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Basis Functions
Nonlinear Regression

• Problem with Linear Regression—x may not be linearly related
to t.

• Potential solution: create a feature space: define φ(x) where
φ(·) is a nonlinear function of x.

• Model for target is a linear combination of these nonlinear
functions

y(x) =
K∑
j=1

wjφj(x) (1)



Quadratic Basis

• Basis functions can be global. E.g. quadratic basis:
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Figure: A quadratic basis.
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Quadratic Basis

• Basis functions can be global. E.g. quadratic basis:
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Figure: A quadratic basis.



Functions Derived from Quadratic Basis

y(x) = w1 + w2x + w3x
2
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Figure: Function from quadratic basis with weights w1 = 0.87466,
w2 = −0.38835, w3 = −2.0058 .



Functions Derived from Quadratic Basis

y(x) = w1 + w2x + w3x
2

-4

-3

-2

-1

0

1

2

3

-1 0 1

y
(x

)

x

Figure: Function from quadratic basis with weights w1 = −0.35908,
w2 = 1.2274, w3 = −0.32825 .



Functions Derived from Quadratic Basis

y(x) = w1 + w2x + w3x
2

-4

-3

-2

-1

0

1

2

3

-1 0 1

y
(x

)

x

Figure: Function from quadratic basis with weights w1 = −1.5638,
w2 = −0.73577, w3 = 1.6861 .



Radial Basis Functions

• Or they can be local. E.g. radial (or Gaussian) basis

φj(x) = exp
(
− (x−µj )2
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Figure: Radial basis functions.
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Radial Basis Functions

• Or they can be local. E.g. radial (or Gaussian) basis
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Functions Derived from Radial Basis

y(x) = w1e
−2(x+1)2

+ w2e
−2x2

+ w3e
−2(x−1)2
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Figure: Function from radial basis with weights w1 = −0.47518,
w2 = −0.18924, w3 = −1.8183 .



Functions Derived from Radial Basis
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Figure: Function from radial basis with weights w1 = 0.50596,
w2 = −0.046315, w3 = 0.26813 .



Functions Derived from Radial Basis

y(x) = w1e
−2(x+1)2

+ w2e
−2x2

+ w3e
−2(x−1)2
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Figure: Function from radial basis with weights w1 = 0.07179,
w2 = 1.3591, w3 = 0.50604 .



Outline

Basis Functions

Fitting Basis Functions



Basis Function Models

• A Basis function mapping is now defined as

y(xi ) =
m∑
j=1

wjφi ,j + c



Vector Notation

• Write in vector notation,

y(xi ) = w>φi + c



Log Likelihood for Basis Function Model

• The likelihood of a single data point is

p (ti |xi ) =
1√

2πσ2
exp

(
−
(
ti −w>φi

)2

2σ2

)
.

• Leading to a log likelihood for the data set of

L(w, σ2) = −N

2
log σ2 − N

2
log 2π −

∑N
i=1

(
ti −w>φi

)2

2σ2
.

• And a corresponding error function of

E (w, σ2) =
N

2
log σ2 +

∑N
i=1

(
ti −w>φi

)2

2σ2
.



Expand the Brackets

E (w, σ2) =
N

2
log σ2 +

1

2σ2

N∑
i=1

t2
i −

1

σ2

N∑
i=1

tiw
>φi

+
1

2σ2

N∑
i=1

w>φiφ
>
i w + const.

=
N

2
log σ2 +

1

2σ2

N∑
i=1

t2
i −

1

σ2
w>

N∑
i=1

φi ti

+
1

2σ2
w>

[
N∑
i=1

φiφ
>
i

]
w + const.



Multivariate Derivatives Reminder

• We will need some multivariate calculus.

da>w

dw
= a

and
dw>Aw

dw
=
(
A + A>

)
w

or if A is symmetric (i.e. A = A>)

dw>Aw

dw
= 2Aw.



Differentiate

Differentiating with respect to the vector w we obtain

∂L (w, β)

∂w
= β

N∑
i=1

φi ti − β

[
N∑
i=1

φiφ
>
i

]
w

Leading to

w∗ =

[
N∑
i=1

φiφ
>
i

]−1 N∑
i=1

φi ti ,

Rewrite in matrix notation:

N∑
i=1

φiφ
>
i = Φ>Φ

N∑
i=1

φi ti = Φ>t



Update Equations

• Update for w∗.

w∗ =
(
Φ>Φ

)−1
Φ>t

• The equation for σ2 ∗ may also be found

σ2 ∗ =

∑N
i=1

(
ti − w∗ >φi

)2

N
.



Reading

• Chapter 1, pg 1-6 of Bishop.

• Section 1.4 of Rogers and Girolami.

• Chapter 3, Section 3.1 of Bishop up to pg 143.
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