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Prior Distribution

e Bayesian inference requires a prior on the parameters.
e The prior represents your belief before you see the data of the
likely value of the parameters.

o For linear regression, consider a Gaussian prior on the
intercept:
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Stages to Derivation of the Posterior

e Multiply likelihood by prior
o they are “exponentiated quadratics”, the answer is always also
an exponentiated quadratic because
exp(a?®) exp(b?) = exp(a® + b?).
o Complete the square to get the resulting density in the form
of a Gaussian.
¢ Recognise the mean and (co)variance of the Gaussian. This is
the estimate of the posterior.
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complete the square of the quadratic form to obtain

1
log p(c|t,x, m,0?) = —2—2(C — u)? + const,
T

where 72 = (No =2 + a1_1)71 and pu = 5 SN (5 — mx;).



The Joint Density

o Really want to know the joint posterior density over the
parameters ¢ and m.

e Could now integrate out over m, but it's easier to consider the
multivariate case.




Two Dimensional Gaussian

e Consider height, h/m and weight, w/kg.

e Could sample height from a distribution:

p(h) ~ N (1.7,0.0225)

e And similarly weight:




Height and Weight Models

Marginal Distributions

p(h)
p(w)

h/m w/kg
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Independence Assumption

e This assumes height and weight are independent.

p(h,w) = p(h)p(w)

W

e In reality they are dependent (body mass index) = ;5.
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Independent Gaussians

p(w, h) = p(w)p(h)




Independent Gaussians
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Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.
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Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.
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this gives a covariance matrix:
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Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.
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Multivariate Regression Likelihood

o Recall multivariate regression likelihood:

N
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Multivariate Regression Likelihood

o Recall multivariate regression likelihood
p)

t| X, w E —w'x;
( | ) (2 )N/2 P 2 242 ( h )

o Now use a multivariate Gaussian prior
1 1
p(w) = 5 exp (—WTW>
(2ma)2 o




Posterior Density

e Once again we want to know the posterior:
p(wlt, X) o p(t[X, w)p(w)

e And we can compute by completing the square.
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e Once again we want to know the posterior:
p(wlt, X) o< p(t|X, w)p(w)

e And we can compute by completing the square.
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Bayesian vs Maximum Likelihood

o Note the similarity between posterior mean
pw = (02X X+a 1o 2X "t

e and Maximum likelihood solution

w=(X"X)"1XTt




Marginal Likelihood is Computed as Normalizer

p(wt, X)p(t|X) = p(t|w, X)p(w)




Marginal Likelihood

e Can compute the marginal likelihood as:

p(t|X,a,0) =N (t|0, aXX + a2l)




Reading

e Section 2.3 of Bishop up to top of pg 85 (multivariate
Gaussians).

e Section 3.3 of Bishop up to 159 (pg 152-159).
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