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Prior Distribution

• Bayesian inference requires a prior on the parameters.

• The prior represents your belief before you see the data of the
likely value of the parameters.

• For linear regression, consider a Gaussian prior on the
intercept:

c ∼ N (0, α1)



Gaussian Noise

0

1

2

-3 -2 -1 0 1 2 3 4

p(c) = N (c|0, α1)

Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Gaussian Noise

0

1

2

-3 -2 -1 0 1 2 3 4

p(c) = N (c|0, α1)

p(t|m, c, x , σ2) = N
(
t|mx + c, σ2

)

Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Gaussian Noise

0

1

2

-3 -2 -1 0 1 2 3 4

p(c) = N (c|0, α1)

p(t|m, c, x , σ2) = N
(
t|mx + c, σ2

)
p(c|t,m, x , σ2) =

N
(
c| t−mx

1+σ2/α1
, (σ−2 + α−1

1 )−1
)

Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Stages to Derivation of the Posterior

• Multiply likelihood by prior
• they are“exponentiated quadratics”, the answer is always also

an exponentiated quadratic because
exp(a2) exp(b2) = exp(a2 + b2).

• Complete the square to get the resulting density in the form
of a Gaussian.

• Recognise the mean and (co)variance of the Gaussian. This is
the estimate of the posterior.
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The Joint Density

• Really want to know the joint posterior density over the
parameters c and m.

• Could now integrate out over m, but it’s easier to consider the
multivariate case.



Two Dimensional Gaussian

• Consider height, h/m and weight, w/kg .

• Could sample height from a distribution:

p(h) ∼ N (1.7, 0.0225)

• And similarly weight:

p(w) ∼ N (75, 36)
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Independence Assumption

• This assumes height and weight are independent.

p(h,w) = p(h)p(w)

• In reality they are dependent (body mass index) = w
h2 .



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h
)

Marginal Distributions

p
(w

)



Independent Gaussians

p(w , h) = p(w)p(h)



Independent Gaussians
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Independent Gaussians
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Independent Gaussians
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Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.
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Multivariate Regression Likelihood

• Recall multivariate regression likelihood:
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Posterior Density

• Once again we want to know the posterior:

p(w|t,X) ∝ p(t|X,w)p(w)

• And we can compute by completing the square.
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−2X>t
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Bayesian vs Maximum Likelihood

• Note the similarity between posterior mean

µw = (σ−2X>X+ α−1)−1σ−2X>t

• and Maximum likelihood solution

ŵ = (X>X)−1X>t



Marginal Likelihood is Computed as Normalizer

p(w|t,X)p(t|X) = p(t|w,X)p(w)



Marginal Likelihood

• Can compute the marginal likelihood as:

p(t|X, α, σ) = N
(
t|0, αXX> + σ2I

)



Reading

• Section 2.3 of Bishop up to top of pg 85 (multivariate
Gaussians).

• Section 3.3 of Bishop up to 159 (pg 152–159).
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