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Basis Functions

Nonlinear Regression

e Problem with Linear Regression—x may not be linearly related
to t.

e Potential solution: create a feature space: define ¢(x) where
¢(+) is a nonlinear function of x.

e Model for target is a linear combination of these nonlinear

functions
K

y(x) = wigi(x) (1)

Jj=1



Quadratic Basis

e Basis functions can be global. E.g. quadratic basis:

[1, x, x2]

P(x) =1
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Functions Derived from Quadratic Basis
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Radial Basis Functions

e Or they can be local. E.g. radial (or Gaussian) basis

QSJ(X) —exp( (X H) )

¢(x)
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Functions Derived from Radial Basis
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Basis Function Models

o A Basis function mapping is now defined as

m

y(xi) = wiij+c

j=1




Vector Notation

e Write in vector notation,

y(xi) =w'¢i+c




Log Likelihood for Basis Function Model

e The likelihood of a single data point is

1 t—w' ;)
p(ti|Xi) = Wexp <_(2‘Z_2<b)> o

e Leading to a log likelihood for the data set of

2

P (ti —w'¢i) .

N N
L(w,02):—§loga2—§|og27r— 502
o

e And a corresponding error function of

SN, (6w )’
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E(w,o?) = B log 0% +



Expand the Brackets
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Multivariate Derivatives Reminder

e We will need some multivariate calculus.

da'w .
dw
and -
dw'A
W (A IF AT> w
dw
or if A is symmetric (i.e. A =AT)
TA
dw_Aw = 2Aw.

dw



Differentiate

Differentiating with respect to the vector w we obtain

8 N N
L B) By it 8 !Z@qb?]
i=1 i=1
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Leading to

N
w =S ot| T
i=1 i=1

Rewrite in matrix notation:

N
Y id] =T
=1l

N
Z oiti = 't
i=1



Update Equations

o Update for w*.
-1
w = (<I>T<I>) 3t

e The equation for 2" may also be found

2
N T
e 2uiml (ti—W* ¢,-)




Reading

o Chapter 1, pg 1-6 of Bishop.
e Section 1.4 of Rogers and Girolami.
o Chapter 3, Section 3.1 of Bishop up to pg 143.
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