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Clustering

I Divide data into discrete groups according to
characteristics.

I For example different animal species.
I Different political parties.

I Determine the allocation to the groups and (harder)
number of different groups.



K-means Clustering
An Algorithm

I Require: Set of K cluster centers & assignment of each point
to a cluster.

I Initialize cluster centers as data points.
I Assign each data point to nearest cluster center.
I Update each cluster center by setting it to the mean of

assigned data points.



Objective Function

I This minimizes the objective:

K∑
j=1

∑
i allocated to j

(
xi,: − µ j,:

)> (
xi,: − µ j,:

)
I i.e. it minimizes the sum of Euclidean squared distances

between points and their associated centers.
I The minimum is not guaranteed to be global or unique.

I This objective is a non-convex optimization problem.



K-means Clustering

I K-means clustering.
I Update each center by

setting to the mean of
the allocated points.
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K-means Clustering

I K-means clustering.
I Allocation doesn’t

change so stop.
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Other Clustering Approaches

I Spectral clustering (Shi and Malik, 2000; Ng et al., 2002).
I Allows clusters which aren’t convex hulls.

I Dirichlet processes
I A probabilistic formulation for a clustering algorithm that

is non-parameteric.



High Dimensional Data

USPS Data Set Handwritten Digit

I 3648 Dimensions
I 64 rows by 57 columns

I Space contains more
than just this digit.

I Even if we sample every
nanosecond from now
until the end of the
universe, you won’t see
the original six!
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MATLAB Demo

demDigitsManifold([1 2], ’all’)
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MATLAB Demo

demDigitsManifold([1 2], ’sixnine’)
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Low Dimensional Manifolds

Pure Rotation is too Simple

I In practice the data may undergo several distortions.
I e.g. digits undergo ’thinning’, translation and rotation.

I For data with ’structure’:
I we expect fewer distortions than dimensions;
I we therefore expect the data to live on a lower dimensional

manifold.
I Conclusion: deal with high dimensional data by looking

for lower dimensional non-linear embedding.



Principal Component Analysis

I How do we find these directions?
I Rotate to find directions in data with maximal variance.

I This is known as PCA (Hotelling, 1933).

I Rotate data to extract directions of maximum variance.
I Do this by diagonalizing the sample covariance matrix

S = n−1
n∑

i=1

(
xi − µ

) (
xi − µ

)>



Principal Component Analysis

I Find a direction in the data, x = Rx, for which variance is
maximized.



Lagrangian

I Solution is found via constrained optimisation (which uses
Lagrange multipliers):

L (r1, λ1) = r>1 Sr1 + λ1

(
1 − r>1 r1

)
I Gradient with respect to r1

dL (r1, λ1)
dr1

= 2Sr1 − 2λ1r1

rearrange to form
Sr1 = λ1r1.

Which is known as an eigenvalue problem.
I Further directions can also be shown to be eigenvectors of

the covariance.



Error Functions to Probabilities

I We introduced different learning scenarios using error
functions.

I Now we will reinterpret those error functions through
probability.

I The error function can be seen as a logarithm of a
probability density function.

I Before we take that perspective we will first review
probability.
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Probability Review I

I We are interested in trials which result in two random
variables, Y and X, each of which has an ‘outcome’
denoted by y or x.

I We summarise the notation and terminology for these
distributions in the following table.

Terminology Notation Description
Joint P

(
Y = y,X = x

)
‘The probability that

Probability Y = y and X = x’
Marginal P

(
Y = y

)
‘The probability that

Probability Y = y regardless of X’
Conditional P

(
Y = y|X = x

)
‘The probability that

Probability Y = y given that X = x’

Table : The different basic probability distributions.



A Pictorial Definition of Probability
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Figure : Representation of joint and conditional probabilities.



Different Distributions

Terminology Definition Notation

Joint limS→∞
sY=3,X=4

S P (Y = 3,X = 4)
Probability

Marginal limS→∞
sY=5

S P (Y = 5)
Probability

Conditional limS→∞
sY=3,X=4

sX=4
P (Y = 3|X = 4)

Probability

Table : Definition of probability distributions.



Notational Details

I Typically we should write out P
(
Y = y,X = x

)
.

I In practice, we often use P
(
y, x

)
.

I This looks very much like we might write a multivariate
function, e.g. f

(
y, x

)
=

y
x .

I For a multivariate function though, f
(
y, x

)
, f

(
x, y

)
.

I However P
(
y, x

)
= P

(
x, y

)
because

P
(
Y = y,X = x

)
= P

(
X = x,Y = y

)
.

I We now quickly review the ‘rules of probability’.



Normalization

All distributions are normalized. This is clear from the fact that∑
y sy = S, which gives

∑
y

P
(
y
)

=

∑
y sy

S
=

S
S

= 1.

A similar result can be derived for the marginal and conditional
distributions.



The Sum Rule

Ignoring the limit in our definitions:

I The marginal probability P (x) is sx
S (ignoring the limit).

I The joint distribution P
(
y, x

)
is

sy,x

S .
I sx =

∑
y sy,x so

sx

S
=

∑
y

sy,x

S
,

in other words
P (x) =

∑
y

P
(
y, x

)
.

This is known as the sum rule of probability.



The Product Rule

I P
(
y|x

)
is

sy,x

sx
.

I P
(
y, x

)
is

sy,x

S
=

sy,x

sx

sx

S

or in other words

P
(
y, x

)
= P

(
y|x

)
P (x) .

This is known as the product rule of probability.



Bayes’ Rule

I From the product rule,

P
(
x, y

)
= P

(
y, x

)
= P

(
y|x

)
P (x) ,

so
P
(
x|y

)
P
(
y
)

= P
(
y|x

)
P (x)

which leads to Bayes’ rule,

P
(
x|y

)
=

P
(
y|x

)
P (x)

P
(
y
) .
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Continuous Variables

I For continuous models we use the probability density
function (PDF).

I Discrete case: defined probability distributions over a
discrete number of states.

I How do we represent continuous as probability?
I Student heights:

I Develop a representation which could answer any question
we chose to ask about a student’s height.

I PDF is a positive function, integral over the region of
interest is one1.



Manipulating PDFs

I Same rules for PDFs as distributions e.g.

p
(
x|y

)
=

p
(
y|x

)
p (x)

p
(
y
)

where p
(
y, x

)
= p

(
y|x

)
p (x) and for continuous variables

p
(
y
)

=
∫

p
(
y, x

)
dx.

I Expectations under a PDF

〈
f
(
y
)〉

p(y) =

∫
f
(
y
)

p
(
y
)

dy

where the integral is over the region for which our PDF for
y is defined.



The Gaussian Density

I Perhaps the most common probability density.

p(x|µ, σ2) =
1

√

2πσ2
exp

(
−

(x − µ)2

2σ2

)
= N

(
x|µ, σ2

)
I Also available in multivariate form.
I First proposed maybe by de Moivre but also used by

Laplace.



Gaussian PDF I
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Figure : The Gaussian PDF with µ = 1.7 and variance σ2 = 0.0225.
Mean shown as red line. Two standard deviations are shown as
magenta. It could represent the heights of a population of students.



Regression Revisited

I We introduced an error function of the form

E(w) =

n∑
i=1

(
yi −mxi − c

)2

I Quadratic error functions can be seen as Gaussian noise
models.

I Imagine we are seeing data given by,

y(xi) = mxi + c + ε

where ε is Gaussian noise with standard deviation σ,

ε ∼ N
(
0, σ2

)
.



Noise Corrupted Mapping

I This implies that

yi ∼ N
(
mxi + c, σ2

)
I Which we also write

p(yi|w, σ) = N
(
yi|mxi + c, σ2

)



Gaussian Likelihood

I If the noise is sampled independently for each data point
from the same density we have

p(y|m, c, σ2) =

n∏
i=1

N

(
yi|mxi + c, σ2

)
I This is an i.i.d. assumption about the noise.
I Writing the functional form we have

p(y|m, c, σ2) =

n∏
i=1

1
√

2πσ2
exp

(
−

(yi −mxi − c)2

2σ2

)
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Gaussian Log Likelihood

I If the noise is sampled independently for each data point
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Gaussian Log Likelihood

I If the noise is sampled independently for each data point
from the same density we have
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n∏
i=1

N

(
yi|mxi + c, σ2

)
I This is an i.i.d. assumption about the noise.
I Writing the functional form we have

− logp(y|m, c, σ2) =
1

2σ2 E(m, c) + const



Probabilistic Interpretation of the Error Function

I Probabilistic Interpretation for Error Function is Negative
Log Likelihood.

I Minimizing error function is equivalent to maximizing log
likelihood.

I Maximizing log likelihood is equivalent to maximizing the
likelihood because log is monotonic.

I Probabilistic interpretation: Minimizing error function is
equivalent to maximum likelihood with respect to
parameters.



Monotonicity and Ordering

0

1

2

3

0 2 4 6 8 10 12

y

x

y = log(x)

0

20

40

0 2 4 6 8 10 12

y

x

y = (x − 6)2

Monotonic functions preserve the ordering of input points, so
the largest x is also the largest y. Left: gives an impression of
this idea, cyan arrow is largest in x and correspondingly the
largest in y. This transformation is log. Right: this quadratic

function doesn’t preserve the ordering and the largest x (again
cyan arrow) is not the largest y value.



Sample Based Approximation implies i.i.d

I The log likelihood is

L(θ) = log P(y|θ)

I If the likelihood is independent over the individual data
points,

P(y|θ) =

n∏
i=1

P(yi|θ)

I This is equivalent to the assumption that the data is
independent and identically distributed. This is known as
i.i.d..

I Now the log likelihood is

L(θ) =

n∑
i=1

log P(yi|θ)

I We take the negative log likelihood to recover the sum of
squares error.
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