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Maximum Likelihood




Entropy

e Last time we computed — (log P(x)) p(,).-

e This special expectation is known as the entropy of a
distribution.

e It is a measure of how much “uncertainty” is in a distribution
(learn it!).

H(x)=—)_ P(x)log P(x)



Kullback Leibler Divergence

The Kullback Leibler divergence is another special expectation
(learn it!).

KL(PG1|Q0) = (108 gy ) = 108 Py~ (o8 Q0

It is a measure of divergence between two distributions Q(x)
and P(x).
It is zero if they are identical (this is obviously true).

It is positive if they are different (this is less obvious).
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As the cyan Gaussian density (g(x)) approaches the yellow
Gaussian density (p(x)) the KL divergence approaches zero. As
they move apart, KL divergence increases again.
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Matching Two Distributions

e To match two distributions P(x) and Q(x) we can minimize
the KL divergence.

e |If we know the form of Q(x) (our approximation) and it has
parameters like a and b for the Gamma or mean and variance
for Gaussian, we can change these parameters to find the best
fit of Q(x) to P(x).

e If we have only got samples from P(x) we use a sample based
approximation.



Sample Based Approximation to the KL

KL (P(x) || @(x Zlong, og@x,

HMZ

e Can’t compute the first term, but it doesn’t depend on Q(x)
anyway.

e (Can compute the second term. It is known as the negative log
likelihood.



Maximum Likelihood

e Minimizing sample based KL divergence is equivalent to
maximum likelihood (ML).

e The likelihood is defined as
9(x|6)

where x is a vector containing the data and @ is a vector of
parameters. i.e. this is the probability of the data given the
parameters.

e Maximizing log likelihood is equivalent to maximizing
likelihood because log is a monotonic function.



Monotonicity and Ordering
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Monotonic functions preserve the ordering of input points, so the
largest x is also the largest y. Left: gives an impression of this
idea, redarrow is largest in x and correspondingly the largest in y.
This transformation is log. Right: this quadratic function doesn’t

preserve the ordering and the largest x (again



Sample Based Approximation implies i.i.d

The log likelihood is
L(0) = log P(x|0)

If the likelihood is independent over the individual data points,
P(x|60) = H P(xi|6)
This is equivalent to the assumption that the data is

independent and identically distributed. This is known as i.i.d..
Now the log likelihood is

N
= Z log P(x;|0)
i=1

which matches the sample based KL approximation up to a
scaling by —N.



Maximum Likelihood Properties

Properties of ML arise due to the relationship with the KL
divergence, and law of large numbers.
e As N — oo If class of distributions considered for Q(x)
contains P(x) then we will obtain Q(x) = P(x).
e This is known as the consistency of maximum likelihood.
e In practice

e We won't have infinite data.
e We cannot prove that Q(x) will include P(x).



Maximum Likelihood, Minimum Error

To maximize likelihood we use optimization techniques.
In the optimization community minimization is the convention.

Define the “error function” to be negative log likelihood.
E(0) = —log L(0)

E(-) can also be thought of as an energy function. This is a
physics interpretation.



Basic Optimization Overview

To find a minimum, want to find a point where gradient is
zero (this is a stationary point).

If we can show that curvature is positive, this is a minimum.

Procedure: differentiate the function, find parameters which
set derivative to zero.

This can sometimes be done by a fixed point equation, other
times iterative optimization methods are required.



Example: Maximum Likelihood in the Gaussian

@ Write down error function.

@ Solve such that the derivatives are zero.




Example: Maximum Likelihood in the Gaussian

N oy

i=1

@ Write down error function.

@ Differentiate error function.



Example: Maximum Likelihood in the Gaussian

N )
P(x|u, 0?) = H \/172 exp <_(,202,u)>

oy V2mo

@ Write down error function.
@ Differentiate error function.

@ Solve such that the derivatives are zero.



Reading

e Bishop rest of Section 1.2.4, page 26-28 (don't worry about
material on bias).
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