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Outline

Maximum Likelihood



Entropy

• Last time we computed −〈logP(x)〉P(x).

• This special expectation is known as the entropy of a
distribution.

• It is a measure of how much “uncertainty” is in a distribution
(learn it!).

H (x) = −
∑
x

P(x) logP(x)



Kullback Leibler Divergence

• The Kullback Leibler divergence is another special expectation
(learn it!).

KL (P(x) ‖Q(x)) =

〈
log

P(x)

Q(x)

〉
P(x)

= 〈logP(x)〉P(x)−〈logQ(x)〉P(x)

• It is a measure of divergence between two distributions Q(x)
and P(x).

• It is zero if they are identical (this is obviously true).

• It is positive if they are different (this is less obvious).
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As the cyan Gaussian density (q(x)) approaches the yellow
Gaussian density (p(x)) the KL divergence approaches zero. As

they move apart, KL divergence increases again.
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Matching Two Distributions

• To match two distributions P(x) and Q(x) we can minimize
the KL divergence.

• If we know the form of Q(x) (our approximation) and it has
parameters like a and b for the Gamma or mean and variance
for Gaussian, we can change these parameters to find the best
fit of Q(x) to P(x).

• If we have only got samples from P(x) we use a sample based
approximation.



Sample Based Approximation to the KL

KL (P(x) ‖Q(x)) ≈ 1

N

N∑
i=1

logP(xi )−
1

N

N∑
i=1

logQ(xi )

• Can’t compute the first term, but it doesn’t depend on Q(x)
anyway.

• Can compute the second term. It is known as the negative log
likelihood.



Maximum Likelihood

• Minimizing sample based KL divergence is equivalent to
maximum likelihood (ML).

• The likelihood is defined as

¶(x|θ)

where x is a vector containing the data and θ is a vector of
parameters. i.e. this is the probability of the data given the
parameters.

• Maximizing log likelihood is equivalent to maximizing
likelihood because log is a monotonic function.



Monotonicity and Ordering
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Sample Based Approximation implies i.i.d

• The log likelihood is

L(θ) = logP(x|θ)

• If the likelihood is independent over the individual data points,

P(x|θ) =
N∏
i=1

P(xi |θ)

• This is equivalent to the assumption that the data is
independent and identically distributed. This is known as i.i.d..

• Now the log likelihood is

L(θ) =
N∑
i=1

logP(xi |θ)

which matches the sample based KL approximation up to a
scaling by −N.



Maximum Likelihood Properties

Properties of ML arise due to the relationship with the KL
divergence, and law of large numbers.

• As N →∞ If class of distributions considered for Q(x)
contains P(x) then we will obtain Q(x) = P(x).

• This is known as the consistency of maximum likelihood.

• In practice
• We won’t have infinite data.
• We cannot prove that Q(x) will include P(x).



Maximum Likelihood, Minimum Error

• To maximize likelihood we use optimization techniques.

• In the optimization community minimization is the convention.

• Define the “error function” to be negative log likelihood.

E (θ) = − log L(θ)

• E (·) can also be thought of as an energy function. This is a
physics interpretation.



Basic Optimization Overview

• To find a minimum, want to find a point where gradient is
zero (this is a stationary point).

• If we can show that curvature is positive, this is a minimum.

• Procedure: differentiate the function, find parameters which
set derivative to zero.

• This can sometimes be done by a fixed point equation, other
times iterative optimization methods are required.



Example: Maximum Likelihood in the Gaussian

P(x|µ, σ2) =
N∏
i=1

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)

1 Write down error function.

2 Differentiate error function.

3 Solve such that the derivatives are zero.
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Reading

• Bishop rest of Section 1.2.4, page 26–28 (don’t worry about
material on bias).
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