Basis Functions

Neil D. Lawrence

Department of Computer Science
Sheffield University

20th October 2015

Review

- Last time: explored least squares for univariate and multivariate regression.
- Introduced matrices, linear algebra and derivatives.
- This time: introduce basis functions for non linear regression models.

Outline

Basis Functions

Basis Functions

Nonlinear Regression

- Problem with Linear Regression-x may not be linearly related to \mathbf{y}.
- Potential solution: create a feature space: define $\phi(\mathbf{x})$ where $\phi(\cdot)$ is a nonlinear function of \mathbf{x}.
- Model for target is a linear combination of these nonlinear functions

$$
\begin{equation*}
f(\mathbf{x})=\sum_{j=1}^{K} w_{j} \phi_{j}(\mathbf{x}) \tag{1}
\end{equation*}
$$

Quadratic Basis

- Basis functions can be global. E.g. quadratic basis:

$$
\left[1, x, x^{2}\right]
$$

Figure: A quadratic basis.

Quadratic Basis

- Basis functions can be global. E.g. quadratic basis:

$$
\left[1, x, x^{2}\right]
$$

Figure: A quadratic basis.

Quadratic Basis

- Basis functions can be global. E.g. quadratic basis:

$$
\left[1, x, x^{2}\right]
$$

Figure: A quadratic basis.

Functions Derived from Quadratic Basis

$$
f(x)=w_{1}+w_{2} x+w_{3} x^{2}
$$

Figure: Function from quadratic basis with weights $w_{1}=0.87466$, $w_{2}=-0.38835, w_{3}=-2.0058$.

Functions Derived from Quadratic Basis

$$
f(x)=w_{1}+w_{2} x+w_{3} x^{2}
$$

Figure: Function from quadratic basis with weights $w_{1}=-0.35908$, $w_{2}=1.2274, w_{3}=-0.32825$.

Functions Derived from Quadratic Basis

$$
f(x)=w_{1}+w_{2} x+w_{3} x^{2}
$$

Figure: Function from quadratic basis with weights $w_{1}=-1.5638$, $w_{2}=-0.73577, w_{3}=1.6861$.

Radial Basis Functions

- Or they can be local. E.g. radial (or Gaussian) basis $\phi_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{\ell^{2}}\right)$

Figure: Radial basis functions.

Radial Basis Functions

- Or they can be local. E.g. radial (or Gaussian) basis $\phi_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{\ell^{2}}\right)$

Figure: Radial basis functions.

Radial Basis Functions

- Or they can be local. E.g. radial (or Gaussian) basis $\phi_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{\ell^{2}}\right)$

Figure: Radial basis functions.

Functions Derived from Radial Basis

$$
f(x)=w_{1} e^{-2(x+1)^{2}}+w_{2} e^{-2 x^{2}}+w_{3} e^{-2(x-1)^{2}}
$$

Figure: Function from radial basis with weights $w_{1}=-0.47518$, $w_{2}=-0.18924, w_{3}=-1.8183$.

Functions Derived from Radial Basis

$$
f(x)=w_{1} e^{-2(x+1)^{2}}+w_{2} e^{-2 x^{2}}+w_{3} e^{-2(x-1)^{2}}
$$

Figure: Function from radial basis with weights $w_{1}=0.50596$, $w_{2}=-0.046315, w_{3}=0.26813$.

Functions Derived from Radial Basis

$$
f(x)=w_{1} e^{-2(x+1)^{2}}+w_{2} e^{-2 x^{2}}+w_{3} e^{-2(x-1)^{2}}
$$

Figure: Function from radial basis with weights $w_{1}=0.07179$, $w_{2}=1.3591, w_{3}=0.50604$.

Basis Function Models

- A Basis function mapping is now defined as

$$
f\left(\mathbf{x}_{i}\right)=\sum_{j=1}^{m} w_{j} \phi_{i, j}+c
$$

Vector Notation

- Write in vector notation,

$$
f\left(\mathbf{x}_{i}\right)=\mathbf{w}^{\top} \boldsymbol{\phi}_{i}+c
$$

Log Likelihood for Basis Function Model

- The likelihood of a single data point is

$$
p\left(y_{i} \mid x_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-\mathbf{w}^{\top} \boldsymbol{\phi}_{i}\right)^{2}}{2 \sigma^{2}}\right) .
$$

- Leading to a log likelihood for the data set of

$$
L\left(\mathbf{w}, \sigma^{2}\right)=-\frac{n}{2} \log \sigma^{2}-\frac{n}{2} \log 2 \pi-\frac{\sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{\top} \boldsymbol{\phi}_{i}\right)^{2}}{2 \sigma^{2}} .
$$

- And a corresponding error function of

$$
E\left(\mathbf{w}, \sigma^{2}\right)=\frac{n}{2} \log \sigma^{2}+\frac{\sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{\top} \boldsymbol{\phi}_{i}\right)^{2}}{2 \sigma^{2}} .
$$

Expand the Brackets

$$
\begin{aligned}
E\left(\mathbf{w}, \sigma^{2}\right)= & \frac{n}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} y_{i}^{2}-\frac{1}{\sigma^{2}} \sum_{i=1}^{n} y_{i} \mathbf{w}^{\top} \boldsymbol{\phi}_{i} \\
& +\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} \mathbf{w}^{\top} \boldsymbol{\phi}_{i} \boldsymbol{\phi}_{i}^{\top} \mathbf{w}+\text { const. } \\
= & \frac{n}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} y_{i}^{2}-\frac{1}{\sigma^{2}} \mathbf{w}^{\top} \sum_{i=1}^{n} \boldsymbol{\phi}_{i} y_{i} \\
& +\frac{1}{2 \sigma^{2}} \mathbf{w}^{\top}\left[\sum_{i=1}^{n} \boldsymbol{\phi}_{i} \boldsymbol{\phi}_{i}^{\top}\right] \mathbf{w}+\text { const. }
\end{aligned}
$$

Multivariate Derivatives Reminder

- We will need some multivariate calculus.

$$
\frac{\mathrm{d} \mathbf{a}^{\top} \mathbf{w}}{\mathrm{d} \mathbf{w}}=\mathbf{a}
$$

and

$$
\frac{\mathrm{d} \mathbf{w}^{\top} \mathbf{A w}}{\mathrm{d} \mathbf{w}}=\left(\mathbf{A}+\mathbf{A}^{\top}\right) \mathbf{w}
$$

or if \mathbf{A} is symmetric (i.e. $\mathbf{A}=\mathbf{A}^{\top}$)

$$
\frac{\mathrm{d} \mathbf{w}^{\top} \mathbf{A w}}{\mathrm{d} \mathbf{w}}=2 \mathbf{A w} .
$$

Differentiate

Differentiating with respect to the vector \mathbf{w} we obtain

$$
\frac{\partial L(\mathbf{w}, \beta)}{\partial \mathbf{w}}=\beta \sum_{i=1}^{n} \phi_{i} y_{i}-\beta\left[\sum_{i=1}^{n} \phi_{i} \boldsymbol{\phi}_{i}^{\top}\right] \mathbf{w}
$$

Leading to

$$
\mathbf{w}^{*}=\left[\sum_{i=1}^{n} \boldsymbol{\phi}_{i} \boldsymbol{\phi}_{i}^{\top}\right]^{-1} \sum_{i=1}^{n} \boldsymbol{\phi}_{i} y_{i}
$$

Rewrite in matrix notation:

$$
\begin{aligned}
\sum_{i=1}^{n} \boldsymbol{\phi}_{i} \boldsymbol{\phi}_{i}^{\top} & =\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \\
\sum_{i=1}^{n} \boldsymbol{\phi}_{i} y_{i} & =\boldsymbol{\Phi}^{\top} \mathbf{y}
\end{aligned}
$$

Update Equations

- Update for \mathbf{w}^{*}.

$$
\mathbf{w}^{*}=\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\top} \mathbf{y}
$$

- The equation for $\sigma^{2 *}$ may also be found

$$
\sigma^{2^{*}}=\frac{\sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{* \top} \boldsymbol{\phi}_{i}\right)^{2}}{n}
$$

Polynomial Fits to Olympics Data

Left: fit to data, Right: model error. Polynomial order 0, model error -4.2717, $\sigma^{2}=0.268, \sigma=0.518$.

Polynomial Fits to Olympics Data

Left: fit to data, Right: model error. Polynomial order 1, model error -26.86, $\sigma^{2}=0.0503, \sigma=0.224$.

Polynomial Fits to Olympics Data

Left: fit to data, Right: model error. Polynomial order 2, model error -30.662, $\sigma^{2}=0.0380, \sigma=0.195$.

Polynomial Fits to Olympics Data

Left: fit to data, Right: model error. Polynomial order 3, model error -34.015, $\sigma^{2}=0.0296, \sigma=0.172$.

Polynomial Fits to Olympics Data

Left: fit to data, Right: model error. Polynomial order 4, model error -35.231, $\sigma^{2}=0.0271, \sigma=0.165$.

Polynomial Fits to Olympics Data

Left: fit to data, Right: model error. Polynomial order 5, model error -37.138, $\sigma^{2}=0.0235, \sigma=0.153$.

Polynomial Fits to Olympics Data

Left: fit to data, Right: model error. Polynomial order 6, model error -38.016, $\sigma^{2}=0.0220, \sigma=0.148$.

Reading

- Section 1.4 of Rogers and Girolami.
- Chapter 1, pg 1-6 of Bishop.
- Chapter 3, Section 3.1 of Bishop up to pg 143.

References I

C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006. [Google Books] .
S. Rogers and M. Girolami. A First Course in Machine Learning. CRC Press, 2011. [Google Books] .

