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Review

I Last time: Looked at Bayesian regression.
I Introduced priors and marginal likelihoods.
I This time: Dimensionality reduction.
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Clustering

I Divide data into discrete groups according to
characteristics.

I For example different animal species.
I Different political parties.

I Determine the allocation to the groups and (harder)
number of different groups.



K-means Clustering
An Algorithm

I Require: Set of K cluster centers & assignment of each point
to a cluster.

I Initialize cluster centers as data points.
I Assign each data point to nearest cluster center.
I Update each cluster center by setting it to the mean of

assigned data points.



Objective Function

I This minimizes the objective:

K∑
j=1

∑
i allocated to j

(
yi,: − µ j,:

)> (
yi,: − µ j,:

)
I i.e. it minimizes the sum of Euclidean squared distances

between points and their associated centers.
I The minimum is not guaranteed to be global or unique.

I This objective is a non-convex optimization problem.



K-means Clustering

I K-means clustering.
I Update each center by

setting to the mean of
the allocated points.
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K-means Clustering

I K-means clustering.
I Allocation doesn’t

change so stop.
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Other Clustering Approaches

I Spectral clustering (Shi and Malik, 2000; Ng et al., 2002).
I Allows clusters which aren’t convex hulls.

I Dirichlet processes
I A probabilistic formulation for a clustering algorithm that

is non-parameteric.
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High Dimensional Data

USPS Data Set Handwritten Digit

I 3648 Dimensions
I 64 rows by 57 columns

I Space contains more
than just this digit.

I Even if we sample every
nanosecond from now
until the end of the
universe, you won’t see
the original six!
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MATLAB Demo

demDigitsManifold([1 2], ’all’)
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MATLAB Demo

demDigitsManifold([1 2], ’sixnine’)
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Low Dimensional Manifolds

Pure Rotation is too Simple

I In practice the data may undergo several distortions.
I e.g. digits undergo ’thinning’, translation and rotation.

I For data with ’structure’:
I we expect fewer distortions than dimensions;
I we therefore expect the data to live on a lower dimensional

manifold.
I Conclusion: deal with high dimensional data by looking

for lower dimensional non-linear embedding.



Principal Component Analysis

I How do we find these directions?
I Rotate to find directions in data with maximal variance.

I This is known as PCA (Hotelling, 1933).

I Rotate data to extract directions of maximum variance.
I Do this by diagonalizing the sample covariance matrix

S = n−1
n∑

i=1

(
yi − µ

) (
yi − µ

)>



Principal Component Analysis

I Find a direction in the data, x = Ry, for which variance is
maximized.



Lagrangian

I Solution is found via constrained optimisation (which uses
Lagrange multipliers):

L (r1, λ1) = r>1 Sr1 + λ1

(
1 − r>1 r1

)
I Gradient with respect to r1

dL (r1, λ1)
dr1

= 2Sr1 − 2λ1r1

rearrange to form
Sr1 = λ1r1.

Which is known as an eigenvalue problem.
I Further directions can also be shown to be eigenvectors of

the covariance.



Linear Dimensionality Reduction

Linear Latent Variable Model

I Represent data, Y, with a lower dimensional set of latent
variables X.

I Assume a linear relationship of the form

yi,: = Wxi,: + εi,:,

where
εi,: ∼ N

(
0, σ2I

)
.



Linear Latent Variable Model

Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and
data.

I Standard Latent
variable approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

Y

W X

σ2

p (Y|X,W) =

n∏
i=1

N

(
yi,:|Wxi,:, σ

2I
)
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Computation of the Marginal Likelihood
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =

n∏
i=1

N
(
yi,:|0,C

)
, C = WW> + σ2I

log p (Y|W) = −
n
2

log |C| −
1
2

tr
(
C−1Y>Y

)
+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.
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Reading

I Chapter 7 of Rogers and Girolami up to pg 249.
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