=-1$.

Perceptron-like Algorithm

1. Select a random data point i.
2. Ensure i is correctly classified by setting $\mathbf{w}=y_{i} \mathbf{x}_{i}$.

- i.e. $\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}_{i,}\right)=\operatorname{sign}\left(y_{i} \mathbf{x}_{i, i}^{\top} \mathbf{x}_{i, i}\right)=\operatorname{sign}\left(y_{i}\right)=y_{i}$

Perceptron Iteration

1. Select a misclassified point, i.
2. Set $\mathbf{w} \leftarrow \mathbf{w}+\eta y_{i} \mathbf{x}_{i,}$.

- If η is large enough this will guarantee this point becomes correctly classified.

3. Repeat until there are no misclassified points.

Perceptron Algorithm

Simple Dataset

- Iteration 1 data no 29

Perceptron Algorithm

Simple Dataset

- Iteration 1 data no 29
- $w_{1}=0, w_{2}=0$

Perceptron Algorithm

Simple Dataset

- Iteration 1 data no 29
- $w_{1}=0, w_{2}=0$
- First Iteration

Perceptron Algorithm

Simple Dataset

- Iteration 1 data no 29
- $w_{1}=0, w_{2}=0$
- First Iteration
- Set weight vector to data point.

Perceptron Algorithm

Simple Dataset

- Iteration 1 data no 29
- $w_{1}=0, w_{2}=0$
- First Iteration
- Set weight vector to data point.
- $\mathbf{w}=y_{29} \mathbf{x}_{29,}$:

Perceptron Algorithm

Simple Dataset

- Iteration 1 data no 29
- $w_{1}=0, w_{2}=0$
- First Iteration
- Set weight vector to data point.
- $\mathbf{w}=y_{29} \mathbf{x}_{29}$,:
- Select new incorrectly classified data point.

Perceptron Algorithm

Simple Dataset

- Iteration 2 data no 16

Perceptron Algorithm

Simple Dataset

- Iteration 2 data no 16
- $w_{1}=0.3519$, $w_{2}=-0.6787$

Perceptron Algorithm

Simple Dataset

- Iteration 2 data no 16
- $w_{1}=0.3519$, $w_{2}=-0.6787$
- Incorrect classification

Perceptron Algorithm

Simple Dataset

- Iteration 2 data no 16
- $w_{1}=0.3519$, $w_{2}=-0.6787$
- Incorrect classification
- Adjust weight vector with new data point.

Perceptron Algorithm

Simple Dataset

- Iteration 2 data no 16
- $w_{1}=0.3519$, $w_{2}=-0.6787$
- Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w}+\eta y_{16} \mathbf{x}_{16,}:$

Perceptron Algorithm

Simple Dataset

- Iteration 2 data no 16
- $w_{1}=0.3519$, $w_{2}=-0.6787$
- Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w}+\eta y_{16} \mathbf{x}_{16,}$:
- Select new incorrectly classified data point.

Perceptron Algorithm

Simple Dataset

- Iteration 3 data no 58

Perceptron Algorithm

Simple Dataset

- Iteration 3 data no 58
- $w_{1}=-1.2143$, $w_{2}=-1.0217$

Perceptron Algorithm

Simple Dataset

- Iteration 3 data no 58
- $w_{1}=-1.2143$, $w_{2}=-1.0217$
- Incorrect classification

Perceptron Algorithm

Simple Dataset

- Iteration 3 data no 58
- $w_{1}=-1.2143$, $w_{2}=-1.0217$
- Incorrect classification
- Adjust weight vector with new data point.

Perceptron Algorithm

Simple Dataset

- Iteration 3 data no 58
- $w_{1}=-1.2143$, $w_{2}=-1.0217$
- Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w}+\eta y_{58} \mathbf{x}_{58,}:$

Perceptron Algorithm

Simple Dataset

- Iteration 3 data no 58
- $w_{1}=-1.2143$, $w_{2}=-1.0217$
- Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w}+\eta y_{58} \mathbf{x}_{58,}$;
- All data correctly classified.

Regression Examples

- Predict a real value, y_{i} given some inputs \mathbf{x}_{i}.
- Predict quality of meat given spectral measurements (Tecator data).
- Radiocarbon dating, the C14 calibration curve: predict age given quantity of C14 isotope.
- Predict quality of different Go or Backgammon moves given expert rated training data.

Linear Regression

Is there an equivalent learning rule for regression?

- Predict a real value y given x.
- We can also construct a learning rule for regression.
- Define our prediction

$$
f(x)=m x+c .
$$

- Define an error

$$
\Delta y_{i}=y_{i}-f\left(x_{i}\right) .
$$

Updating Bias/Intercept

- c represents bias. Add portion of error to bias.

$$
\begin{gathered}
c \rightarrow c+\eta \Delta y_{i} \\
\Delta y_{i}=y_{i}-m x_{i}-c .
\end{gathered}
$$

1. For + ve error, c and therefore $f\left(x_{i}\right)$ become larger and error magnitude becomes smaller.
2. For -ve error, c and therefore $f\left(x_{i}\right)$ become smaller and error magnitude becomes smaller.

Updating Slope

- m represents Slope. Add portion of error \times input to slope.

$$
\begin{gathered}
m \rightarrow m+\eta \Delta y_{i} x_{i} \\
\Delta y_{i}=y_{i}-m x_{i}-c .
\end{gathered}
$$

1. For +ve error and +ve input, m becomes larger and $f\left(x_{i}\right)$ becomes larger: error magnitude becomes smaller.
2. For + ve error and -ve input, m becomes smaller and $f\left(x_{i}\right)$ becomes larger: error magnitude becomes smaller.
3. For -ve error and -ve slope, m becomes larger and $f\left(x_{i}\right)$ becomes smaller: error magnitude becomes smaller.
4. For -ve error and +ve input, m becomes smaller and $f\left(x_{i}\right)$ becomes smaller: error magnitude becomes smaller.

Linear Regression Example

- Iteration $1 \hat{m}=-0.3$
$\hat{c}=1$

Linear Regression Example

- Iteration $1 \hat{m}=-0.3$
$\hat{c}=1$
- Present data point 4

Linear Regression Example

- Iteration $1 \hat{m}=-0.3$

$$
\hat{c}=1
$$

- Present data point 4
- $\Delta y_{4}=\left(y_{4}-\hat{m} x_{4}-\hat{c}\right)$

Linear Regression Example

- Iteration $1 \hat{m}=-0.3$

$$
\hat{c}=1
$$

- Present data point 4
- $\Delta y_{4}=\left(y_{4}-\hat{m} x_{4}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{4} \Delta y_{4}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{4}$

Linear Regression Example

- Iteration $1 \hat{m}=-0.3$

$$
\hat{c}=1
$$

- Present data point 4
- $\Delta y_{4}=\left(y_{4}-\hat{m} x_{4}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{4} \Delta y_{4}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{4}$
- Updated values
$\hat{m}=-0.25593 \hat{c}=1.0175$

Linear Regression Example

- Iteration $2 \hat{m}=-0.25593$ $\hat{c}=1.0175$

Linear Regression Example

- Iteration $2 \hat{m}=-0.25593$ $\hat{c}=1.0175$
- Present data point 7

Linear Regression Example

- Iteration $2 \hat{m}=-0.25593$ $\hat{c}=1.0175$
- Present data point 7
- $\Delta y_{7}=\left(y_{7}-\hat{m} x_{7}-\hat{c}\right)$

Linear Regression Example

- Iteration $2 \hat{m}=-0.25593$ $\hat{c}=1.0175$
- Present data point 7
- $\Delta y_{7}=\left(y_{7}-\hat{m} x_{7}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{7} \Delta y_{7}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{7}$

Linear Regression Example

- Iteration $2 \hat{m}=-0.25593$ $\hat{c}=1.0175$
- Present data point 7
- $\Delta y_{7}=\left(y_{7}-\hat{m} x_{7}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{7} \Delta y_{7}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{7}$
- Updated values
$\hat{m}=-0.20693 \hat{c}=1.0358$

Linear Regression Example

- Iteration $3 \hat{m}=-0.20693$ $\hat{c}=1.0358$

Linear Regression Example

- Iteration $3 \hat{m}=-0.20693$ $\hat{c}=1.0358$
- Present data point 10

Linear Regression Example

- Iteration $3 \hat{m}=-0.20693$ $\hat{c}=1.0358$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$

Linear Regression Example

- Iteration $3 \hat{m}=-0.20693$ $\hat{c}=1.0358$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c}
$\hat{m} \leftarrow \hat{m}+\eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{10}$

Linear Regression Example

- Iteration $3 \hat{m}=-0.20693$ $\hat{c}=1.0358$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{10}$
- Updated values $\hat{m}=-0.085591 \hat{c}=1.0617$

Linear Regression Example

- Iteration 4
$\hat{m}=-0.085591$
$\hat{c}=1.0617$

Linear Regression Example

- Iteration 4
$\hat{m}=-0.085591$
$\hat{c}=1.0617$
- Present data point 7

Linear Regression Example

- Iteration 4
$\hat{m}=-0.085591$
$\hat{c}=1.0617$
- Present data point 7
- $\Delta y_{7}=\left(y_{7}-\hat{m} x_{7}-\hat{c}\right)$

Linear Regression Example

- Iteration 4
$\hat{m}=-0.085591$
$\hat{c}=1.0617$
- Present data point 7
- $\Delta y_{7}=\left(y_{7}-\hat{m} x_{7}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c}
$\hat{m} \leftarrow \hat{m}+\eta x_{7} \Delta y_{7}$
$\hat{c} \leftarrow \hat{c}+\eta \Delta y_{7}$

Linear Regression Example

- Iteration 4
$\hat{m}=-0.085591$
$\hat{c}=1.0617$
- Present data point 7
- $\Delta y_{7}=\left(y_{7}-\hat{m} x_{7}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c}
$\hat{m} \leftarrow \hat{m}+\eta x_{7} \Delta y_{7}$
$\hat{c} \leftarrow \hat{c}+\eta \Delta y_{7}$
- Updated values
$\hat{m}=-0.050355 \hat{c}=1.0749$

Linear Regression Example

- Iteration 5
$\hat{m}=-0.050355$
$\hat{c}=1.0749$

Linear Regression Example

- Iteration 5

$$
\hat{m}=-0.050355
$$

$\hat{c}=1.0749$

- Present data point 4

Linear Regression Example

- Iteration 5

$$
\hat{m}=-0.050355
$$

$$
\hat{c}=1.0749
$$

- Present data point 4
- $\Delta y_{4}=\left(y_{4}-\hat{m} x_{4}-\hat{c}\right)$

Linear Regression Example

- Iteration 5 $\hat{m}=-0.050355$
$\hat{c}=1.0749$
- Present data point 4
- $\Delta y_{4}=\left(y_{4}-\hat{m} x_{4}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{4} \Delta y_{4}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{4}$

Linear Regression Example

- Iteration 5

$$
\hat{m}=-0.050355
$$

$$
\hat{c}=1.0749
$$

- Present data point 4
- $\Delta y_{4}=\left(y_{4}-\hat{m} x_{4}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c}
$\hat{m} \leftarrow \hat{m}+\eta x_{4} \Delta y_{4}$
$\hat{c} \leftarrow \hat{c}+\eta \Delta y_{4}$
- Updated values
$\hat{m}=-0.024925 \hat{c}=1.0849$

Linear Regression Example

- Iteration 6 $\hat{m}=-0.024925$
$\hat{c}=1.0849$

Linear Regression Example

- Iteration 6 $\hat{m}=-0.024925$
$\hat{c}=1.0849$
- Present data point 5

Linear Regression Example

- Iteration 6 $\hat{m}=-0.024925$
$\hat{c}=1.0849$
- Present data point 5
- $\Delta y_{5}=\left(y_{5}-\hat{m} x_{5}-\hat{c}\right)$

Linear Regression Example

- Iteration 6 $\hat{m}=-0.024925$
$\hat{c}=1.0849$
- Present data point 5
- $\Delta y_{5}=\left(y_{5}-\hat{m} x_{5}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{5} \Delta y_{5}$
$\hat{c} \leftarrow \hat{c}+\eta \Delta y_{5}$

Linear Regression Example

- Iteration 6 $\hat{m}=-0.024925$
$\hat{c}=1.0849$
- Present data point 5
- $\Delta y_{5}=\left(y_{5}-\hat{m} x_{5}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{5} \Delta y_{5}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{5}$
- Updated values
$\hat{m}=0.00098511 \hat{c}=1.0949$

Linear Regression Example

- Iteration 7
$\hat{m}=0.00098511$
$\hat{c}=1.0949$

Linear Regression Example

- Iteration 7
$\hat{m}=0.00098511$
$\hat{c}=1.0949$
- Present data point 10

Linear Regression Example

- Iteration 7
$\hat{m}=0.00098511$
$\hat{c}=1.0949$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$

Linear Regression Example

- Iteration 7
$\hat{m}=0.00098511$
$\hat{c}=1.0949$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c}
$\hat{m} \leftarrow \hat{m}+\eta x_{10} \Delta y_{10}$
$\hat{c} \leftarrow \hat{c}+\eta \Delta y_{10}$

Linear Regression Example

- Iteration 7
$\hat{m}=0.00098511$
$\hat{c}=1.0949$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{10}$
- Updated values
$\hat{m}=0.072529 \hat{c}=1.1101$

Linear Regression Example

- Iteration $8 \hat{m}=0.072529$ $\hat{c}=1.1101$

Linear Regression Example

- Iteration $8 \hat{m}=0.072529$ $\hat{c}=1.1101$
- Present data point 10

Linear Regression Example

- Iteration $8 \hat{m}=0.072529$ $\hat{c}=1.1101$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$

Linear Regression Example

- Iteration $8 \hat{m}=0.072529$ $\hat{c}=1.1101$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{10}$

Linear Regression Example

- Iteration $8 \hat{m}=0.072529$ $\hat{c}=1.1101$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{10}$
- Updated values
$\hat{m}=0.1282 \hat{c}=1.122$

Linear Regression Example

- Iteration $9 \hat{m}=0.1282$
$\hat{c}=1.122$

Linear Regression Example

- Iteration $9 \hat{m}=0.1282$ $\hat{c}=1.122$
- Present data point 7

Linear Regression Example

- Iteration $9 \hat{m}=0.1282$ $\hat{c}=1.122$
- Present data point 7
- $\Delta y_{7}=\left(y_{7}-\hat{m} x_{7}-\hat{c}\right)$

Linear Regression Example

- Iteration $9 \hat{m}=0.1282$ $\hat{c}=1.122$
- Present data point 7
- $\Delta y_{7}=\left(y_{7}-\hat{m} x_{7}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{7} \Delta y_{7}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{7}$

Linear Regression Example

- Iteration $9 \hat{m}=0.1282$ $\hat{c}=1.122$
- Present data point 7
- $\Delta y_{7}=\left(y_{7}-\hat{m} x_{7}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{7} \Delta y_{7}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{7}$
- Updated values
$\hat{m}=0.14634 \hat{c}=1.1288$

Linear Regression Example

- Iteration $10 \hat{m}=0.14634$ $\hat{c}=1.1288$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{10}$

Linear Regression Example

- Iteration $10 \hat{m}=0.14634$ $\hat{c}=1.1288$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{10}$
- Updated values
$\hat{m}=0.18547 \hat{c}=1.1372$

Linear Regression Example

- Iteration $20 \hat{m}=0.27764$ $\hat{c}=1.1621$
- Present data point 6
- $\Delta y_{6}=\left(y_{6}-\hat{m} x_{6}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{6} \Delta y_{6}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{6}$

Linear Regression Example

- Iteration $20 \hat{m}=0.27764$ $\hat{c}=1.1621$
- Present data point 6
- $\Delta y_{6}=\left(y_{6}-\hat{m} x_{6}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{6} \Delta y_{6}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{6}$
- Updated values
$\hat{m}=0.28135 \hat{c}=1.1635$

Linear Regression Example

- Iteration $30 \hat{m}=0.30249$ $\hat{c}=1.1673$
- Present data point 9
- $\Delta y_{9}=\left(y_{9}-\hat{m} x_{9}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{9} \Delta y_{9}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{9}$

Linear Regression Example

- Iteration $30 \hat{m}=0.30249$ $\hat{c}=1.1673$
- Present data point 9
- $\Delta y_{9}=\left(y_{9}-\hat{m} x_{9}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{9} \Delta y_{9}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{9}$
- Updated values
$\hat{m}=0.31119 \hat{c}=1.1693$

Linear Regression Example

- Iteration $40 \hat{m}=0.33551$ $\hat{c}=1.1754$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{10}$

Linear Regression Example

- Iteration $40 \hat{m}=0.33551$ $\hat{c}=1.1754$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{10}$
- Updated values
$\hat{m}=0.33503 \hat{c}=1.1753$

Linear Regression Example

- Iteration $50 \hat{m}=0.34126$ $\hat{c}=1.1763$
- Present data point 8
- $\Delta y_{8}=\left(y_{8}-\hat{m} x_{8}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{8} \Delta y_{8}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{8}$

Linear Regression Example

- Iteration $50 \hat{m}=0.34126$ $\hat{c}=1.1763$
- Present data point 8
- $\Delta y_{8}=\left(y_{8}-\hat{m} x_{8}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{8} \Delta y_{8}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{8}$
- Updated values
$\hat{m}=0.3439 \hat{c}=1.177$

Linear Regression Example

- Iteration $60 \hat{m}=0.34877$ $\hat{c}=1.1775$
- Present data point 2
- $\Delta y_{2}=\left(y_{2}-\hat{m} x_{2}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c}
$\hat{m} \leftarrow \hat{m}+\eta x_{2} \Delta y_{2}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{2}$

Linear Regression Example

- Iteration $60 \hat{m}=0.34877$ $\hat{c}=1.1775$
- Present data point 2
- $\Delta y_{2}=\left(y_{2}-\hat{m} x_{2}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{2} \Delta y_{2}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{2}$
- Updated values
$\hat{m}=0.34621 \hat{c}=1.1757$

Linear Regression Example

- Iteration $70 \hat{m}=0.34207$ $\hat{c}=1.1734$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{10}$

Linear Regression Example

- Iteration $70 \hat{m}=0.34207$ $\hat{c}=1.1734$
- Present data point 10
- $\Delta y_{10}=\left(y_{10}-\hat{m} x_{10}-\hat{c}\right)$
- Adjust \hat{m} and \hat{c} $\hat{m} \leftarrow \hat{m}+\eta x_{10} \Delta y_{10}$ $\hat{c} \leftarrow \hat{c}+\eta \Delta y_{10}$
- Updated values
$\hat{m}=0.34088 \hat{c}=1.1732$

Basis Functions

Nonlinear Regression

- Problem with Linear Regression-x may not be linearly related to \mathbf{y}.
- Potential solution: create a feature space: define $\phi(\mathbf{x})$ where $\phi(\cdot)$ is a nonlinear function of \mathbf{x}.
- Model for target is a linear combination of these nonlinear functions

$$
\begin{equation*}
f(\mathbf{x})=\sum_{j=1}^{K} w_{j} \phi_{j}(\mathbf{x}) \tag{1}
\end{equation*}
$$

Quadratic Basis

- Basis functions can be global. E.g. quadratic basis:

$$
\left[1, x, x^{2}\right]
$$

Figure: A quadratic basis.

Quadratic Basis

- Basis functions can be global. E.g. quadratic basis:

$$
\left[1, x, x^{2}\right]
$$

Figure: A quadratic basis.

Quadratic Basis

- Basis functions can be global. E.g. quadratic basis:

$$
\left[1, x, x^{2}\right]
$$

Figure: A quadratic basis.

Functions Derived from Quadratic Basis

$$
f(x)=w_{1}+w_{2} x+w_{3} x^{2}
$$

Figure: Function from quadratic basis with weights $w_{1}=0.87466$, $w_{2}=-0.38835, w_{3}=-2.0058$.

Functions Derived from Quadratic Basis

$$
f(x)=w_{1}+w_{2} x+w_{3} x^{2}
$$

Figure: Function from quadratic basis with weights $w_{1}=-0.35908$, $w_{2}=1.2274, w_{3}=-0.32825$.

Functions Derived from Quadratic Basis

$$
f(x)=w_{1}+w_{2} x+w_{3} x^{2}
$$

Figure: Function from quadratic basis with weights $w_{1}=-1.5638$, $w_{2}=-0.73577, w_{3}=1.6861$.

Radial Basis Functions

- Or they can be local. E.g. radial (or Gaussian) basis $\phi_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{\ell^{2}}\right)$

Figure: Radial basis functions.

Radial Basis Functions

- Or they can be local. E.g. radial (or Gaussian) basis $\phi_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{\ell^{2}}\right)$

Figure: Radial basis functions.

Radial Basis Functions

- Or they can be local. E.g. radial (or Gaussian) basis $\phi_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{\ell^{2}}\right)$

Figure: Radial basis functions.

Functions Derived from Radial Basis

$$
f(x)=w_{1} e^{-2(x+1)^{2}}+w_{2} e^{-2 x^{2}}+w_{3} e^{-2(x-1)^{2}}
$$

Figure: Function from radial basis with weights $w_{1}=-0.47518$, $w_{2}=-0.18924, w_{3}=-1.8183$.

Functions Derived from Radial Basis

$$
f(x)=w_{1} e^{-2(x+1)^{2}}+w_{2} e^{-2 x^{2}}+w_{3} e^{-2(x-1)^{2}}
$$

Figure: Function from radial basis with weights $w_{1}=0.50596$, $w_{2}=-0.046315, w_{3}=0.26813$.

Functions Derived from Radial Basis

$$
f(x)=w_{1} e^{-2(x+1)^{2}}+w_{2} e^{-2 x^{2}}+w_{3} e^{-2(x-1)^{2}}
$$

Figure: Function from radial basis with weights $w_{1}=0.07179$, $w_{2}=1.3591, w_{3}=0.50604$.

Nonlinear Regression Example

- Iteration 1
- $w_{1}=0.13018$, $w_{2}=-0.11355$, $w_{3}=0.15448$
- Present data point 4

Nonlinear Regression Example

- Iteration 1
- $w_{1}=0.13018$, $w_{2}=-0.11355$, $w_{3}=0.15448$
- Present data point 4
- $\Delta y_{4}=y_{4}-\phi_{4}^{\top} \mathbf{w}$

Nonlinear Regression Example

- Iteration 1
- $w_{1}=0.13018$, $w_{2}=-0.11355$, $w_{3}=0.15448$
- Present data point 4
- $\Delta y_{4}=y_{4}-\phi_{4}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$

Nonlinear Regression Example

- Iteration 1
- $w_{1}=0.13018$, $w_{2}=-0.11355$, $w_{3}=0.15448$
- Present data point 4
- $\Delta y_{4}=y_{4}-\phi_{4}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{4} \Delta y_{4}$

Nonlinear Regression Example

- Iteration 2
- $w_{1}=0.33696$, $w_{2}=0.11481$, $w_{3}=0.1591$
- Present data point 7

Nonlinear Regression Example

- Iteration 2
- $w_{1}=0.33696$, $w_{2}=0.11481$, $w_{3}=0.1591$
- Present data point 7
- $\Delta y_{7}=y_{7}-\phi_{7}^{\top} \mathbf{w}$

Nonlinear Regression Example

- Iteration 2
- $w_{1}=0.33696$, $w_{2}=0.11481$, $w_{3}=0.1591$
- Present data point 7
- $\Delta y_{7}=y_{7}-\phi_{7}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$

Nonlinear Regression Example

- Iteration 2
- $w_{1}=0.33696$, $w_{2}=0.11481$, $w_{3}=0.1591$
- Present data point 7
- $\Delta y_{7}=y_{7}-\phi_{7}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{7} \Delta y_{7}$

Nonlinear Regression Example

- Iteration 3
- $w_{1}=0.18076$, $w_{2}=-0.4266$, $w_{3}=0.12473$
- Present data point 10

Nonlinear Regression Example

- Iteration 3
- $w_{1}=0.18076$, $w_{2}=-0.4266$, $w_{3}=0.12473$
- Present data point 10
- $\Delta y_{10}=y_{10}-\phi_{10}^{\top} \mathbf{w}$

Nonlinear Regression Example

- Iteration 3
- $w_{1}=0.18076$, $w_{2}=-0.4266$, $w_{3}=0.12473$
- Present data point 10
- $\Delta y_{10}=y_{10}-\phi_{10}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$

Nonlinear Regression Example

- Iteration 3
- $w_{1}=0.18076$, $w_{2}=-0.4266$, $w_{3}=0.12473$
- Present data point 10
- $\Delta y_{10}=y_{10}-\phi_{10}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{10} \Delta y_{10}$

Nonlinear Regression Example

- Iteration 4
- $w_{1}=0.18076$, $w_{2}=-0.42893$, $w_{3}=-0.14306$
- Present data point 7

Nonlinear Regression Example

- Iteration 4
- $w_{1}=0.18076$, $w_{2}=-0.42893$, $w_{3}=-0.14306$
- Present data point 7
- $\Delta y_{7}=y_{7}-\phi_{7}^{\top} \mathbf{w}$

Nonlinear Regression Example

- Iteration 4
- $w_{1}=0.18076$, $w_{2}=-0.42893$, $w_{3}=-0.14306$
- Present data point 7
- $\Delta y_{7}=y_{7}-\phi_{7}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$

Nonlinear Regression Example

- Iteration 4
- $w_{1}=0.18076$, $w_{2}=-0.42893$, $w_{3}=-0.14306$
- Present data point 7
- $\Delta y_{7}=y_{7}-\phi_{7}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{7} \Delta y_{7}$

Nonlinear Regression Example

- Iteration 5
- $w_{1}=0.17372$, $w_{2}=-0.45335$, $w_{3}=-0.14461$
- Present data point 4

Nonlinear Regression Example

- Iteration 5
- $w_{1}=0.17372$, $w_{2}=-0.45335$, $w_{3}=-0.14461$
- Present data point 4
- $\Delta y_{4}=y_{4}-\phi_{4}^{\top} \mathbf{w}$

Nonlinear Regression Example

- Iteration 5
- $w_{1}=0.17372$, $w_{2}=-0.45335$, $w_{3}=-0.14461$
- Present data point 4
- $\Delta y_{4}=y_{4}-\phi_{4}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$

Nonlinear Regression Example

- Iteration 5
- $w_{1}=0.17372$, $w_{2}=-0.45335$, $w_{3}=-0.14461$
- Present data point 4
- $\Delta y_{4}=y_{4}-\phi_{4}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{4} \Delta y_{4}$

Nonlinear Regression Example

- Iteration 6
- $w_{1}=0.47971$, $w_{2}=-0.11541$, $w_{3}=-0.13778$
- Present data point 5
- $\Delta y_{5}=y_{5}-\phi_{5}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{5} \Delta y_{5}$

Nonlinear Regression Example

- Iteration 6
- $w_{1}=0.47971$, $w_{2}=-0.11541$, $w_{3}=-0.13778$
- Present data point 5
- $\Delta y_{5}=y_{5}-\phi_{5}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{5} \Delta y_{5}$

Nonlinear Regression Example

- Iteration 7
- $w_{1}=0.46599$, $w_{2}=-0.13952$, $w_{3}=-0.13855$
- Present data point 10
- $\Delta y_{10}=y_{10}-\phi_{10}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{10} \Delta y_{10}$

Nonlinear Regression Example

- Iteration 7
- $w_{1}=0.46599$, $w_{2}=-0.13952$, $w_{3}=-0.13855$
- Present data point 10
- $\Delta y_{10}=y_{10}-\phi_{10}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{10} \Delta y_{10}$

Nonlinear Regression Example

- Iteration 8
- $w_{1}=0.46599$, $w_{2}=-0.14144$, $w_{3}=-0.35924$
- Present data point 10
- $\Delta y_{10}=y_{10}-\phi_{10}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{10} \Delta y_{10}$

Nonlinear Regression Example

- Iteration 8
- $w_{1}=0.46599$, $w_{2}=-0.14144$, $w_{3}=-0.35924$
- Present data point 10
- $\Delta y_{10}=y_{10}-\phi_{10}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{10} \Delta y_{10}$

Nonlinear Regression Example

- Iteration 9
- $w_{1}=0.46599$, $w_{2}=-0.14307$, $w_{3}=-0.54679$
- Present data point 7
- $\Delta y_{7}=y_{7}-\phi_{7}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{7} \Delta y_{7}$

Nonlinear Regression Example

- Iteration 9
- $w_{1}=0.46599$, $w_{2}=-0.14307$, $w_{3}=-0.54679$
- Present data point 7
- $\Delta y_{7}=y_{7}-\phi_{7}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{7} \Delta y_{7}$

Nonlinear Regression Example

- Iteration 10
- $w_{1}=0.38071$, $w_{2}=-0.43867$, $w_{3}=-0.56556$
- Present data point 10
- $\Delta y_{10}=y_{10}-\phi_{10}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{10} \Delta y_{10}$

Nonlinear Regression Example

- Iteration 10
- $w_{1}=0.38071$, $w_{2}=-0.43867$, $w_{3}=-0.56556$
- Present data point 10
- $\Delta y_{10}=y_{10}-\phi_{10}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{10} \Delta y_{10}$

Nonlinear Regression Example

- Iteration 11
- $w_{1}=0.38071$, $w_{2}=-0.44002$, $w_{3}=-0.7208$
- Present data point 8
- $\Delta y_{8}=y_{8}-\phi_{8}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{8} \Delta y_{8}$

Nonlinear Regression Example

- Iteration 11
- $w_{1}=0.38071$, $w_{2}=-0.44002$, $w_{3}=-0.7208$
- Present data point 8
- $\Delta y_{8}=y_{8}-\phi_{8}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{8} \Delta y_{8}$

Nonlinear Regression Example

- Iteration 12
- $w_{1}=0.37237$, $w_{2}=-0.90666$, $w_{3}=-1.1987$
- Present data point 5
- $\Delta y_{5}=y_{5}-\phi_{5}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{5} \Delta y_{5}$

Nonlinear Regression Example

- Iteration 12
- $w_{1}=0.37237$, $w_{2}=-0.90666$, $w_{3}=-1.1987$
- Present data point 5
- $\Delta y_{5}=y_{5}-\phi_{5}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{5} \Delta y_{5}$

Nonlinear Regression Example

- Iteration 13
- $w_{1}=0.62833$, $w_{2}=-0.45691$, $w_{3}=-1.1842$
- Present data point 10
- $\Delta y_{10}=y_{10}-\phi_{10}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{10} \Delta y_{10}$

Nonlinear Regression Example

- Iteration 13
- $w_{1}=0.62833$, $w_{2}=-0.45691$, $w_{3}=-1.1842$
- Present data point 10
- $\Delta y_{10}=y_{10}-\phi_{10}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{10} \Delta y_{10}$

Nonlinear Regression Example

- Iteration 14
- $w_{1}=0.62833$, $w_{2}=-0.4575$, $w_{3}=-1.252$
- Present data point 2
- $\Delta y_{2}=y_{2}-\phi_{2}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{2} \Delta y_{2}$

Nonlinear Regression Example

- Iteration 14
- $w_{1}=0.62833$, $w_{2}=-0.4575$, $w_{3}=-1.252$
- Present data point 2
- $\Delta y_{2}=y_{2}-\phi_{2}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{2} \Delta y_{2}$

Nonlinear Regression Example

- Iteration 15
- $w_{1}=0.7016$, $w_{2}=-0.45646$, $w_{3}=-1.252$
- Present data point 1
- $\Delta y_{1}=y_{1}-\phi_{1}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{1} \Delta y_{1}$

Nonlinear Regression Example

- Iteration 15
- $w_{1}=0.7016$, $w_{2}=-0.45646$, $w_{3}=-1.252$
- Present data point 1
- $\Delta y_{1}=y_{1}-\phi_{1}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{1} \Delta y_{1}$

Nonlinear Regression Example

- Iteration 16
- $w_{1}=0.7109$, $w_{2}=-0.45641$, $w_{3}=-1.252$
- Present data point 5
- $\Delta y_{5}=y_{5}-\phi_{5}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{5} \Delta y_{5}$

Nonlinear Regression Example

- Iteration 16
- $w_{1}=0.7109$, $w_{2}=-0.45641$, $w_{3}=-1.252$
- Present data point 5
- $\Delta y_{5}=y_{5}-\phi_{5}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{5} \Delta y_{5}$

Nonlinear Regression Example

- Iteration 17
- $w_{1}=0.77022$, $w_{2}=-0.35219$, $w_{3}=-1.2487$
- Present data point 9
- $\Delta y_{9}=y_{9}-\phi_{9}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{9} \Delta y_{9}$

Nonlinear Regression Example

- Iteration 17
- $w_{1}=0.77022$, $w_{2}=-0.35219$, $w_{3}=-1.2487$
- Present data point 9
- $\Delta y_{9}=y_{9}-\phi_{9}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{9} \Delta y_{9}$

Nonlinear Regression Example

- Iteration 18
- $w_{1}=0.77019$, $w_{2}=-0.3832$, $w_{3}=-1.8175$
- Present data point 4
- $\Delta y_{4}=y_{4}-\phi_{4}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{4} \Delta y_{4}$

Nonlinear Regression Example

- Iteration 18
- $w_{1}=0.77019$, $w_{2}=-0.3832$, $w_{3}=-1.8175$
- Present data point 4
- $\Delta y_{4}=y_{4}-\phi_{4}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{4} \Delta y_{4}$

Nonlinear Regression Example

- Iteration 19
- $w_{1}=0.86321$, $w_{2}=-0.28046$, $w_{3}=-1.8154$
- Present data point 7
- $\Delta y_{7}=y_{7}-\phi_{7}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{7} \Delta y_{7}$

Nonlinear Regression Example

- Iteration 19
- $w_{1}=0.86321$, $w_{2}=-0.28046$, $w_{3}=-1.8154$
- Present data point 7
- $\Delta y_{7}=y_{7}-\phi_{7}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{7} \Delta y_{7}$

Nonlinear Regression Example

- Iteration 20
- $w_{1}=0.80681$, $w_{2}=-0.47597$, $w_{3}=-1.8278$
- Present data point 6
- $\Delta y_{6}=y_{6}-\phi_{6}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{6} \Delta y_{6}$

Nonlinear Regression Example

- Iteration 20
- $w_{1}=0.80681$, $w_{2}=-0.47597$, $w_{3}=-1.8278$
- Present data point 6
- $\Delta y_{6}=y_{6}-\phi_{6}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \boldsymbol{\phi}_{6} \Delta y_{6}$

Nonlinear Regression Example

- Iteration 50
- $w_{1}=0.9777$, $w_{2}=-0.4076$, $w_{3}=-2.038$
- Present data point 8
- $\Delta y_{8}=y_{8}-\phi_{8}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{8} \Delta y_{8}$

Nonlinear Regression Example

- Iteration 100
- $w_{1}=0.98593$, $w_{2}=-0.49744$, $w_{3}=-2.046$
- Present data point 8
- $\Delta y_{8}=y_{8}-\phi_{8}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{8} \Delta y_{8}$

Nonlinear Regression Example

- Iteration 200
- $w_{1}=0.95307$, $w_{2}=-0.48041$, $w_{3}=-2.0553$
- Present data point 4
- $\Delta y_{4}=y_{4}-\phi_{4}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{4} \Delta y_{4}$

Nonlinear Regression Example

- Iteration 300
- $w_{1}=0.97066$, $w_{2}=-0.44667$, $w_{3}=-2.0588$
- Present data point 1
- $\Delta y_{1}=y_{1}-\phi_{1}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{1} \Delta y_{1}$

Nonlinear Regression Example

- Iteration 400
- $w_{1}=0.95515$, $w_{2}=-0.40611$, $w_{3}=-2.0289$
- Present data point 8
- $\Delta y_{8}=y_{8}-\phi_{8}^{\top} \mathbf{w}$
- Adjust $\hat{\mathbf{w}}$
- Updated values $\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}+\eta \phi_{8} \Delta y_{8}$

Mathematical Interpretation

- What is the mathematical interpretation?
- There is a cost function.
- It expresses mismatch between your prediction and reality.

$$
E(\mathbf{w})=\sum_{i=1}^{N}\left(\sum_{j=1}^{K} w_{j} \phi_{j}\left(x_{i}\right)-y_{i}\right)^{2}
$$

- This is known as the sum of squares error.

Mathematical Interpretation

- What is the mathematical interpretation?
- There is a cost function.
- It expresses mismatch between your prediction and reality.

$$
E(\mathbf{w})=\sum_{i=1}^{N}\left(\mathbf{w}^{\top} \phi_{i}-y_{i}\right)^{2}
$$

- This is known as the sum of squares error.
- Defining $\phi_{i}=\left[\phi_{1}\left(x_{i}\right), \ldots, \phi_{K}\left(x_{i}\right)\right]^{\top}$.

Learning is Optimization

- Learning is minimization of the cost function.
- At the minima the gradient is zero.
- Gradient of error function:

$$
\frac{\mathrm{d} E(\mathbf{w})}{\mathrm{d} \mathbf{w}}=-2 \sum_{i=1}^{N} \boldsymbol{\phi}_{i}\left(y_{i}-\mathbf{w}^{\top} \boldsymbol{\phi}_{i}\right)
$$

Learning is Optimization

- Learning is minimization of the cost function.
- At the minima the gradient is zero.
- Gradient of error function:

$$
\frac{\mathrm{d} E(\mathbf{w})}{\mathrm{d} \mathbf{w}}=-2 \sum_{i=1}^{N} \phi_{i} \Delta y_{i}
$$

- Where $\Delta y_{i}=\left(y_{i}-\mathbf{w}^{\top} \boldsymbol{\phi}_{i}\right)$.

Minimization via Gradient Descent

- One way of minimizing is steepest descent.
- Initialize algorithm with \mathbf{w}.
- Compute gradient of error function, $\frac{\mathrm{d} E(\mathbf{w})}{\mathrm{d} \mathbf{w}}$.
- Change \mathbf{w} by moving in steepest downhill direction.

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \frac{\mathrm{d} E(\mathbf{w})}{\mathrm{d} \mathbf{w}}
$$

Steepest Descent

Figure: Steepest descent on a quadratic error surface.

Stochastic Gradient Descent

How does this relate to learning rules we presented?

- For regression, the learning rule can be seen as a variant of gradient descent.
- This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \frac{\mathrm{d} E(\mathbf{w})}{\mathrm{d} \mathbf{w}}
$$

Stochastic Gradient Descent

How does this relate to learning rules we presented?

- For regression, the learning rule can be seen as a variant of gradient descent.
- This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$
\mathbf{w} \leftarrow \mathbf{w}-2 \eta \sum_{i=1}^{N} \phi_{i}\left(\mathbf{w}^{\top} \phi_{i}-y_{i}\right)
$$

Stochastic Gradient Descent

How does this relate to learning rules we presented?

- For regression, the learning rule can be seen as a variant of gradient descent.
- This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta^{\prime} \sum_{i=1}^{N} \boldsymbol{\phi}_{i}\left(\mathbf{w}^{\top} \boldsymbol{\phi}_{i}-y_{i}\right)
$$

Stochastic Gradient Descent

How does this relate to learning rules we presented?

- For regression, the learning rule can be seen as a variant of gradient descent.
- This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta^{\prime} \sum_{i=1}^{N} \boldsymbol{\phi}_{i}\left(\mathbf{w}^{\top} \boldsymbol{\phi}_{i}-y_{i}\right)
$$

Stochastic Gradient Descent

How does this relate to learning rules we presented?

- For regression, the learning rule can be seen as a variant of gradient descent.
- This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta^{\prime} \sum_{i=1}^{N} \phi_{i} \Delta y_{i}
$$

Stochastic Gradient Descent

How does this relate to learning rules we presented?

- For regression, the learning rule can be seen as a variant of gradient descent.
- This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta^{\prime} \sum_{i=1}^{N} \phi_{i} \Delta y_{i}
$$

- And the stochastic approximation is

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta^{\prime} \phi_{i} \Delta y_{i}
$$

Stochastic Gradient Descent

Figure: Stochastic gradient descent on a quadratic error surface.

Modern View of Error Functions

- Error function has a probabilistic interpretation (maximum likelihood).
- Error function is an actual loss function that you want to minimize (empirical risk minimization).
- For these interpretations probability and optimization theory become important.
- Much of the last 15 years of machine learning research has focused on probabilistic interpretations or clever relaxations of difficult objective functions.

Important Concepts Not Covered

- Optimization methods.
- Second order methods, conjugate gradient, quasi-Newton and Newton.
- Effective heuristics such as momentum.
- Local vs global solutions.

Mathematical Interpretation

- What is the mathematical interpretation?
- There is a cost function.
- It expresses mismatch between your prediction and reality.

$$
E(\mathbf{w})=\sum_{i=1}^{N}\left(\sum_{j=1}^{K} w_{j} \phi_{j}\left(x_{i}\right)-y_{i}\right)^{2}
$$

- This is known as the sum of squares error.

Mathematical Interpretation

- What is the mathematical interpretation?
- There is a cost function.
- It expresses mismatch between your prediction and reality.

$$
E(\mathbf{w})=\sum_{i=1}^{N}\left(\mathbf{w}^{\top} \phi_{i}-y_{i}\right)^{2}
$$

- This is known as the sum of squares error.
- Defining $\phi_{i}=\left[\phi_{1}\left(x_{i}\right), \ldots, \phi_{K}\left(x_{i}\right)\right]^{\top}$.

Learning is Optimization

- Learning is minimization of the cost function.
- At the minima the gradient is zero.
- Gradient of error function:

$$
\frac{\mathrm{d} E(\mathbf{w})}{\mathrm{d} \mathbf{w}}=-2 \sum_{i=1}^{N} \boldsymbol{\phi}_{i}\left(y_{i}-\mathbf{w}^{\top} \boldsymbol{\phi}_{i}\right)
$$

Learning is Optimization

- Learning is minimization of the cost function.
- At the minima the gradient is zero.
- Gradient of error function:

$$
\frac{\mathrm{d} E(\mathbf{w})}{\mathrm{d} \mathbf{w}}=-2 \sum_{i=1}^{N} \phi_{i} \Delta y_{i}
$$

- Where $\Delta y_{i}=\left(y_{i}-\mathbf{w}^{\top} \boldsymbol{\phi}_{i}\right)$.

Minimization via Gradient Descent

- One way of minimizing is steepest descent.
- Initialize algorithm with \mathbf{w}.
- Compute gradient of error function, $\frac{\mathrm{d} E(\mathbf{w})}{\mathrm{d} \mathbf{w}}$.
- Change \mathbf{w} by moving in steepest downhill direction.

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \frac{\mathrm{d} E(\mathbf{w})}{\mathrm{d} \mathbf{w}}
$$

Steepest Descent

Figure: Steepest descent on a quadratic error surface.

Stochastic Gradient Descent

How does this relate to learning rules we presented?

- For regression, the learning rule can be seen as a variant of gradient descent.
- This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \frac{\mathrm{d} E(\mathbf{w})}{\mathrm{d} \mathbf{w}}
$$

Stochastic Gradient Descent

How does this relate to learning rules we presented?

- For regression, the learning rule can be seen as a variant of gradient descent.
- This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$
\mathbf{w} \leftarrow \mathbf{w}-2 \eta \sum_{i=1}^{N} \phi_{i}\left(\mathbf{w}^{\top} \phi_{i}-y_{i}\right)
$$

Stochastic Gradient Descent

How does this relate to learning rules we presented?

- For regression, the learning rule can be seen as a variant of gradient descent.
- This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta^{\prime} \sum_{i=1}^{N} \boldsymbol{\phi}_{i}\left(\mathbf{w}^{\top} \boldsymbol{\phi}_{i}-y_{i}\right)
$$

Stochastic Gradient Descent

How does this relate to learning rules we presented?

- For regression, the learning rule can be seen as a variant of gradient descent.
- This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta^{\prime} \sum_{i=1}^{N} \boldsymbol{\phi}_{i}\left(\mathbf{w}^{\top} \boldsymbol{\phi}_{i}-y_{i}\right)
$$

Stochastic Gradient Descent

How does this relate to learning rules we presented?

- For regression, the learning rule can be seen as a variant of gradient descent.
- This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta^{\prime} \sum_{i=1}^{N} \phi_{i} \Delta y_{i}
$$

Stochastic Gradient Descent

How does this relate to learning rules we presented?

- For regression, the learning rule can be seen as a variant of gradient descent.
- This variant is known as stochastic gradient descent.
- For regression steepest descent gives

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta^{\prime} \sum_{i=1}^{N} \phi_{i} \Delta y_{i}
$$

- And the stochastic approximation is

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta^{\prime} \phi_{i} \Delta y_{i}
$$

Stochastic Gradient Descent

Figure: Stochastic gradient descent on a quadratic error surface.

Modern View of Error Functions

- Error function has a probabilistic interpretation (maximum likelihood).
- Error function is an actual loss function that you want to minimize (empirical risk minimization).
- For these interpretations probability and optimization theory become important.
- Much of the last 15 years of machine learning research has focused on probabilistic interpretations or clever relaxations of difficult objective functions.

Important Concepts Not Covered

- Optimization methods.
- Second order methods, conjugate gradient, quasi-Newton and Newton.
- Effective heuristics such as momentum.
- Local vs global solutions.

References I

