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What is Machine Learning?

data + model = prediction

» data: observations, could be actively or passively acquired
(meta-data).

» model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

» prediction: an action to be taken or a categorization or a
quality score.
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Continuous Variables

» For continuous models we use the probability density
function (PDEF).

» Discrete case: defined probability distributions over a
discrete number of states.

» How do we represent continuous as probability?

» Student heights:

» Develop a representation which could answer any question
we chose to ask about a student’s height.

» PDF is a positive function, integral over the region of

interest is one!.



Manipulating PDFs

» Same rules for PDFs as distributions e.g.

p(xly)p(y)

p (ylx) = ()

where p (x, y) = p (xly) p (v) and for continuous variables

p(x) = [pxy)dy.

» Expectations under a PDF

f Dy = f f ) p(x)dx

where the integral is over the region for which our PDF for
x is defined.



The Gaussian Density

» Perhaps the most common probability density.

n_ 1 _(y—H)Z
A Y exp( 252

= N (ylu, %)

» Also available in multivariate form.

» First proposed maybe by de Moivre but also used by
Laplace.



Gaussian PDF I
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Figure: The Gaussian PDF with u = 1.7 and variance o = 0.0225.
Mean shown as red line. Two standard deviations are shown as
magenta. It could represent the heights of a population of students.



Cumulative Distribution Functions

» PDF doesn’t represent probabilities directly

» One very common question is: what is the probability that
x<y?

» The cumulative distribution function (CDF) represents the
answer for —co < x < oo the CDF is given by

y
P(x>y):I p(x)dx,

for 0 < x < oo then the CDF is given by

y
P(x>y):~f0 p (x) dx.
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Figure: The cumulative distribution function (CDF) for the heights of
computer science students. The thick curve gives the CDF and the
thinner curve the associated PDF.



PDF from CDF

» The PDF can be recovered from the CDF through
differentiation.
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Sample Based Approximations I

» It is not always possible to compute expectations directly.

» Sample based approximation

N
F o)~ x5 3 f ).
i=1

» Special cases of this include the sample mean, often denoted
by 7, and computed as

1 N
?:N;yi,



Sample Mean vs True Mean

» This is an approximation to the true distribution mean

(y) = 7.

» The same approximations can used for continuous PDFs,
so we have

Gy = [ Frway

1 N
~ 5w,
i=1

where y; are independently obtained samples from the
density p ().

» Approximation gets better for increasing N and worse if
the samples from P (y) are not independent.
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Maximum Likelihood



Entropy

» A particular expectation: — (log P(y))P(y).

» This special expectation is known as the entropy of a
distribution.

» It is a measure of how much “uncertainty” is in a
distribution (learn it!).

H (y)=- Y  P(y)logP(y)
Y



Kullback Leibler Divergence

» The Kullback Leibler divergence is another special
expectation (learn it!).

Pty

KL (P(y) 1 Q(y)) = <10g oW

> = (log p(y)>P(y)—(log Q) >P(}/)
P(y)

» It is a measure of divergence between two distributions
Q(y) and P(y).

» Itis zero if they are identical (this is obviously true).

» It is positive if they are different (this is less obvious).
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Matching Two Distributions

» To match two distributions P(y) and Q(y) we can minimize
the KL divergence.

» If we know the form of Q(y) (our approximation) and it
has parameters like a and b for the Gamma or mean and
variance for Gaussian, we can change these parameters to
find the best fit of Q(y) to P(y).

» If we have only got samples from P(y) we use a sample
based approximation.



Sample Based Approximation to the KL

N N
KL(P) 1 Q) = 3 ) o8 P(y) — 15 ) log Q)
i=1 i=1

» Can't compute the first term, but it doesn’t depend on Q(y)
anyway.

» Can compute the second term. It is known as the negative
log likelihood.



Maximum Likelihood

» Minimizing sample based KL divergence is equivalent to
maximum likelihood (ML).

» The likelihood is defined as

P(yl6)

where y is a vector containing the data and 0 is a vector of
parameters. i.e. this is the probability of the data given the
parameters.

» Maximizing log likelihood is equivalent to maximizing
likelihood because log is a monotonic function.



Monotonicity and Ordering
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Monotonic functions preserve the ordering of input points, so
the largest x is also the largest y. Left: gives an impression of
this idea, cyan arrow is largest in x and correspondingly the
largest in y. This transformation is log. Right: this quadratic

function doesn’t preserve the ordering and the largest x (again

cyan arrow) is not the largest y value.



Sample Based Approximation implies i.i.d

» The log likelihood is
L(0) = log P(y|0)
» If the likelihood is independent over the individual data
points,

N
Pyl) = [ [ P0)
i=1

» This is equivalent to the assumption that the data is
independent and identically distributed. This is known as
iid..

» Now the log likelihood is

N
L(0) = ) log P(y;l0)
i=1

which matches the sample based KL approximation up to
a scaling by —N.



Maximum Likelihood Properties

Properties of ML arise due to the relationship with the KL
divergence, and law of large numbers.

» As N — oo If class of distributions considered for Q(v)
contains P(y) then we will obtain Q(y) = P(y).

» This is known as the consistency of maximum likelihood.

» In practice

» We won't have infinite data.
» We cannot prove that Q(y) will include P(y).



Maximum Likelihood, Minimum Error

» To maximize likelihood we use optimization techniques.

v

In the optimization community minimization is the
convention.

\4

Define the “error function” to be negative log likelihood.

E(0) = —logL(0)

\4

E(-) can also be thought of as an energy function. This is a
physics interpretation.



Basic Optimization Overview

» To find a minimum, want to find a point where gradient is
zero (this is a stationary point).

» If we can show that curvature is positive, this is a
minimum.

» Procedure: differentiate the function, find parameters
which set derivative to zero.

» This can sometimes be done by a fixed point equation,
other times iterative optimization methods are required.



Example: Maximum Likelihood in the Gaussian

N (i = w?
P(ylu,0%) = H \/_exp 72

1. Write down error function.



Example: Maximum Likelihood in the Gaussian
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1. Write down error function.

2. Differentiate error function.



Example: Maximum Likelihood in the Gaussian

1. Write down error function.
2. Differentiate error function.

3. Solve such that the derivatives are zero.



Reading

» See probability review at end of slides for reminders.
» Read and understand Rogers and Girolami on:
1. Section 2.2 (pg 41-53).
2. Section 2.4 (pg 55-58).
3. Section 2.5.1 (pg 58-60).
4. Section 2.5.3 (pg 61-62).
» For other material in Bishop read:
1. Probability densities: Section 1.2.1 (Pages 17-19).
2. Expectations and Covariances: Section 1.2.2 (Pages 19-20).
3. The Gaussian density: Section 1.2.4 (Pages 24-28) (don’t
worry about material on bias).
4. For material on information theory and KL divergence try
Section 1.6 & 1.6.1 of Bishop (pg 48 onwards).
» If you are unfamiliar with probabilities you should
complete the following exercises:
1. Bishop Exercise 1.7
2. Bishop Exercise 1.8
3. Bishop Exercise 1.9
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Review: Basic Probability



Probability Review I

» We are interested in trials which result in two random
variables, X and Y, each of which has an ‘outcome’
denoted by x or y.

» We summarise the notation and terminology for these
distributions in the following table.

Terminology Notation Description
Joint P(X=x,Y=y) ‘The probability that
Probability X=xandY =y
Marginal P(X =x) ‘The probability that
Probability X = x regardless of Y’
Conditional P(X=x|Y=y) ‘The probability that
Probability X = x given that Y =y’

Table: The different basic probability distributions.



A Pictorial Definition of Probability
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Figure: Representation of joint and conditional probabilities.



Different Distributions

Terminology Definition Notation
Joint limyo,e 225 P(X=3,Y =4)
Probability
Marginal limyn—eo SXT:“ P(X =05)
Probability

Conditional  limy—eo S"Sj% P(X=3|Y =4)
Probability

Table: Definition of probability distributions.



Notational Details

v

Typically we should write out P (X = x,Y = y).

v

In practice, we often use P (x, y).

v

This looks very much like we might write a multivariate
function, e.g. f(x,y) = §

» For a multivariate function though, f (x, y) # f (y, x).
» However P (x, y) = P (y, x) because
PX=xY=y)=P(Y =y, X=x).

» We now quickly review the ‘rules of probability’.



Normalization

All distributions are normalized. This is clear from the fact that
Y.« Sx = N, which gives

Y P = Z;[Sx - % - 1.

A similar result can be derived for the marginal and conditional
distributions.



The Sum Rule

Ignoring the limit in our definitions:

» The marginal probability P (y) is Sﬁy (ignoring the limit).
» The joint distribution P (x, y) is SAWy
> Sy = ).y 5x,y SO
Sy _y Sy
N — N ’
in other words

P(y) =) P(xy).

This is known as the sum rule of probability.



The Product Rule

> P(xly)is ;
Xy
Sy
» P(x,y)is
Suy _ Sy Sy
N Sy N

or in other words

P(x,y) =P (xly) P(y).

This is known as the product rule of probability.



Bayes’ Rule

» From the product rule,

P(y,x)=P(x,y) =P(xly) P(v),
SO
P (ylx) P (x) = P (xly) P ()
which leads to Bayes’ rule,

P(xly)P(y).

Pylr) = — o)



Bayes” Theorem Example

» There are two barrels in front of you. Barrel One contains
20 apples and 4 oranges. Barrel Two other contains 4
apples and 8 oranges. You choose a barrel randomly and
select a fruit. It is an apple. What is the probability that the
barrel was Barrel One?



Bayes’ Theorem Example: Answer I

» We are given that:

P(F = AB = 1) =20/24

P(F = AB = 2) =4/12
P(B =1) =05
P(B = 2) =0.5



Bayes’ Theorem Example: Answer I1

» We use the sum rule to compute:
P(F=A)=P(F=AB=1)PB=1)

+P(F = A|B = 2)P(B = 2)
=20/24 % 0.5 + 4/12 X 0.5 = 7/12



Bayes’ Theorem Example: Answer I1

» We use the sum rule to compute:

P(F = A) =P(F = AIB = 1)P(B = 1)
+P(F = AB = 2)P(B = 2)
=20/24 x 0.5 +4/12 x 0.5 = 7/12

» And Bayes’ theorem tells us that:

P(F=AB=1PB=1)
P(E = A)
20/24x05

T 7/12

PB=1F=A)=

=5/7



Reading & Exercises

Before Friday, review the example on Bayes Theorem!

» Read and understand Bishop on probability distributions:
page 12-17 (Section 1.2).

» Complete Exercise 1.3 in Bishop.



Distribution Representation

» We can represent probabilities as tables

Yy

0

1

2

P(y)

0.2

0.5

0.3




Figure: Histogram representation of the simple distribution.



Expectations of Distributions

\4

Writing down the entire distribution is tedious.

» Can summarise through expectations.

GOTPED W0
Yy

Consider:

v

y 01 ]2
P(y) | 02|05 |03

We have (y)P(y) =02x04+05%x1+03x2=1.1
This is the first moment or mean of the distribution.

v

v



P(y)

Figure: Histogram representation of the simple distribution including
the expectation of y (red line), the mean of the distribution.



Variance and Standard Deviation

» Mean gives us the centre of the distribution.

Consider:

v

y 01 ]2
v | 0] 1] 4
P(y) | 02]05][03

Second moment is <y2>P(y) =02x0+05x1+03x4=17

Variance is (y?) = (y)* = 1.7 = 1.1 X 1.1 = 049

Standard deviation is square root of variance.

v

v

v

v

Standard deviation gives us the “width” of the
distribution.



P(y)

Figure: Histogram representation of the simple distribution including
lines at one standard deviation from the mean of the distribution
(magenta lines).



Expectation Computation Example

» Consider the following distribution.

Yy

1

2

3

P(y)

0.3

0.2

0.1

0.4

» What is the mean of the distribution?




Expectation Computation Example

» Consider the following distribution.

y | 1] 2]3] 4
P(y) [03]02]01]04

» What is the mean of the distribution?

» What is the standard deviation of the distribution?




Expectation Computation Example

v

Consider the following distribution.

y | 1] 2]3] 4
P(y) [03]02]01]04

What is the mean of the distribution?
What is the standard deviation of the distribution?

Are the mean and standard deviation representative of the
distribution form?

v

v

\4



Expectation Computation Example

v

Consider the following distribution.

y | 1] 2]3] 4
P(y) [03]02]01]04

What is the mean of the distribution?
What is the standard deviation of the distribution?

Are the mean and standard deviation representative of the
distribution form?

v

v

\4

v

What is the expected value of —log P(y)?



Expectations Example: Answer

» We are given that:

y 1 2 3 4
P(y) 03 | 02 | 01 | 04
T 1 1 9 16

—log(P(y)) | 1.204 | 1.609 | 2.302 | 0.916

v

Mean: 1 Xx03+2x02+3%x01+4%x04=26

Second moment: 1 X0.3+4x02+9x0.1+16x04 =284
Variance: 84 —2.6 X2.6 = 1.64

Standard deviation: V1.64 = 1.2806

Expectation —log(P(y)):
0.3 x1.204 + 0.2 x 1.609 + 0.1 X 2.302 + 0.4 x 0.916 = 1.280

v

v

v

v



Sample Based Approximation Example

» You are given the following values samples of heights of
students,

i 1 2 3 4 5 6
yi | 1.76 | 1.73 | 1.79 | 1.81 | 1.85 | 1.80

» What is the sample mean?




Sample Based Approximation Example

» You are given the following values samples of heights of
students,

i 1 2 3 4 5 6
yi | 1.76 | 1.73 | 1.79 | 1.81 | 1.85 | 1.80

» What is the sample mean?

» What is the sample variance?



Sample Based Approximation Example

» You are given the following values samples of heights of

students,

i

1

2

3

4

5

6

Yi

1.76

1.73

1.79

1.81

1.85

1.80

» What is the sample mean?

» What is the sample variance?

» Can you compute sample approximation expected value of

—log P(y)?




Sample Based Approximation Example

» You are given the following values samples of heights of

students,

i

1

2

3

4

5

6

Yi

1.76

1.73

1.79

1.81

1.85

1.80

» What is the sample mean?

» What is the sample variance?

» Can you compute sample approximation expected value of

—log P(y)?

» Actually these “data” were sampled from a Gaussian with
mean 1.7 and standard deviation 0.15. Are your estimates

close to the real values? If not why not?




Sample Based Approximation Example: Answer

» We can compute:

i 1 2 3 4 5 6

yi | 1.76 1.73 1.79 1.81 1.85 1.80

yiz 3.0976 | 2.9929 | 3.2041 | 3.2761 | 3.4225 | 3.2400
» Mean: 1.76+l.73+1‘7946—1.81+1.85+1‘80 —1.79

» Second moment:

3.0976+2.9929+3.2041+3.2761+3.4225+3.2400 _
: = 3.2055

» Variance: 3.2055 — 1.79 x 1.79 = 1.43 x 1073
» Standard deviation: 0.0379

» No, you can’t compute it. You don’t have access to P(y)
directly.




	Course Text
	Probability Density Functions
	Sample Based Approximations
	Maximum Likelihood
	Appendix
	Review: Basic Probability
	Distribution Representation





