
COM6509/4509—Assignment Sheet 1: Regression
in Python

Neil Lawrence — October 15th, 2013

Remember to check what a command does, simply type:

np.random.randn?

You should store your answers to the questions in an ipython notebook file which
will be submitted at the assignment deadline. Any answer where you are required to
write something down should be done using a markdown field in the notebook file.
The answers will be submitted before the start of the lab class in Week 7 via MOLE.
Late submissions will get zero as we will mark the submissions directly after they are
received in the lab class. We will try to run your notebook by loading it and selecting
’Run All’ from the menu.
Make sure it answers each of the questions below!
At the beginning of your script you’ll want to set it up so that the plots appear inline

%pylab inline

which will also import the numpy library as np and the pylab plotting libraries as plt.

Assignment

Olympic Data The marks allocated here will make up 20% of your mark for the entire
course. Marks are given beside each question. We are going to load in some real the
Olympic marathon data we have seen in the lecture and lab classes. To load the data
we first need to download it from the web. To do this we can use urllib.
import urllib

which allows us to download the data from http://staffwww.dcs.shef.ac.uk/people/

N.Lawrence/dataset_mirror/olympic_marathon_men/olympicsMarathonTimes.csv.
url = ("http://staffwww.dcs.shef.ac.uk/"

+ "people/N.Lawrence/dataset_mirror/"

+ "olympic_marathon_men/olympicMarathonTimes.csv")

urllib.urlretrieve(url, 'olympicMarathonTimes.csv')

olympics = np.loadtxt('olympicMarathonTimes.csv', delimiter=',')

This loads the data into a an array. We can extract the relevant portions using
x = olympics[:, 0:1]

to extract the Olympic years and
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y = olympics[:, 1:2]

to extract the pace of the winning runner. We can plot these as before
plt.plot(x, y, 'rx')

1. Linear Model

(a) Fit a linear model to the data as above. Plot the fit. Compute the final error.
5 marks

(b) Now we will fit a non-linear basis function model. Start by creating a
quadratic basis
Phi = np.hstack((np.ones_like(x), x, x**2))

and plot the fit, again computing the final error. 5 marks

(c) Large order polynomial fits tend to do fairly extraordinary things outside
an input range of -1 to 1. Have a think about why this is, in particular, what
is the result of 20128? Do you think that is a suitable basis? What could be
wrong with it? 5 marks

2. Radial Basis Functions We turn to a fit based on exponentiated quadratic (or
Gaussian or radial) basis functions:

φ(x) = exp
(
− (x− µ)2

2`2

)
For each model, you can place the basis functions uniformly across the input
space. So we have:

mu_vector = np.linspace(1896,2012,num_basis)

as a one dimensional array containing the centres of the basis, where num_basis

is the number of basis functions. You can construct the basis matrix using

# Allocate the matrix for the basis set

Phi = np.zeros((x.shape[0], num_basis))

# Set the width of the basis functions

width = 2*(x.max() - x.min())/num_basis

# precompute the scale of the exponent

scale = -1/(2*width*width)

for i in range(0, num_basis):

Phi[:, i] = np.exp(scale*(x.flatten()-mu_vector[i])**2)

Note here that we are setting the width of the basis functions according to the
distance between the basis functions.
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(a) Plot the basis function values for the inputs of years between 1896 and 2012.
On the x-axis should be years, on the y-axis the values of the basis
functions. Create the plot for 2, 5 and 10 basis functions. Make sure the
basis functions are nicely overlapping (i.e. that you’ve set the width
correctly) and that they are spread out across the input range. 5 marks
Hints: for plotting the function given by your prediction you can use code
like this.
# Make predictions every year from 1896 until 2012

x_pred = np.arange(1896,2012,1)

# Allocate the basis function matrix

Phi_pred = np.zeros((x_pred.shape[0], num_basis))

for i in range(0, num_basis):

Phi_pred[:, i] = np.exp(scale*(x_pred.flatten()-mu_vector[i])**2)

Plot the basis set along the input line using
plt.plot(x_pred, Phi_pred)

(b) Now let’s observe what type of functions these basis sets can generate by
sampling a weight vector, w, from a Gaussian density and using it to create
a function.
# Sample a candidate weight vector from a Gaussian.

w = np.random.randn(num_basis, 1)

f = np.dot(Phi_pred, w)

plt.plot(x_pred, f)

Do this a few different times, obtaining a different sample from the
Gaussian for w each time. Do this for models containing 2, 5 and 10 basis
functions. 5 marks

(c) Fit basis function models with between 1 and 27 basis functions (for each
number of basis functions have your code create the plot, show the error as
the title plt.title('errorValue'), pause until a key is pressed and then
create the next plot. Store the error values and plot them in a separate plot
against the number of basis functions. 10 marks
Hints: Don’t forget to fit the noise variance!!
Once you have the estimate of w (w_star), you can make the prediction
using a matrix multiplication.
y_pred = np.dot(Phi_pred, w_star)

(d) Data Fit Which number of basis functions has the lowest error? Do you
think this is a good fit? 1 mark

(e) Validation Data Let’s assume that we only have the data up until 1980.
Hold-out the data from 1984 onwards. Now retrain your models and test
the result on this held out data. What is the difference in your results?
Which number of basis functions now has the best error? 10 marks
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(f) Cross Validation For each number of basis compute and plot:

i. the leave-one-out cross validation error. 10 marks
ii. the 5 fold cross validation error. 10 marks

Which model should be chosen according to each of these model selection
criterion?
Note: The data doesn’t divide into 5 equal size partitions for the five fold
cross validation error. Don’t worry about this too much. Two of the
partitions will have an extra data point. You might find
np.random.randperm? useful.

3. Bayesian Solution In this question you will perform Bayesian inference on the
data. Use the same basis sets from the previous question. Select a Gaussian prior
for the mapping vector, w,

p(w) = N (w|0, αI) ,

where α is the prior variance. Assume a standard deviation of σ = 0.3 for the
noise (i.e. a variance of σ2 = 0.09) and a variance of α = 100 for the prior variance
on w.

(a) Marginal Likelihood Now compute and plot the log marginal likelihood, log p(Y),
for each of the models

log p(Y) = −N
2

log 2π − 1
2

log |K| − 1
2

y>K−1y,

where
K = αΦΦ> + Iσ2.

Find the model with the best fit according to the marginal likelihood. Does
it match that chosen by cross-validation or validation? 10 marks

(b) Posterior Mean Prediction and Variance For the selected model compute
the mean and covariance of the posterior density for w.〈

ww>
〉
= Cw + 〈w〉 〈w〉>

Cw =

[
1
σ2 Φ>Φ + α−1I

]−1

〈w〉 = Cwσ−2Φ>y

Plot the mean fit to the data and one standard deviation above and below.
For this plot extend the input range of your plot to be between 1850 and
2050. 10 marks

(c) Posterior Samples For the same model take 10 samples from this posterior
density to plot 10 fits to the data on top of the data. Plot all the samples in
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the same plot (continue to use the 200 year input range from 1850 to 2050).
Check np.random.multivariate_normal? for sampling from a multivariate
Gaussian. 5 marks

(d) Quality of Error Bars Comment on the quality of the error bars. Are the
variances for the predictions reasonable across the input range? 9 marks

Useful commands: np.linalg.det?, np.pi?

5


