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What is Machine Learning?

data

+ model = prediction

I data: observations, could be actively or passively acquired
(meta-data).

I model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

I prediction: an action to be taken or a categorization or a
quality score.
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y = mx + c

point 1: x = 1, y = 3

3 = m + c

point 2: x = 3, y = 1

1 = 3m + c

point 3: x = 2, y = 2.5

2.5 = 2m + c



y = mx + c + ε

point 1: x = 1, y = 3

3 = m + c + ε1

point 2: x = 3, y = 1

1 = 3m + c + ε2

point 3: x = 2, y = 2.5

2.5 = 2m + c + ε3
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Continuous Variables

I For continuous models we use the probability density
function (PDF).

I Discrete case: defined probability distributions over a
discrete number of states.

I How do we represent continuous as probability?
I Student heights:

I Develop a representation which could answer any question
we chose to ask about a student’s height.

I PDF is a positive function, integral over the region of
interest is one1.



Manipulating PDFs

I Same rules for PDFs as distributions e.g.

p
(
y|x

)
=

p
(
x|y

)
p
(
y
)

p (x)

where p
(
x, y

)
= p

(
x|y

)
p
(
y
)

and for continuous variables
p (x) =

∫
p
(
x, y

)
dy.

I Expectations under a PDF

〈
f (x)

〉
p(x) =

∫
f (x) p (x) dx

where the integral is over the region for which our PDF for
x is defined.



The Gaussian Density

I Perhaps the most common probability density.

p(y|µ, σ2) =
1

√

2πσ2
exp

(
−

(y − µ)2

2σ2

)
= N

(
y|µ, σ2

)
I Also available in multivariate form.
I First proposed maybe by de Moivre but also used by

Laplace.



Gaussian PDF I
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Figure: The Gaussian PDF with µ = 1.7 and variance σ2 = 0.0225.
Mean shown as red line. Two standard deviations are shown as
magenta. It could represent the heights of a population of students.



Cumulative Distribution Functions

I PDF doesn’t represent probabilities directly
I One very common question is: what is the probability that

x < y?
I The cumulative distribution function (CDF) represents the

answer for −∞ < x < ∞ the CDF is given by

P
(
x > y

)
=

∫ y

−∞

p (x) dx,

for 0 ≤ x < ∞ then the CDF is given by

P
(
x > y

)
=

∫ y

0
p (x) dx.



Gaussian PDF and CDF
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Figure: The cumulative distribution function (CDF) for the heights of
computer science students. The thick curve gives the CDF and the
thinner curve the associated PDF.



PDF from CDF

I The PDF can be recovered from the CDF through
differentiation.
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Sample Based Approximations I

I It is not always possible to compute expectations directly.
I Sample based approximation

〈
f
(
y
)〉

P(y) ≈
1
N

N∑
i=1

f
(
yi
)
.

I Special cases of this include the sample mean, often denoted
by ȳ, and computed as

ȳ =
1
N

N∑
i=1

yi,



Sample Mean vs True Mean

I This is an approximation to the true distribution mean〈
y
〉
≈ ȳ.

I The same approximations can used for continuous PDFs,
so we have 〈

f
(
y
)〉

p(y) =

∫
f
(
y
)

p
(
y
)

dy

≈
1
N

N∑
i=1

f
(
yi
)
,

where yi are independently obtained samples from the
density p

(
y
)
.

I Approximation gets better for increasing N and worse if
the samples from P

(
y
)

are not independent.
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Entropy

I A particular expectation: −
〈
log P(y)

〉
P(y).

I This special expectation is known as the entropy of a
distribution.

I It is a measure of how much “uncertainty” is in a
distribution (learn it!).

H
(
y
)

= −
∑

y
P(y) log P(y)



Kullback Leibler Divergence

I The Kullback Leibler divergence is another special
expectation (learn it!).

KL
(
P(y) ‖Q(y)

)
=

〈
log

P(y)
Q(y)

〉
P(y)

=
〈
log P(y)

〉
P(y)−

〈
log Q(y)

〉
P(y)

I It is a measure of divergence between two distributions
Q(y) and P(y).

I It is zero if they are identical (this is obviously true).
I It is positive if they are different (this is less obvious).
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Matching Two Distributions

I To match two distributions P(y) and Q(y) we can minimize
the KL divergence.

I If we know the form of Q(y) (our approximation) and it
has parameters like a and b for the Gamma or mean and
variance for Gaussian, we can change these parameters to
find the best fit of Q(y) to P(y).

I If we have only got samples from P(y) we use a sample
based approximation.



Sample Based Approximation to the KL

KL
(
P(y) ‖Q(y)

)
≈

1
N

N∑
i=1

log P(yi) −
1
N

N∑
i=1

log Q(yi)

I Can’t compute the first term, but it doesn’t depend on Q(y)
anyway.

I Can compute the second term. It is known as the negative
log likelihood.



Maximum Likelihood

I Minimizing sample based KL divergence is equivalent to
maximum likelihood (ML).

I The likelihood is defined as

P(y|θ)

where y is a vector containing the data and θ is a vector of
parameters. i.e. this is the probability of the data given the
parameters.

I Maximizing log likelihood is equivalent to maximizing
likelihood because log is a monotonic function.



Monotonicity and Ordering
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Monotonic functions preserve the ordering of input points, so
the largest x is also the largest y. Left: gives an impression of
this idea, cyan arrow is largest in x and correspondingly the
largest in y. This transformation is log. Right: this quadratic

function doesn’t preserve the ordering and the largest x (again
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Sample Based Approximation implies i.i.d

I The log likelihood is

L(θ) = log P(y|θ)

I If the likelihood is independent over the individual data
points,

P(y|θ) =

N∏
i=1

P(yi|θ)

I This is equivalent to the assumption that the data is
independent and identically distributed. This is known as
i.i.d..

I Now the log likelihood is

L(θ) =

N∑
i=1

log P(yi|θ)

which matches the sample based KL approximation up to
a scaling by −N.



Maximum Likelihood Properties

Properties of ML arise due to the relationship with the KL
divergence, and law of large numbers.

I As N→∞ If class of distributions considered for Q(y)
contains P(y) then we will obtain Q(y) = P(y).

I This is known as the consistency of maximum likelihood.
I In practice

I We won’t have infinite data.
I We cannot prove that Q(y) will include P(y).



Maximum Likelihood, Minimum Error

I To maximize likelihood we use optimization techniques.
I In the optimization community minimization is the

convention.
I Define the “error function” to be negative log likelihood.

E(θ) = − log L(θ)

I E(·) can also be thought of as an energy function. This is a
physics interpretation.



Basic Optimization Overview

I To find a minimum, want to find a point where gradient is
zero (this is a stationary point).

I If we can show that curvature is positive, this is a
minimum.

I Procedure: differentiate the function, find parameters
which set derivative to zero.

I This can sometimes be done by a fixed point equation,
other times iterative optimization methods are required.



Example: Maximum Likelihood in the Gaussian

P(y|µ, σ2) =

N∏
i=1

1
√

2πσ2
exp

(
−

(yi − µ)2

2σ2

)

1. Write down error function.

2. Differentiate error function.
3. Solve such that the derivatives are zero.
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Reading

I See probability review at end of slides for reminders.
I Read and understand Rogers and Girolami on:

1. Section 2.2 (pg 41–53).
2. Section 2.4 (pg 55–58).
3. Section 2.5.1 (pg 58–60).
4. Section 2.5.3 (pg 61–62).

I For other material in Bishop read:
1. Probability densities: Section 1.2.1 (Pages 17–19).
2. Expectations and Covariances: Section 1.2.2 (Pages 19–20).
3. The Gaussian density: Section 1.2.4 (Pages 24–28) (don’t

worry about material on bias).
4. For material on information theory and KL divergence try

Section 1.6 & 1.6.1 of Bishop (pg 48 onwards).
I If you are unfamiliar with probabilities you should

complete the following exercises:
1. Bishop Exercise 1.7
2. Bishop Exercise 1.8
3. Bishop Exercise 1.9
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Probability Review I

I We are interested in trials which result in two random
variables, X and Y, each of which has an ‘outcome’
denoted by x or y.

I We summarise the notation and terminology for these
distributions in the following table.

Terminology Notation Description
Joint P

(
X = x,Y = y

)
‘The probability that

Probability X = x and Y = y’
Marginal P (X = x) ‘The probability that

Probability X = x regardless of Y’
Conditional P

(
X = x|Y = y

)
‘The probability that

Probability X = x given that Y = y’

Table: The different basic probability distributions.



A Pictorial Definition of Probability
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Figure: Representation of joint and conditional probabilities.



Different Distributions

Terminology Definition Notation

Joint limN→∞
sX=3,Y=4

N P (X = 3,Y = 4)
Probability

Marginal limN→∞
sX=5

N P (X = 5)
Probability

Conditional limN→∞
sX=3,Y=4

sY=4
P (X = 3|Y = 4)

Probability

Table: Definition of probability distributions.



Notational Details

I Typically we should write out P
(
X = x,Y = y

)
.

I In practice, we often use P
(
x, y

)
.

I This looks very much like we might write a multivariate
function, e.g. f

(
x, y

)
= x

y .

I For a multivariate function though, f
(
x, y

)
, f

(
y, x

)
.

I However P
(
x, y

)
= P

(
y, x

)
because

P
(
X = x,Y = y

)
= P

(
Y = y,X = x

)
.

I We now quickly review the ‘rules of probability’.



Normalization

All distributions are normalized. This is clear from the fact that∑
x sx = N, which gives∑

x
P (x) =

∑
x sx

N
=

N
N

= 1.

A similar result can be derived for the marginal and conditional
distributions.



The Sum Rule

Ignoring the limit in our definitions:

I The marginal probability P
(
y
)

is
sy

N (ignoring the limit).

I The joint distribution P
(
x, y

)
is

sx,y

N .
I sy =

∑
x sx,y so

sy

N
=

∑
x

sx,y

N
,

in other words
P
(
y
)

=
∑

x
P
(
x, y

)
.

This is known as the sum rule of probability.



The Product Rule

I P
(
x|y

)
is

sx,y

sy
.

I P
(
x, y

)
is

sx,y

N
=

sx,y

sy

sy

N

or in other words

P
(
x, y

)
= P

(
x|y

)
P
(
y
)
.

This is known as the product rule of probability.



Bayes’ Rule

I From the product rule,

P
(
y, x

)
= P

(
x, y

)
= P

(
x|y

)
P
(
y
)
,

so
P
(
y|x

)
P (x) = P

(
x|y

)
P
(
y
)

which leads to Bayes’ rule,

P
(
y|x

)
=

P
(
x|y

)
P
(
y
)

P (x)
.



Bayes’ Theorem Example

I There are two barrels in front of you. Barrel One contains
20 apples and 4 oranges. Barrel Two other contains 4
apples and 8 oranges. You choose a barrel randomly and
select a fruit. It is an apple. What is the probability that the
barrel was Barrel One?



Bayes’ Theorem Example: Answer I

I We are given that:

P(F = A|B = 1) =20/24
P(F = A|B = 2) =4/12

P(B = 1) =0.5
P(B = 2) =0.5



Bayes’ Theorem Example: Answer II

I We use the sum rule to compute:

P(F = A) =P(F = A|B = 1)P(B = 1)
+ P(F = A|B = 2)P(B = 2)

=20/24 × 0.5 + 4/12 × 0.5 = 7/12

I And Bayes’ theorem tells us that:

P(B = 1|F = A) =
P(F = A|B = 1)P(B = 1)

P(F = A)

=
20/24 × 0.5

7/12
= 5/7



Bayes’ Theorem Example: Answer II

I We use the sum rule to compute:
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I And Bayes’ theorem tells us that:

P(B = 1|F = A) =
P(F = A|B = 1)P(B = 1)

P(F = A)

=
20/24 × 0.5

7/12
= 5/7



Reading & Exercises

Before Friday, review the example on Bayes Theorem!

I Read and understand Bishop on probability distributions:
page 12–17 (Section 1.2).

I Complete Exercise 1.3 in Bishop.



Distribution Representation

I We can represent probabilities as tables

y 0 1 2
P
(
y
)

0.2 0.5 0.3



0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2

P(
y)

y

Figure: Histogram representation of the simple distribution.



Expectations of Distributions

I Writing down the entire distribution is tedious.
I Can summarise through expectations.〈

f (y)
〉

P(y) =
∑

y
f (y)p(y)

I Consider:
y 0 1 2

P
(
y
)

0.2 0.5 0.3
I We have

〈
y
〉

P(y) = 0.2 × 0 + 0.5 × 1 + 0.3 × 2 = 1.1
I This is the first moment or mean of the distribution.
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Figure: Histogram representation of the simple distribution including
the expectation of y (red line), the mean of the distribution.



Variance and Standard Deviation

I Mean gives us the centre of the distribution.
I Consider:

y 0 1 2
y2 0 1 4

P
(
y
)

0.2 0.5 0.3

I Second moment is
〈
y2

〉
P(y)

= 0.2 × 0 + 0.5 × 1 + 0.3 × 4 = 1.7

I Variance is
〈
y2

〉
−

〈
y
〉2 = 1.7 − 1.1 × 1.1 = 0.49

I Standard deviation is square root of variance.
I Standard deviation gives us the “width” of the

distribution.



0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2

P(
y)

y

Figure: Histogram representation of the simple distribution including
lines at one standard deviation from the mean of the distribution
(magenta lines).



Expectation Computation Example

I Consider the following distribution.

y 1 2 3 4
P
(
y
)

0.3 0.2 0.1 0.4
I What is the mean of the distribution?

I What is the standard deviation of the distribution?
I Are the mean and standard deviation representative of the

distribution form?
I What is the expected value of − log P(y)?
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Expectation Computation Example

I Consider the following distribution.

y 1 2 3 4
P
(
y
)

0.3 0.2 0.1 0.4
I What is the mean of the distribution?
I What is the standard deviation of the distribution?
I Are the mean and standard deviation representative of the

distribution form?
I What is the expected value of − log P(y)?



Expectations Example: Answer

I We are given that:

y 1 2 3 4
P
(
y
)

0.3 0.2 0.1 0.4
y2 1 4 9 16

− log(P(y)) 1.204 1.609 2.302 0.916
I Mean: 1 × 0.3 + 2 × 0.2 + 3 × 0.1 + 4 × 0.4 = 2.6
I Second moment: 1 × 0.3 + 4 × 0.2 + 9 × 0.1 + 16 × 0.4 = 8.4
I Variance: 8.4 − 2.6 × 2.6 = 1.64
I Standard deviation:

√
1.64 = 1.2806

I Expectation − log(P(y)):
0.3 × 1.204 + 0.2 × 1.609 + 0.1 × 2.302 + 0.4 × 0.916 = 1.280



Sample Based Approximation Example

I You are given the following values samples of heights of
students,

i 1 2 3 4 5 6
yi 1.76 1.73 1.79 1.81 1.85 1.80

I What is the sample mean?

I What is the sample variance?
I Can you compute sample approximation expected value of
− log P(y)?

I Actually these “data” were sampled from a Gaussian with
mean 1.7 and standard deviation 0.15. Are your estimates
close to the real values? If not why not?
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I You are given the following values samples of heights of
students,

i 1 2 3 4 5 6
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Sample Based Approximation Example: Answer

I We can compute:

i 1 2 3 4 5 6
yi 1.76 1.73 1.79 1.81 1.85 1.80
y2

i 3.0976 2.9929 3.2041 3.2761 3.4225 3.2400

I Mean: 1.76+1.73+1.79+1.81+1.85+1.80
6 = 1.79

I Second moment:
3.0976+2.9929+3.2041+3.2761+3.4225+3.2400

6 = 3.2055
I Variance: 3.2055 − 1.79 × 1.79 = 1.43 × 10−3

I Standard deviation: 0.0379
I No, you can’t compute it. You don’t have access to P(y)

directly.
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