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Regression in Python

Neil Lawrence

October 12th, 2012

To get you used to some of the commands before starting the assignment, this provides a brief warm up
with Python.

Start Python with pylab enabled. Once you’ve received the command prompt try the following commands.
Do NOT copy and paste these commands into the python prompt if you do that you are not learning anything
(other than how to copy and paste, which you should know by now). Type these commands using your fingers
and the keyboard ... don’t touch the mouse (it is evil, it sucks out your soul through the palm of your hand).

Remember to check what a command does, simply type:

np.random.randn?

You should store your answers to the questions in the assignment in a script file (e.g. assignmentOne.py)
which will be submitted at the assignment deadline. Any answer where you are required to write something
down will be requested in the assessment Your answers to this assignment will be given in the form of a Python
script. This will be submitted before the start of the lab class in Week 7 via MOLE. Late submissions will
get zero as we will mark the submissions directly after they are received in the lab class. We will try to run
your script using

%run assignmentOne.py

Make sure it answers each of the questions below!
To start the script, you’ll need to import some libraries. At the start of your script import the following

libraries:

import scipy.io

import numpy as np

import matplotlib.pyplot as plt

When running ipython with the --pylab flag, these libraries are automatically imported, but you’ll need to
manually include them in your script (along with the associated namespaces before the command names, such
as np).

You need to complete the first part before starting the second (which will make up your assignment mark).

Part One: Lab Class

The first part is really a warm up, to get you familiar with coding in Python and ready to answer the harder
questions in the second part.

1. First, create some uniformly spaced input values in an array with 10 rows and 1 column, x,

x = np.zeros ((10, 1))

x[:, 0] = np.linspace (-1,3,10)

You can see what the values are by typing

print(x)

(a) The function random.randn() is gives you some samples from a standard normal. What is a standard
normal?

(b) Let’s now sample a gradient for a line, m, and an offset, c

m = np.random.randn (1)

c = np.random.randn (1)
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Have a look at m and c,

print(m)

print(c)

Now let’s make some noise!

epsilon = np.random.randn(x.shape[0], x.shape [1])*0.1

What is the standard deviation of this noise? What is its variance?

(c) Now create a data set by taking the inputs, x and multiplying by m and adding c

t = m*x + c + epsilon

Can you write down the probability density for t? Do this before proceeding.

(d) Plot the small data set you’ve created using:

plt.plot(x, t, ’rx’)

2. Iterative Solution Now we are going to fit a line to the data you’ve plotted. To do this, we are first of
all going to use the formulae we computed in class. We are trying to minimize this error

E(m, c, σ2) =
N

2
log σ2 +

1

2σ2

N∑
i=1

(ti −mxi − c)2 .

with respect to m, c and σ2.

We need to start with an initial guess for m, the actual value doesn’t matter too much, try setting it to
zero, then use this formula to set c,

c∗ =

∑N
i=1 (ti −m∗xi)

N
,

followed by this formula to estimate m. Iterate between the two formulae and compute the error after
each iteration and see how much it changes. Store the error at the end of each iteration in an array, err.

m∗ =

∑N
i=1 xi (ti − c∗)∑N

i=1 x
2
i

,

Finally when the error stops changing update the estimate of the noise variance:

σ2 ∗ =

∑N
i=1 (ti −m∗xi − c∗)2

N
.

Print the final recorded values for the error, m, c and σ2. Plot the error as a function of iterations. Ensure
it goes down at each iteration.

3. One Shot Solution As we discussed in lectures, we don’t need to run the iterative algorithm. Since
there was a gradient and an offset, we will use the ’trick’ of having a basis set containing the data and
another basis set containing the ’constant function’ (i.e. set to 1).

Phi = np.hstack ((np.ones(x.shape), x))

print(Phi)

We can use this basis set to learn m and c simultaneously.

The maximum likelihood solution from the lectures for w was

w∗ =
[
Φ>Φ

]−1
Φ>t

but you should solve the matrix equation

Φ>Φw = Φ>t

directly to get the best solution (Hint: try np.linalg.solve?) and call the resulting variable wStar.

(a) Implement this update and show that w∗1 (the first element of w∗) is equal to c and w∗2 is equal to
m.
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(b) Replot the data you generated using

plt.plot(x, t, ’rx’)

and add to the figure a plot of the fit you found using the last method. To do this you will create
some ‘test’ data. The test data inputs will be uniformly spaced values along the x-axis. You can
create these in Python using:

xTest = np.linspace (-2,2,100)

which will create one 100 test inputs between -2 and 2.

Now create an associated feature matrix to add the bias term:

PhiTest = np.zeros(( xTest.shape[0], 2))

PhiTest[:, 0] = np.ones(xTest.shape)

PhiTest[:, 1] = xTest

To obtain the test outputs you can write

yTest = np.dot(PhiTest , wStar)

Finally you can plot the result with

plt.plot(xTest , yTest , ’b-’)

Part Two: Assignment

Olympic Data This part is the assignment. The marks allocated here will make up 20% of your mark for the
entire course. Marks are distributed equally across the three questions. For the assessed part we are going to
load in some real data, we will use an example from Rogers and Girolami: the Olympic 100 m finals winners
times. To load their data (which is in Matlab format) we need to import a library

import scipy.io

which gives us access to the loadmat function. Download the olympics data from http://staffwww.dcs.shef.

ac.uk/people/N.Lawrence/olympics.mat.

olympics = scipy.io.loadmat(’olympics.mat’)

This loads the data into a Python dictionary. We can extract the relevant portions using

x = olympics[’male100 ’][:, 0:1]

to extract the Olympic years and

t = olympics[’male100 ’][:, 1:2]

to extract the 100m winning times. We can plot these as before

plt.plot(x, t, ’rx’)

1. Linear Model

(a) Fit a linear model to the data as above. Plot the fit. Compute the final error.

(b) Now we will fit a non-linear basis function model. Start by creating a quadratic basis

Phi = np.zeros((x.shape[0], 3))

for i in range(0, 3):

Phi[:, i] = x**i

and plot the fit, again computing the final error.

(c) Large order polynomial fits tend to do fairly extraordinary things outside an input range of -1 to 1.
Have a think about why this is, in particular, what is the result of 20128? Do you think that is a
suitable basis?

2. Radial Basis Functions We turn to a fit based on exponentiated quadratic (or Gaussian or radial) basis
functions:

φ(x) = exp

(
− (x− µ)2

2`2

)
For each model, you can place the basis functions uniformly across the input space. So we have:
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muVector = np.linspace (1896 ,2012 , numBasis)

as a one dimensional array containing the centres of the basis, where numBasis is the number of basis
functions. You can construct the basis matrix using

# Allocate the matrix for the basis set

Phi = np.zeros((x.shape[0], numBasis ))

# Set the width of the basis functions

width = 2*(x.max() - x.min ())/ numBasis

# precompute the scale of the exponent

scale = -1/(2* width*width)

for i in range(0, numBasis ):

Phi[:, i] = np.exp(scale*(x-muVector[i])**2)

Note here that we are setting the width of the basis functions according to the distance between the basis
functions.

(a) Plot the basis function values for the inputs of years between 1896 and 2012. On the x-axis should be
years, on the y-axis the values of the basis functions. Create the plot for 2, 5 and 10 basis functions.
Make sure the basis functions are nicely overlapping (i.e. that you’ve set the width correctly) and
that they are spread out across the input range.

Hint : for plotting the function given by your prediction you can use code like this.

# Make predictions every year from 1896 until 2012

xPred = np.arange (1896 ,2013 ,1)

# Allocate the basis function matrix

PhiPred = np.zeros(( xPred.shape[0], numBasis ))

for i in range(0, numBasis ):

PhiPred[:, i] = np.exp(scale*(xPred -muVector[i])**2)

(b) Plot the basis set along the input line using

plt.plot(xPred , PhiPred)

(c) Now let’s observe what type of functions these basis sets can generate by sampling a weight vector,
w, from a Gaussian density and using it to create a function.

# Sample a candidate weight vector from a Gaussian.

w = np.random.randn(numBasis , 1)

y = np.dot(PhiPred , w)

plt.plot(xPred , y)

Do this a few different times, obtaining a different sample from the Gaussian for w each time. Do
this for models containing 2, 5 and 10 basis functions.

(d) Fit basis function models with between 1 and 27 basis functions (for each number of basis functions
have your code create the plot, show the error as the title plt.title(’errorValue’), pause until a
key is pressed and then create the next plot. Store the error values and plot them in a separate plot
against the number of basis functions.

Don’t forget to fit the noise variance!!

Once you have the estimate of w (wStar), you can make the prediction using a matrix multiplication.

yPred = np.dot(PhiPred , wStar)

(e) Data Fit Which number of basis functions has the lowest error? Do you think this is a good fit?

(f) Validation Data Let’s assume that we only have the data up until 1976. Hold-out the data from
1980 onwards. Now retrain your models and test the result on this held out data. What is the
difference in your results? Which number of basis functions now has the best error?

(g) Cross Validation For each number of basis compute and plot:

i. the leave-one-out cross validation error.

ii. the 5 fold cross validation error.

Which model should be chosen according to each of these model selection criterion?

Note: The data doesn’t divide into 5 equal size partitions for the five fold cross validation error.
Don’t worry about this too much. Two of the partitions will have an extra data point. You might
find np.random.randperm? useful.
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3. Bayesian Solution In this question you will perform Bayesian inference on the data. Use the same basis
sets from the previous question. Select a Gaussian prior for the mapping vector, w,

p(w) = N (w|0, αI) ,

where α is the prior variance. Assume a standard deviation of σ = 0.3 for the noise (i.e. a variance of
σ2 = 0.01) and a variance of α = 100 for the prior variance on w.

(a) Marginal Likelihood Now compute and plot the log marginal likelihood, log p(T), for each of the
models

log p(T) = −N
2

log 2π − 1

2
log |K| − 1

2
t>K−1t,

where
K = αΦΦ> + Iσ2.

Find the model with the best fit according to the marginal likelihood. Does it match that chosen by
cross-validation or validation?

(b) Posterior Mean Prediction and Variance For the selected model compute the mean and covari-
ance of the posterior density for w. 〈

ww>
〉

= Cw + 〈w〉 〈w〉>

Cw =

[
1

σ2
Φ>Φ + α−1I

]−1
〈w〉 = Cwσ

−2Φ>t

Plot the mean fit to the data and one standard deviation above and below. For this plot extend the
input range of your plot to be between 1850 and 2050.

(c) Posterior Samples For the same model take 10 samples from this posterior density to plot 10
fits to the data on top of the data. Plot all the samples in the same plot (continue to use the 200
year input range from 1850 to 2050). Check np.random.multivariate_normal? for sampling from
a multivariate Gaussian.

(d) Quality of Error Bars Comment on the quality of the error bars. Are the variances for the
predictions reasonable across the input range?
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