COM6509/4509 — Tutorial Sheet 1 Bayesian and Maximum Likelihood Manipulation of Gaussian Models

Neil Lawrence

October 5th, 2012

1. Univariate Gaussian model. A Gaussian density governs a vector of univariate observations, $\mathbf{t} = \{t_i\}_{i=1}^N$. The associated error function has the following form.

$$E(\mu) = \sum_{i=1}^{N} (t_i - \mu)^2$$

- (a) Introduce the variance parameter, σ^2 and convert the error function to the Gaussian density. Find the maximum likelihood solutions for both μ and σ^2 .
- (b) Place the following Gaussian prior over the mean,

$$p(\mu) = \frac{1}{\sqrt{2\pi\alpha}} \exp\left(-\frac{1}{2\alpha}\mu^2\right)$$

and compute the marginal likelihood for \mathbf{t} and the posterior density for μ .

2. Maximum likelihood in a multivariate Gaussian. A data set consists of p dimensional vectors, $\mathbf{t}_{i,:}$ from a matrix $\mathbf{T} = {\mathbf{t}_{i,:}}_{i=1}^{N}$ (i.e. $\mathbf{T} \in \Re^{N \times p}$). The likelihood is given by

$$p(\mathbf{T}) = \prod_{i=1}^{N} p(\mathbf{t}_{i,:})$$

where the likelihood of each data point is

$$p(\mathbf{t}_{i,:}) = \frac{1}{(2\pi)^{\frac{p}{2}} |\mathbf{C}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{t}_{i,:} - \boldsymbol{\mu})^{\top} \mathbf{C}^{-1}(\mathbf{t}_{i,:} - \boldsymbol{\mu})\right).$$

(a) Write down the log likelihood and use the following matrix and vector derivatives

$$\frac{\mathrm{d}\mathbf{x}^{\top}\mathbf{A}\mathbf{x}}{\mathrm{d}\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{A}^{\top}\mathbf{x}$$
$$\frac{\mathrm{d}\log|\mathbf{C}|}{\mathrm{d}\mathbf{C}} = \mathbf{C}^{-1}$$
$$\frac{\mathrm{d}\mathbf{a}^{\top}\mathbf{C}^{-1}\mathbf{a}}{\mathrm{d}\mathbf{C}} = -\mathbf{C}^{-1}\mathbf{a}\mathbf{a}^{\top}\mathbf{C}^{-1}$$

to show that the maximum likelihood solutions for the mean, $\hat{\mu}$ and covariance matrix, \hat{C} , are

$$\hat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{t}_{i,:},$$
$$\hat{\mathbf{C}} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{t}_{i,:} - \hat{\boldsymbol{\mu}}) (\mathbf{t}_{i,:} - \hat{\boldsymbol{\mu}})^{\top}.$$

(b) Now consider an independent Gaussian prior over the elements of the mean vector,

$$p(\boldsymbol{\mu}) = \prod_{i=1}^{p} \frac{1}{\sqrt{2\pi\alpha}} \exp\left(-\frac{1}{2\alpha}\mu_{i}^{2}\right)$$

i. Show that this can be written in vector form as follows:

$$p(\boldsymbol{\mu}) = \frac{1}{(2\pi\alpha)^{\frac{p}{2}}} \exp\left(-\frac{1}{2\alpha}\boldsymbol{\mu}^{\top}\boldsymbol{\mu}\right)$$

- ii. Now compute the posterior density for $\boldsymbol{\mu}$, $p(\boldsymbol{\mu}|\mathbf{T})$. Write down the terms that remain that would be required for the marginal likelihood of \mathbf{T} , $p(\mathbf{T})$ (note given the matrix algebra we've covered you won't be able to write down the full form of the marginal likelihood).
- 3. **Regression with a basis function model**. Assume that we wish to perform a nonlinear regression by computing a set of basis functions, for example,

$$\phi_j(\mathbf{x}_{i,:}) = \exp\left(-\frac{1}{2\ell_j^2}(x_i - \mu_j)^2\right),$$

where μ is a location parameter and ℓ is a width parameter for the *j*th basis function. For each data point we take the *m* basis functions and write them in a vector of the following form

$$\boldsymbol{\phi}_{i,:} = [\phi_1(\mathbf{x}_{i,:}) \dots \phi_m(\mathbf{x}_{i,:})]^\top$$

and the complete set of basis functions is written in a matrix, $\mathbf{\Phi} \in \Re^{N \times m}$ of the following form,

$$oldsymbol{\Phi} = egin{bmatrix} oldsymbol{\phi}_{1,:} oldsymbol{\phi}_{2,:} \dots oldsymbol{\phi}_{N,:} \end{bmatrix}^ op$$
 .

If we assume Gaussian noise we can write down the Gaussian likelihood of a single data point, i,

$$p(t_i|\boldsymbol{\phi}_{i,:}, \mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(t_i - \mathbf{w}^\top \boldsymbol{\phi}_{i,:})^2\right).$$

(a) Assume the noise is independent and identically distributed and write down the corresponding likelihood and log likelihood of the entire data set.

(b) Show that the maximum likelihood solution for \mathbf{w} is given by

$$\hat{\mathbf{w}} = \left(\mathbf{\Phi}^{\top} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\top} \mathbf{t}.$$

(c) Consider a Gaussian prior over the parameters, w,

$$p(\mathbf{w}) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\alpha}} \exp\left(-\frac{1}{2\alpha}w_i^2\right).$$

Show that the posterior for ${\bf w}$ is given by a Gaussian with covariance

$$\mathbf{C}_w = \left(\frac{1}{\sigma^2} \mathbf{\Phi}^\top \mathbf{\Phi} + \alpha^{-1} \mathbf{I}\right)^{-1}$$

and mean

$$\boldsymbol{\mu}_w = rac{1}{\sigma^2} \mathbf{C}_w \mathbf{\Phi}^\top \mathbf{t}$$

- i. Compare the solution for the maximum likelihood and the posterior mean over \mathbf{w} . When do they become the same?
- ii. What problems occur for the maximum likelihood solution if m > N?
- (d) Show that the marginal likelihood of the data set is given by

$$p(\mathbf{t}|\mathbf{X}, \alpha, \sigma^2) = \frac{1}{(2\pi)^{\frac{N}{2}} |\mathbf{K}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} \mathbf{t}^\top \mathbf{K}^{-1} \mathbf{t}\right)$$

where

$$\mathbf{K} = \alpha \mathbf{\Phi} \mathbf{\Phi}^\top + \sigma^2 \mathbf{I}$$

by using the matrix inversion formula:

$$(\mathbf{A} + \mathbf{B}\mathbf{C}\mathbf{D})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B}(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1}.$$

Tutorial Sheet 1 Answers $E(\mu) = \sum_{i=1}^{2} (t_i - \mu)^2$ 1 A) $P(\underline{t}|\mu, \sigma) = \frac{1}{(2\bar{u}\sigma^2)^{N/2}} \exp\left(-\frac{N}{(t_i - \mu)^2}\right)$ $\frac{1}{(2\bar{u}\sigma^2)^{N/2}} \exp\left(-\frac{N}{(t_i - \mu)^2}\right)$ Loy likelihood $\frac{\log P(t|\mu,\sigma^2) \simeq -N \log \sigma^2 - N \log 2\pi - \frac{N}{2} \log (t_c - \mu)^2}{2 - \frac{N}{2} \log 2\pi - \frac{N}{2} \log 2\pi$ $d \log P(t|_{\mu,s^2}) = -N + 2 (t;-\mu)^2$ 2.82 121 - 7×4 Set to zero to Find Fixed point equation $\frac{N}{2\delta^{2}} = \frac{2}{c^{2}} \frac{(t_{i}^{2} - m)^{2}}{2\delta^{2}}$ Multiply both sider by 204 $\frac{N}{V^2} = \frac{1}{2} \frac{\left(t_i - \mu\right)^2}{\left(t_i - \mu\right)^2}$

 $\frac{d \log P(t|\mu, \sigma^2) = \frac{1}{\xi} I(t) - \mu}{d m}$ $= \sum_{i=1}^{N} t_i - N_{p}$ $\frac{\overline{c_{21}}}{N}$ $= \sum_{\mu = 1}^{N} \frac{1}{\sum_{i=1}^{N} \frac{1}{N}}$ $t | \mu \rangle = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{\lambda}{(1-\mu)^2}\right)$ pl $p(\mu) = \frac{1}{(2\pi d)^{1/2}} \exp\left(-\frac{\mu^2}{2d}\right)$ $p(\mu, t) = \frac{1}{(2\pi s^{2})^{N_{2}}} \frac{1}{(2\pi s^{2})^{N_{2}}} \exp\left(-\frac{N}{(2\pi s^{2})^{N_{2}}} + \frac{N}{(2\pi s^{2})^{N_{2}}} + \frac{N}{(2\pi$ $-N\mu^2 - \mu^2$

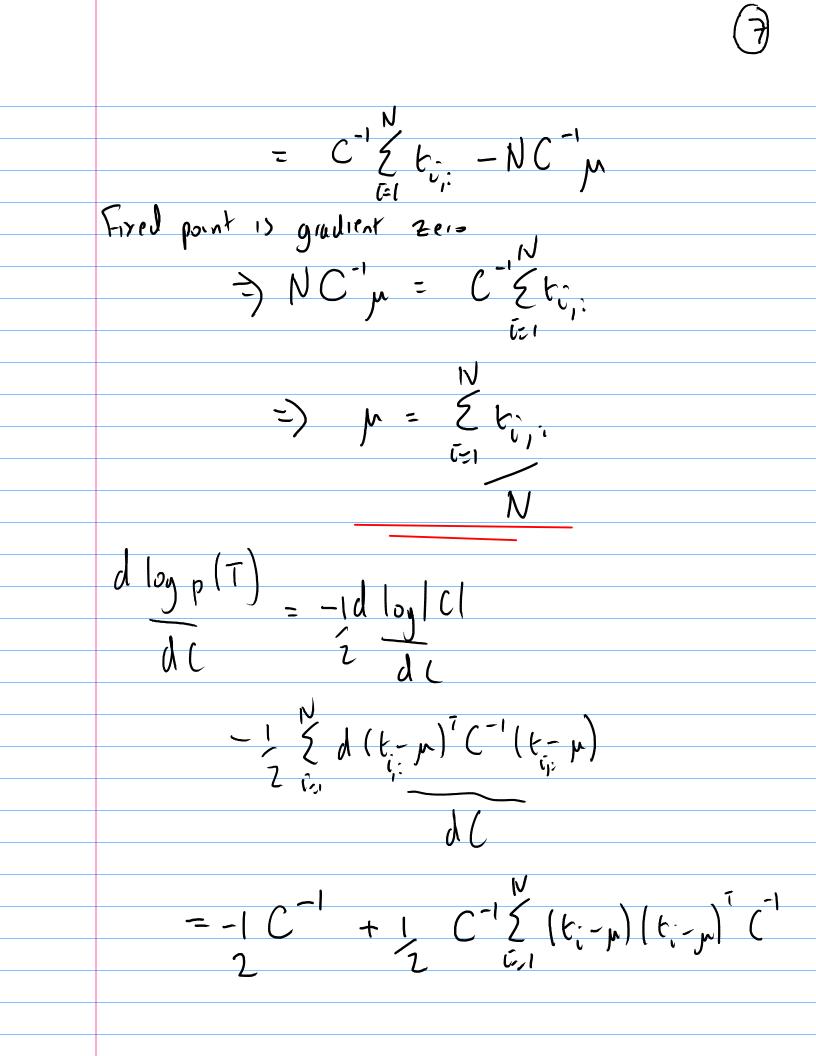
Focus on the exponent $\begin{array}{cccc} & N & N \\ - & \xi t_{i}^{2} + & \zeta t_{i} \mu & - 1 \left(N + 1 \right) \mu^{2} \\ \hline & & & & \\ \hline & & & & \\ 2 \sigma^{2} & & & \\ \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & + & 1 \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & \pi^{2} & \pi^{2} \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & \pi^{2} & \pi^{2} \\ \sigma^{2} & \chi \end{array} \right) \left(\begin{array}{c} N & \pi^{2} & \pi^{2} \\ \sigma^{2} & \pi^{2} & \pi^{2} \\ \sigma^{2} & \chi^{2} \end{array} \right) \left(\begin{array}{c} N & \pi^{2} & \pi^{2} \\ \sigma^{2} & \pi^{2} & \pi^{2} \\ \sigma^{2} & \pi^{2} \\ \sigma^{2} & \pi^{2} \\ \sigma^{2} & \chi^{2} \\ \sigma^{2} & \pi^{2} \\ \sigma^{2} & \pi^{2} \\ \left(\begin{array}{c} N & \pi^{2} \\ \sigma^{2} & \pi^{2} \\ \sigma^{2} & \pi^{2} \\ \sigma^{2} \\ \sigma^{2} \\ s^{2} \\ \sigma^{2} & \pi^{2} \\ \sigma^{2} \\ s^{2} \\ s^{2} & \pi^{2} \\ \sigma^{2} \\ s^{2} \\ s^{2} \\ s^{2} & \pi^{2} \\ s^{2} \\ s^{2} \\ s^{2} & \pi^{2} \\ s^{2} \\$ Complete the square to find posterior for m Variance must be $\left(\begin{array}{c} N + 1 \\ \overline{0} \\ \overline{0} \\ \end{array} \right)^{-1}$ to match graduate $\left(\begin{array}{c} \overline{0} \\ \overline{0} \\ \end{array} \\ \end{array} \right)^{-1}$ to match graduate What is the mean (ju) required to match lineur term in p? $-\frac{1}{2}\begin{pmatrix}N+1\\\delta^{2}&\delta\end{pmatrix}\begin{pmatrix}m-\bar{m}\end{pmatrix}^{2} = -\frac{1}{2}\begin{pmatrix}N+1\\\delta^{2}&\delta\end{pmatrix}\mu^{2} + \begin{pmatrix}N+1\\\delta^{2}&\delta\end{pmatrix}\mu^{2} + \begin{pmatrix}N+1\\$ to match this tem to above

 $\begin{bmatrix} N + 1 \\ \overline{p^2} & \alpha \end{bmatrix} \overline{p} = \begin{cases} N \\ C_1 \\ C_2 \\ C_1 \\ C_2 \\ C_1 \\ C_2 \\ C_2 \\ C_1 \\ C_2 \\ C_2$ POSTERIOR Which implies $\bar{p} = \left(\frac{N+1}{N+1}\right)^{-1} \bar{\sigma}^2 \leq t_i$ $p(\mu[t]) = \frac{1}{(2\pi i (\frac{N}{6} t_{\chi}^{+})^{-1})^{1/2}} \exp\left(-(t - \frac{1}{2} t_{\chi})^{2}\right) + \frac{1}{2(\frac{N}{6} t_{\chi}^{+})^{-1}} + \frac{1}{2(\frac{N}{6} t_{\chi}^{+})^{-1}}$ The remaining terms in the quadratic for that are unaccounted for are these are from N 2 marg, val $\frac{1}{2} \left(\begin{array}{c} N + 1 \\ \overline{\delta^2} \end{array} \right) \overline{\rho^2} - \frac{1}{2} \underbrace{\mathcal{E}}_{i} \\ \overline{\delta^2} \\ \overline{\delta^2} \end{array} \right) \overline{\rho^2} - \frac{1}{2} \underbrace{\mathcal{E}}_{i} \\ \overline{\delta^2} \\ \overline{\delta^2} \\ \overline{\delta^2} \end{array}$ This term Vos This was a tem generaled lo constant in M allov us h in original form complete ne Synurc

 $p(\mu, t) = p(t|\mu) p(\mu) = p(\mu|t) p(t)$ the terms in exponent for this posterior are given in quadratic frim. That leaves $\overline{\mathcal{M}}^{-} = \begin{pmatrix} N + l \\ \overline{6^{2}} & \overline{\alpha} \end{pmatrix}^{-1} \overline{6^{2} 2 \xi_{U}}^{N}$ $\frac{1}{2} \begin{pmatrix} N + 1 \\ -5 \end{pmatrix} \frac{1}{2} = 0^{-4} \begin{pmatrix} N + 1 \\ -2 \end{pmatrix} \begin{pmatrix} -1 & N \\ -1 \end{pmatrix} \frac{N}{2} = 0^{-4} \begin{pmatrix} N + 1 \\ -2 \end{pmatrix} \begin{pmatrix} -1 & N \\ -1 \end{pmatrix} \frac{N}{2} = 0^{-4} \begin{pmatrix} N + 1 \\ -2 \end{pmatrix} \begin{pmatrix} -1 & N \\ -1 \end{pmatrix} \frac{N}{2} = 0^{-4} \begin{pmatrix} N + 1 \\ -2 \end{pmatrix} \begin{pmatrix} -1 & N \\ -1 \end{pmatrix} \frac{N}{2} = 0^{-4} \begin{pmatrix} N + 1 \\ -2 \end{pmatrix} \begin{pmatrix} -1 & N \\ -1 \end{pmatrix} \frac{N}{2} = 0^{-4} \begin{pmatrix} N + 1 \\ -2 \end{pmatrix} \begin{pmatrix} -1 & N \\ -2 \end{pmatrix} \frac{N}{2} = 0^{-4} \begin{pmatrix} N + 1 \\ -2 \end{pmatrix} \begin{pmatrix} -1 & N \\ -2 \end{pmatrix} \frac{N}{2} = 0^{-4} \begin{pmatrix} N + 1 \\ -2 \end{pmatrix} \begin{pmatrix} -1 & N \\ -2 \end{pmatrix} \frac{N}{2} = 0^{-4} \begin{pmatrix} N + 1 \\ -2 \end{pmatrix} \frac{N}{2} \begin{pmatrix} N + 1 \\ -2 \end{pmatrix} \frac{N}{2} = 0^{-4} \begin{pmatrix} N + 1 \\ -2 \end{pmatrix} \frac{N}{2} \begin{pmatrix} N + 1 \\ -2 \end{pmatrix} \frac{N}{2}$ Use $1^{T}t = 2ti$ $p = 6-4(N+1)^{-1}t^{$ Vectorsp 6117 $\frac{1}{2} \left\{ t_{0}^{2} = \frac{1}{2} t^{T} t \right\}$

 $\frac{-1}{2\kappa^{2}} \frac{1}{\kappa^{2}} + \left(\frac{N}{\delta^{2}} + \frac{1}{\lambda} \right) \overline{\sigma}^{4} \left(\frac{1}{\delta^{2}} \right)^{2} - \frac{1}{\kappa^{2}} \left(\frac{1}{\delta^{2}} + \frac{1}{\lambda} \right) \overline{\sigma}^{4} \left(\frac{1}{\delta^{2}} + \frac{1}{\kappa^{2}} \right)^{2} - \frac{1}{\kappa^{2}} \left(\frac{1}{\delta^{2}} + \frac{1}{\kappa^{2}} \right) \overline{\sigma}^{4} \left(\frac{1}{\delta^{2}} + \frac{1}{\kappa^{2}} \right)^{2} - \frac{1}{\kappa^{2}} \left(\frac{1}{\delta^{2}} + \frac{1}{\kappa^{2}} \right) \overline{\sigma}^{4} \left(\frac{1}{\delta^{2}} + \frac{1}{\kappa^{2}} \right)^{2} - \frac{1}{\kappa^{2}} \left(\frac{1}{\delta^{2}} + \frac{1}{\kappa^{2}} \right) \overline{\sigma}^{4} \left(\frac{1}{\delta^{2}} + \frac{1}{\kappa^{2}} \right)^{2} - \frac{1}{\kappa^{2}} \left(\frac{1}{\delta^{2}} + \frac{1}{\kappa^{2}} \right) \overline{\sigma}^{4} \left(\frac{1}{\delta^{2}} + \frac{1}{\kappa^{2}} \right)^{2} - \frac{1}{\kappa^{2}} \left(\frac{1}{\delta^{2}} + \frac{1}{\kappa^{2}} \right) \overline{\sigma}^{4} \left(\frac{1}{\kappa^{2}} + \frac{1}{\kappa^{2}} \right) \overline{\sigma}^{4} \left(\frac{1}{\kappa^{2}} +$ $= -\frac{1}{2}t^{T}\left[\frac{1}{5}t^{-2} - \frac{-4}{5}\left(\frac{N+1}{5^{2}}\right)\frac{1}{5}t\right]t$ SThis is inverse contactione, contacture is $C_{t} = \left[I \sigma^{-2} - \sigma^{-4} \left(N + 1 \right) \right] \left[1 \sigma^{-1} \right]$ Use Matur invesion Lomma $\left[A + BCD\right]^{-1} = A^{-1} - A^{-1}B\left[C + DA^{-1}B\right]DA^{-1}$ $A = \sigma^2 I$ B = 1 $D = 1^T$ $C = \alpha$ $=) C_{\mu} = I \sigma^{2} + d \Omega^{T}$

 $P[t] = \frac{1}{(2\pi)^{N}} \frac{e_{xp} \left[-1 t \left[\overline{L}\sigma^{2} + \lambda 12^{2}\right]t\right]}{\left(2\pi\right)^{N}} \frac{1}{2} \left[\overline{L}\sigma^{2} + \lambda 12^{2}\right]^{N}}{\left(2\pi\right)^{N}} \frac{e_{xp} \left[-1 t \left[\overline{L}\sigma^{2} + \lambda 12^{2}\right]t\right]}{\left(2\pi\right)^{N}}$ 2a) $p(t_i) = \frac{1}{(2\pi)^2 R_2} \frac{evp[-1](t_{i_i} - m)^{T} C^{-1}(t_{i_i} - m)}{(2\pi)^2 R_2 |C|^2}$ $p(T) = \prod_{i=1}^{N} p(t_{i,2})$ $= \frac{1}{(2\pi)^{N_{2}}} \exp\left(-\frac{1}{2} \sum_{i=1}^{N} (t_{i,i}^{*} - \mu)^{T} C^{T}(t_{i,i}^{*} - \mu)\right)$ $\log p(\bar{\tau}) = -Np \log 2\bar{\tau} - \frac{N}{2} \log |C| - \frac{1}{2} \sum_{i=1}^{N} (t_{i} - m)^{\bar{\tau}} C^{\bar{\tau}}(t_{i} - m)$ $\frac{d \log p(\bar{t}) - -1}{2} \sum_{i=1}^{N} \frac{d (t_{i,i} - m)^{\bar{t}} C^{-1}(t_{i,j} - m)}{2}$ $= \sum_{i=1}^{N} C^{-1}(t_{i,i}^{*} - \mu)$



Find fixed patht by setting to zero $\frac{1}{2} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \left(\begin{pmatrix} -1 \\ 2 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} -1$ premultiply by 1.C & pat multiply by C byve $C = \sum_{i=1}^{N} (t_i - \mu) (t_i - \mu)^{\overline{i}}$ $\frac{p}{1} = \frac{p}{11} + \frac{p}{11} +$ $\frac{1}{\left(2\pi\alpha\right)^{p_{2}}} \exp\left(-\frac{1}{2}\xi\mu_{i}^{2}\right)$ = m·m $= \frac{1}{(2\pi)^{k_2}} \exp\left(-\frac{1}{2\alpha} M^{T}M\right)$

 $\frac{2b(i)}{p(t|\mu)} = \frac{1}{(2i)^{\frac{N}{2}}} \exp\left(-\frac{1}{2}(t-\mu)^{i}C^{-i}(t_{i}-\mu)\right)$ $\frac{2b(i)}{(2i)^{\frac{N}{2}}} \exp\left(-\frac{1}{2}(t-\mu)^{i}C^{-i}(t_{i}-\mu)\right)$ $p(t, m) = \frac{1}{(2\pi i)^{N_{2}}} ex_{i}^{N_{2}} \left(-\frac{1}{2} \sum_{i=1}^{N_{2}} \frac{1}{i} \sum_{i=1}^{N_{2}} \frac{1$ Focussing on exponent only $\frac{-1}{2} \sum_{i} \frac{1}{i} \sum_{i} \frac{1}{i} \sum_{i} \frac{1}{i} \sum_{i} \frac{1}{i} \sum_{i} \frac{1}{i} \sum_{i} \frac{1}{i} \sum_{j} \frac{1}{i} \sum_{i} \frac{1}{i} \sum_{i} \frac{1}{i} \sum_{j} \frac{1}{i} \sum_{i} \frac{1}{i} \sum_{i}$ For poterior and marginal p(T, m) = p(T|m)p(m) = p(m|T)p(T)Extract terms in pronly to find Gaussian form for p(m(T). This means that posterior $cosanus ([NC^{-1} + \alpha^{-1} I]^{-1} = Z_{p}$

Quadratic form for Gaussian posterior is $-\frac{1}{2}\left(\mu-\bar{\mu}\right)^{T}\sum_{\mu}^{-1}\left(\mu-\bar{\mu}\right)$ Linear term is MZMM = Eti; CM =) $\bar{p}^{T} \xi^{-1} = \xi t_{i,i}^{T} \zeta^{-1}$ $=) \mu = \Sigma t_{i,i} C^{-1} \Sigma_{\mu}$ Portchor = $(\overline{\mu} = \Sigma_{\mu}C^{-}\Sigma t_{ij})$ $p(\mu|\tau) = \frac{1}{(2\pi)^{p_{2}}} \exp(-\frac{1}{\mu}\mu - \bar{\mu}) \sum_{\mu} (\mu - \bar{\mu})$ $(2\pi)^{p_{2}} \left\{ \sum_{\mu} | 2 - \mu - \mu - \bar{\mu} - \bar{\mu} - \bar{\mu} - \bar{\mu} - \bar{\mu} \right\}$ For marginal the following terms remain $\frac{1}{2} \overline{\mu}^T \Sigma_{\mu} \overline{\mu} - \frac{1}{2} (t_{i} C^{-1} t_{i})$

where $\bar{\mu} = \sum_{\mu} C^{2} \Sigma t_{i}$ $-\frac{1}{2}\left[\sum_{i,i}^{T} C^{-1} t_{i,i} - \sum_{\bar{l}z_{1}}^{N} t_{i,i}^{-1} C^{-1} \sum_{\mu} C^{-1} \sum_{\bar{l}z_{1}}^{N} t_{i,i}^{-1} C^{-1} \sum_{\bar{l}z_{1}}^{N} C^{-1} \sum_{\mu} C^{-1} \sum_{\bar{l}z_{1}}^{N} t_{i,i}^{-1} C^{-1} \sum_{\bar{l}z_{1}}^{N} t_{i,i}^{-1} C^{-1} \sum_{\mu} C^{-1} \sum_{\bar{l}z_{1}}^{N} t_{i,i}^{-1} C^{-1} \sum_{\bar{l}z_{1}}^{N} t_{i,i$ THIS FAR IS FINE GIVEN THE MATCRIAL WE (JCR IN THE WARSE TO GO FURTHER YOU NEED) Some more ADVANCED MATRIX ALGURAS $p(T) \propto \exp\left(-\frac{1}{2} \sum_{i=1}^{T} C^{-1} t_{i} - \frac{1}{2} \sum_{i=1}^{T} C^{2} \sum_{j=1}^{T} C^{2} \sum_{j=1}^{T$ $p[t|v, o^{2}, X] = \frac{1}{(2\pi\sigma^{2})^{N/2}} e_{xp} \left(-\frac{N}{2}\left(t; -\sqrt{p}(x;)\right)\right) \\ \frac{1}{(2\pi\sigma^{2})^{N/2}} e_{xp} \left(-\frac{N}{2}\left(t; -\sqrt{p}(x;)\right)\right) \\ \frac{1}{2} e_{xp} \left(-\frac$

 $\log p\left[t\right] \le \sigma^{2}, \chi = -\frac{N}{2} \log 2\pi - \frac{N}{2} \log \sigma^{2}$ $- \sum_{i=1}^{N} \left(t_{i} - w^{T} \phi(x_{i}) \right)^{2}$ $= -\frac{1}{2} \frac{1}{2} \frac$ 36) $d \log p(H w, \sigma^2, \chi)$ 202 UT dw $\left(t_{i}-\omega^{T}\phi(\mathbf{x}_{i})\right)^{Z}=t_{i}^{2}-2t_{i}\phi(\mathbf{x}_{i})^{T}\omega+\omega^{T}\phi(\mathbf{x}_{i})\phi(\mathbf{x}_{i})$ $d = -2t_i \phi(x_i) + 2\phi(x_i)\phi(x_i)^{i} w$ $d \log p(t|w, o^2, x) = \frac{1}{2} \frac{\xi_i}{\xi_i} \phi(x_i) - \frac{1}{2} \frac{\xi_i}{\xi_i} \phi(x_i) \phi(x_i)^7 w$ 0² (21) φ¹t φ¹φ $= \frac{1}{2} \overline{p}^{\dagger} t - \frac{1}{2} \overline{p}^{\dagger} \overline{p} w$

Set to zero to find optimal w $\frac{1}{2} \oint \psi = \frac{1}{2} \oint t$ $p(w) = \frac{1}{(2\pi x)^2} \exp\left(-\frac{1}{2}w^{T}w\right)$ 30) $p(t, v) = \frac{1}{(2\pi\sigma^2)^{N/2}} \frac{1}{(2\pi\alpha)^{N/2}} \exp\left(-\frac{1}{2\pi\sigma^2} \frac{(t_i - v)p(x_i)}{\sigma^2}\right)^2$ $-\frac{1}{2} \sqrt{\frac{1}{2}}$ 1 Expore + 1) $-\frac{1}{2} \sum_{i=1}^{N} \frac{1}{5^{2}} \frac{1}{5^{2}} \frac{1}{5^{2}} \frac{1}{5^{2}} \frac{1}{25^{2}} \frac{1}{5^{2}} \frac{1}{5$

 $-\frac{1}{2\sigma^{2}} + \frac{1}{\sigma^{2}} + \frac{1}{\sigma^{2}}$ w Covariance must be Postenor for 2 - -Zw -Ev (w-pw) is form w implies -1 $(v - \mu v)$ which LWTPT W72-1 Mm= which implies $\mu w = Zw \oint_{0^2}$ $p[w|t, x, b^{2}] = \frac{1}{(2i)^{N_{2}}|\xi_{v}|^{\frac{1}{2}}} \exp(-[w-\mu_{v})^{\frac{1}{2}}\xi_{w}[w-\mu_{v}]^{\frac{1}{2}}$

<u> 3 (i)</u> $\sum_{W} = \left(\begin{array}{c} \overline{P} & \overline{P} & + \frac{1}{2} \\ \overline{P} & - \frac{1}{2} \\ \overline{P} &$ $\sum_{i=1}^{n} = \left(\underbrace{\overline{0}}_{i}^{T} \underbrace{\overline{0}}_{i}^{T} + \underbrace{\overline{0}}_{i}^{2} \underbrace{\overline{1}}_{i}^{T} \right)^{-1}$ If or -> 0 because or -> 0 (nonoise) or d > ~ (infinite variance then $M v = \hat{w}$ and the solutions wincide 3chi) IC MON Then I'I is not full lunk and (t) is not computable. This isn't a problem for the Bayesian solution because you invert $\left(\overline{\varphi}^{T}\overline{\varphi} + \frac{\varphi^{2}}{\alpha}\overline{L}\right)^{-1}$ and $\frac{\varphi^{2}}{\alpha}\overline{L}$ forces the matrix h be full cark.

3d) Remaining terms are From completing (16) -1 LTI $-\frac{1}{20^{1}} t^{T}t + \frac{1}{2} \mu_{W} T \Sigma^{-1} \mu_{W}$ $= -1 \left[\frac{t^{T}t}{b^{2}} - t^{T} \overline{b} \sum_{w} \overline{b}^{T} t \right]$ $= -\frac{1}{2} t^{\overline{1}} \int \sigma^{-2} \overline{L} - \sigma^{-4} \overline{f} \left(\alpha^{-1} \overline{L} + \sigma^{-2} \overline{f} \overline{f} \right) \overline{f} \overline{f} \overline{f} t$ K_| Matrix invesion lemma $(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$ $A = \sigma^2 I \quad B = \overline{\rho} \quad C = \alpha I$ Giver $= -\frac{1}{2} t^{T} \left[\sigma^{2} I + \alpha \Phi \Phi^{T} \right] t$

 $= \frac{1}{(2\pi)^{N_2} k^{N_2}} \exp \left(-\frac{1}{2} t^T k^{-1} t\right)$ ป $K = \sigma^2 I + \alpha \overline{\phi} \overline{\phi}^{\tau}$