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Review

I Last time: Looked at Gaussian density and expectations
under the Gaussian.

I Proved that maximum likelihood is minimum
KL-diverence.

I This time: will begin fitting models to data.
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Regression Examples

I Predict a real value, yi given some inputs xi.
I Predict quality of meat given spectral measurements

(Tecator data).
I Radiocarbon dating, the C14 calibration curve: predict age

given quantity of C14 isotope.
I Predict quality of different Go or Backgammon moves

given expert rated training data.



Olympic 100m Data

I Gold medal times for
Olympic 100 m runners
since 1896.

Image from Wikimedia
Commons

http://bit.ly/191adDC

http://bit.ly/191adDC
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Olympic Marathon Data

I Gold medal times for
Olympic Marathon since
1896.

I Marathons before 1924
didn’t have a
standardised distance.

I Present results using
pace per km.

I In 1904 Marathon was
badly organised leading
to very slow times.

Image from Wikimedia
Commons

http://bit.ly/16kMKHQ

http://bit.ly/16kMKHQ
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What is Machine Learning?

data

+ model = prediction

I data: observations, could be actively or passively acquired
(meta-data).

I model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

I prediction: an action to be taken or a categorization or a
quality score.
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Regression: Linear Releationship

y = mx + c

I y: winning time/pace.

I x: year of Olympics.
I m: rate of improvement over time.
I c: winning time at year 0.
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Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

y1 =mx1 + c
y2 =mx2 + c
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Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

m =
y2 − y1

x2 − x1

c = y1 −mx1 3
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Two Simultaneous Equations

How do we deal with three
simultaneous equations with
only two unknowns?

y1 =mx1 + c
y2 =mx2 + c
y3 =mx3 + c
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Overdetermined System

I With two unknowns and two observations:

y1 =mx1 + c
y2 =mx2 + c

I Additional observation leads to overdetermined system.

y3 = mx3 + c

I This problem is solved through a noise model ε ∼ N
(
0, σ2

)
y1 = mx1 + c + ε1

y2 = mx2 + c + ε2

y3 = mx3 + c + ε3
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Noise Models

I We aren’t modeling entire system.
I Noise model gives mismatch between model and data.
I Gaussian model justified by appeal to central limit

theorem.
I Other models also possible (Student-t for heavy tails).
I Maximum likelihood with Gaussian noise leads to least

squares.



y = mx + c
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y = mx + c

point 1: x = 1, y = 3

3 = m + c

point 2: x = 3, y = 1

1 = 3m + c

point 3: x = 2, y = 2.5

2.5 = 2m + c



y = mx + c + ε

point 1: x = 1, y = 3

3 = m + c + ε1

point 2: x = 3, y = 1

1 = 3m + c + ε2

point 3: x = 2, y = 2.5

2.5 = 2m + c + ε3



The Gaussian Density

I Perhaps the most common probability density.

p(y|µ, σ2) =
1

√

2πσ2
exp

(
−

(y − µ)2

2σ2

)
4
= N

(
y|µ, σ2

)
I The Gaussian density.



Gaussian Density
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The Gaussian PDF with µ = 1.7 and variance σ2 = 0.0225. Mean
shown as red line. It could represent the heights of a
population of students.



Gaussian Density

N

(
y|µ, σ2

)
=

1
√

2πσ2
exp

(
−

(y − µ)2

2σ2

)
σ2 is the variance of the density and µ is
the mean.



Two Important Gaussian Properties

Sum of Gaussians

I Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)

And the sum is distributed as

N∑
i=1

yi ∼ N

 N∑
i=1

µi,
N∑

i=1

σ2
i


(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)
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Scaling a Gaussian

I Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
And the scaled density is distributed as

wy ∼ N
(
wµ,w2σ2
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A Probabilistic Process

I Set the mean of Gaussian to be a function.

p
(
yi|xi

)
=

1
√

2πσ2
exp

− (
yi − f (xi)

)2

2σ2

 .
I This gives us a ‘noisy function’.
I This is known as a process.



Height as a Function of Weight

I In the standard Gaussian, parametized by mean and
variance.

I Make the mean a linear function of an input.
I This leads to a regression model.

yi = f (xi) + εi,

εi ∼N
(
0, σ2

)
.

I Assume yi is height and xi is weight.



Linear Function
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A linear regression between x and y.



Data Point Likelihood

I Likelihood of an individual data point

p
(
yi|xi,m, c

)
=

1
√

2πσ2
exp

− (
yi −mxi − c

)2

2σ2

 .
I Parameters are gradient, m, offset, c of the function and

noise variance σ2.



Data Set Likelihood

I If the noise, εi is sampled independently for each data
point.

I Each data point is independent (given m and c).
I For independent variables:

p(y) =

N∏
i=1

p(yi)
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Data Set Likelihood

I If the noise, εi is sampled independently for each data
point.

I Each data point is independent (given m and c).
I For independent variables:

p(y|x,m, c) =
1

(2πσ2)
N
2

exp

−∑N
i=1

(
yi −mxi − c

)2

2σ2

 .



Log Likelihood Function

I Normally work with the log likelihood:

L(m, c, σ2) = −
N
2

log 2π −
N
2

log σ2
−

N∑
i=1

(
yi −mxi − c

)2

2σ2 .



Consistency of Maximum Likelihood

I If data was really generated according to probability we
specified.

I Correct parameters will be recovered in limit as N→∞.
I This can be proven through sample based approximations

(law of large numbers) of “KL divergences”.
I Mainstay of classical statistics.



Probabilistic Interpretation of the Error Function

I Probabilistic Interpretation for Error Function is Negative
Log Likelihood.

I Minimizing error function is equivalent to maximizing log
likelihood.

I Maximizing log likelihood is equivalent to maximizing the
likelihood because log is monotonic.

I Probabilistic interpretation: Minimizing error function is
equivalent to maximum likelihood with respect to
parameters.



Error Function

I Negative log likelihood is the error function leading to an
error function

E(m, c, σ2) =
N
2

log σ2 +
1

2σ2

N∑
i=1

(
yi −mxi − c

)2 .

I Learning proceeds by minimizing this error function for
the data set provided.



Connection: Sum of Squares Error

I Ignoring terms which don’t depend on m and c gives

E(m, c) ∝
N∑

i=1

(yi − f (xi))2

where f (xi) = mxi + c.
I This is known as the sum of squares error function.
I Commonly used and is closely associated with the

Gaussian likelihood.



Mathematical Interpretation

I What is the mathematical interpretation?
I There is a cost function.
I It expresses mismatch between your prediction and reality.

E(w) =

N∑
i=1

(
yi −mxi + c − yi

)2

I This is known as the sum of squares error.



Learning is Optimization

I Learning is minimization of the cost function.
I At the minima the gradient is zero.
I Coordinate ascent, find gradient in each coordinate and set

to zero.
dE(m)

dm
= −2

N∑
i=1

xi
(
yi −mxi − c

)
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Learning is Optimization

I Learning is minimization of the cost function.
I At the minima the gradient is zero.
I Coordinate ascent, find gradient in each coordinate and set
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m =

∑N
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(
yi − c

)
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Learning is Optimization
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Learning is Optimization

I Learning is minimization of the cost function.
I At the minima the gradient is zero.
I Coordinate ascent, find gradient in each coordinate and set

to zero.

c =

∑N
i=1

(
yi − cx

)
N



Fixed Point Updates

Worked example.

c∗ =

∑N
i=1

(
yi −m∗xi

)
N

,

m∗ =

∑N
i=1 xi

(
yi − c∗

)∑N
i=1 x2

i

,

σ2 ∗ =

∑N
i=1

(
yi −m∗xi − c∗

)2

N
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Important Concepts Not Covered

I Optimization methods.
I Second order methods, conjugate gradient, quasi-Newton

and Newton.
I Effective heuristics such as momentum.

I Local vs global solutions.



Linear Function
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Reading

I Section 1.2.5 of Bishop up to equation 1.65.
I Section 1.1-1.2 of Rogers and Girolami for fitting linear

models.



Multi-dimensional Inputs

I Multivariate functions involve more than one input.
I Height might be a function of weight and gender.
I There could be other contributory factors.
I Place these factors in a feature vector xi.
I Linear function is now defined as

f (xi) =

q∑
j=1

w jxi, j + c



Vector Notation

mo

I Write in vector notation,

f (xi) = w>xi + c

I Can absorb c into w by assuming extra input x0 which is
always 1.

f (xi) = w>xi



Log Likelihood for Multivariate Regression

I The likelihood of a single data point is

p
(
yi|xi

)
=

1
√

2πσ2
exp

− (
yi −w>xi

)2

2σ2

 .
I Leading to a log likelihood for the data set of

L(w, σ2) = −
N
2

log σ2
−

N
2

log 2π −
∑N

i=1
(
yi −w>xi

)2

2σ2 .

I And a corresponding error function of

E(w, σ2) =
N
2

log σ2 +

∑N
i=1

(
yi −w>xi

)2

2σ2 .



Expand the Brackets

E(w, σ2) =
N
2

log σ2 +
1

2σ2

N∑
i=1

y2
i −

1
σ2

N∑
i=1

yiw>xi

+
1

2σ2

N∑
i=1

w>xix>i w + const.

=
N
2

log σ2 +
1

2σ2

N∑
i=1

y2
i −

1
σ2 w>

N∑
i=1

xiyi

+
1

2σ2 w>
 N∑

i=1

xix>i

 w + const.



Multivariate Derivatives

I We will need some multivariate calculus.
I For now some simple multivariate differentiation:

da>w
dw

= a

and
dw>Aw

dw
=

(
A + A>

)
w

or if A is symmetric (i.e. A = A>)

dw>Aw
dw

= 2Aw.



Differentiate

Differentiating with respect to the vector w we obtain

∂L
(
w, β

)
∂w

= β
N∑

i=1

xiyi − β

 N∑
i=1

xix>i

 w

Leading to

w∗ =

 N∑
i=1

xix>i


−1 N∑

i=1

xiyi,

Rewrite in matrix notation:

N∑
i=1

xix>i = X>X

N∑
i=1

xiyi = X>y



Update Equations

I Update for w∗.

w∗ =
(
X>X

)−1
X>y

I The equation for σ2 ∗ may also be found

σ2 ∗ =

∑N
i=1

(
yi − w∗ > xi

)2

N
.



Reading

I Section 1.3 of Rogers and Girolami for Matrix & Vector
Review.



Outline

Regression

Basis Functions



Basis Functions
Nonlinear Regression

I Problem with Linear Regression—x may not be linearly
related to y.

I Potential solution: create a feature space: define φ(x)
where φ(·) is a nonlinear function of x.

I Model for target is a linear combination of these nonlinear
functions

f (x) =

K∑
j=1

w jφ j(x) (1)



Quadratic Basis

I Basis functions can be global. E.g. quadratic basis:

[1, x, x2]

-2
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1

2

-1 0 1

φ
(x

)

x

φ(x) = 1

Figure: A quadratic basis.
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Quadratic Basis

I Basis functions can be global. E.g. quadratic basis:
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Figure: A quadratic basis.



Functions Derived from Quadratic Basis
f (x) = w1 + w2x + w3x2
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x
Figure: Function from quadratic basis with weights w1 = 0.87466,
w2 = −0.38835, w3 = −2.0058 .



Functions Derived from Quadratic Basis
f (x) = w1 + w2x + w3x2
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Figure: Function from quadratic basis with weights w1 = −0.35908,
w2 = 1.2274, w3 = −0.32825 .



Functions Derived from Quadratic Basis
f (x) = w1 + w2x + w3x2
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x
Figure: Function from quadratic basis with weights w1 = −1.5638,
w2 = −0.73577, w3 = 1.6861 .



Radial Basis Functions

I Or they can be local. E.g. radial (or Gaussian) basis

φ j(x) = exp
(
−

(x−µ j)2

`2

)

0

1

-2 -1 0 1 2

φ
(x

)

x

φ1(x) = e−2(x+1)2

Figure: Radial basis functions.
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Radial Basis Functions

I Or they can be local. E.g. radial (or Gaussian) basis

φ j(x) = exp
(
−

(x−µ j)2
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)
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φ1(x) = e−2(x+1)2
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Figure: Radial basis functions.



Functions Derived from Radial Basis
f (x) = w1e−2(x+1)2

+ w2e−2x2
+ w3e−2(x−1)2
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f(
x)

x
Figure: Function from radial basis with weights w1 = −0.47518,
w2 = −0.18924, w3 = −1.8183 .



Functions Derived from Radial Basis
f (x) = w1e−2(x+1)2

+ w2e−2x2
+ w3e−2(x−1)2
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Figure: Function from radial basis with weights w1 = 0.50596,
w2 = −0.046315, w3 = 0.26813 .



Functions Derived from Radial Basis
f (x) = w1e−2(x+1)2

+ w2e−2x2
+ w3e−2(x−1)2

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

f(
x)

x
Figure: Function from radial basis with weights w1 = 0.07179,
w2 = 1.3591, w3 = 0.50604 .



Reading

I Chapter 1, pg 1-6 of Bishop.
I Section 1.4 of Rogers and Girolami.
I Chapter 3, Section 3.1 of Bishop up to pg 143.



Reading Summary

I In Rogers and Girolami:
I Section 1.1-1.2 for fitting linear models.
I Section 1.3 for Matrix & Vector Review.
I Section 1.4.

I In Bishop:
I Chapter 1, pg 1-6.
I Complete Section 1.2.4 (from last time), page 26–28 (don’t

worry about material on bias).
I For material on information theory and KL divergence try

Section 1.6 & 1.6.1 of (pg 48 onwards). Suggest skipping
rest of Section 1.2.4, page 26–28 (don’t worry about material
on bias).

I Section 1.2.5 of up to equation 1.65.
I Section 1.1.
I Chapter 3, Section 3.1 up to pg 143.
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