Unsupervised Learning

Neil D. Lawrence

Department of Computer Science
Sheffield University

17th November 2015

Review

- Last time: Looked at Bayesian regression.
- Introduced priors and marginal likelihoods.
- This time: Dimensionality reduction.

Outline

Clustering

Latent Variable Models

Clustering

- Divide data into discrete groups according to characteristics.
- For example different animal species.
- Different political parties.
- Determine the allocation to the groups and (harder) number of different groups.

K-means Clustering
 An Algorithm

- Require: Set of K cluster centers \& assignment of each point to a cluster.
- Initialize cluster centers as data points.
- Assign each data point to nearest cluster center.
- Update each cluster center by setting it to the mean of assigned data points.

Objective Function

- This minimizes the objective:

$$
\sum_{j=1}^{K} \sum_{i \text { allocated to } j}\left(\mathbf{y}_{i,:}-\mu_{j,:}\right)^{\top}\left(\mathbf{y}_{i,:}-\mu_{j,:}\right)
$$

- i.e. it minimizes the sum of Euclidean squared distances between points and their associated centers.
- The minimum is not guaranteed to be global or unique.
- This objective is a non-convex optimization problem.

K-means Clustering

Iteration 4

- K-means clustering.
- Update each center by setting to the mean of the allocated points.

K-means Clustering

Iteration 4

- K-means clustering.
- Allocate each data point to the nearest cluster center.

K-means Clustering

Iteration 1

- K-means clustering.
- Update each center by setting to the mean of the allocated points.

K-means Clustering

Iteration 1

- K-means clustering.
- Allocate each data point to the nearest cluster center.

K-means Clustering

Iteration 2

- K-means clustering.
- Update each center by setting to the mean of the allocated points.

K-means Clustering

Iteration 2

- K-means clustering.
- Allocate each data point to the nearest cluster center.

K-means Clustering

Iteration 3

- K-means clustering.
- Update each center by setting to the mean of the allocated points.

K-means Clustering

Iteration 3

- K-means clustering.
- Allocate each data point to the nearest cluster center.

K-means Clustering

Iteration 4

- K-means clustering.
- Update each center by setting to the mean of the allocated points.

K-means Clustering

Iteration 4

- K-means clustering.
- Allocate each data point to the nearest cluster center.

K-means Clustering

Iteration 4

- K-means clustering.
- Allocation doesn't change so stop.

Other Clustering Approaches

- Spectral clustering (Shi and Malik, 2000; Ng et al., 2002).
- Allows clusters which aren't convex hulls.
- Dirichlet processes
- A probabilistic formulation for a clustering algorithm that is non-parameteric.

Outline

Clustering

Latent Variable Models

High Dimensional Data

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns

High Dimensional Data

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.

High Dimensional Data

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!

High Dimensional Data

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!

$$
6
$$

Simple Model of Digit

- Rotate a 'Prototype'

Simple Model of Digit

- Rotate a 'Prototype'

Simple Model of Digit

- Rotate a 'Prototype'

Simple Model of Digit

- Rotate a 'Prototype'

Simple Model of Digit

- Rotate a 'Prototype'

$$
6
$$

Simple Model of Digit

- Rotate a 'Prototype'

Simple Model of Digit

- Rotate a 'Prototype'

MATLAB Demo
demDigitsManifold([lll 12$]$, all')

MATLAB Demo

demDigitsManifold([1 2], 'all’)

MATLAB Demo

demDigitsManifold([1 2], 'sixnine')

Low Dimensional Manifolds

Pure Rotation is too Simple

- In practice the data may undergo several distortions.
- e.g. digits undergo 'thinning', translation and rotation.
- For data with 'structure':
- we expect fewer distortions than dimensions;
- we therefore expect the data to live on a lower dimensional manifold.
- Conclusion: deal with high dimensional data by looking for lower dimensional non-linear embedding.

Principal Component Analysis

- How do we find these directions?
- Rotate to find directions in data with maximal variance.
- This is known as PCA (Hotelling, 1933).
- Rotate data to extract directions of maximum variance.
- Do this by diagonalizing the sample covariance matrix

$$
\mathbf{S}=n^{-1} \sum_{i=1}^{n}\left(\mathbf{y}_{i}-\mu\right)\left(\mathbf{y}_{i}-\mu\right)^{\top}
$$

Principal Component Analysis

- Find a direction in the data, $\mathbf{x}=\mathbf{R y}$, for which variance is maximized.

Lagrangian

- Solution is found via constrained optimisation (which uses Lagrange multipliers):

$$
L\left(\mathbf{r}_{1}, \lambda_{1}\right)=\mathbf{r}_{1}^{\top} \mathbf{S r}_{1}+\lambda_{1}\left(1-\mathbf{r}_{1}^{\top} \mathbf{r}_{1}\right)
$$

- Gradient with respect to \mathbf{r}_{1}

$$
\frac{\mathrm{d} L\left(\mathbf{r}_{1}, \lambda_{1}\right)}{\mathrm{d} \mathbf{r}_{1}}=2 \mathbf{S r}_{1}-2 \lambda_{1} \mathbf{r}_{1}
$$

rearrange to form

$$
\mathbf{S r}_{1}=\lambda_{1} \mathbf{r}_{1}
$$

Which is known as an eigenvalue problem.

- Further directions can also be shown to be eigenvectors of the covariance.

Linear Dimensionality Reduction

Linear Latent Variable Model

- Represent data, \mathbf{Y}, with a lower dimensional set of latent variables \mathbf{X}.
- Assume a linear relationship of the form

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i,:}
$$

where

$$
\boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Standard Latent

variable approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, j} \mid \mathbf{W} \mathbf{x}_{i, i}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

- Standard Latent variable approach:
- Define Gaussian prior over latent space, \mathbf{X}.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, \mid} \mid \mathbf{W} \boldsymbol{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

$$
p(\mathbf{X})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i,:}, \mid \mathbf{0}, \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and
 data.
- Standard Latent variable approach:
- Define Gaussian prior over latent space, \mathbf{X}.
- Integrate out latent variables.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, \mid} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right) \\
p(\mathbf{X}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i,:} \mid \mathbf{0}, \mathbf{I}\right)
\end{aligned}
$$

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:}, \mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Computation of the Marginal Likelihood

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i, i} \quad \mathbf{x}_{i,:} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

Computation of the Marginal Likelihood

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i, i} \quad \mathbf{x}_{i,:} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

$$
\mathbf{W} \mathbf{x}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{W}^{\top}\right),
$$

Computation of the Marginal Likelihood

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i, j} \quad \mathbf{x}_{i,:} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

$$
\mathbf{W} \mathbf{x}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{W}^{\top}\right),
$$

$$
\mathbf{W} \mathbf{x}_{i,:}+\epsilon_{i, ;} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{W W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \mathbf{Y}^{\top} \mathbf{Y}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \mathbf{Y}^{\top} \mathbf{Y}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{W}=\mathbf{U}_{q} \mathbf{L R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Reading

- Chapter 7 of Rogers and Girolami up to pg 249.

References I

H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6): 417-441, 1933.
A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, volume 14, Cambridge, MA, 2002. MIT Press.
S. Rogers and M. Girolami. A First Course in Machine Learning. CRC Press, 2011. [Google Books] .
J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8): 888-905, 2000.
M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society, B, 6(3):611-622, 1999. [PDF]. [DOI].

