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Review

» Last time: Looked at Gaussian density and expectations
under the Gaussian.

» Proved that maximum likelihood is minimum
KL-diverence.

» This time: will begin fitting models to data.



Outline

Regression



Regression Examples

\4

Predict a real value, y; given some inputs x;.

\4

Predict quality of meat given spectral measurements
(Tecator data).

Radiocarbon dating, the C14 calibration curve: predict age
given quantity of C14 isotope.

v

v

Predict quality of different Go or Backgammon moves
given expert rated training data.



Olympic 100m Data

» Gold medal times for
Olympic 100 m runners
since 1896.

Image from Wikimedia
Commons
http://bit.1ly/191adDC
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Olympic Marathon Data

» Gold medal times for
Olympic Marathon since
1896.

» Marathons before 1924
didn’t have a
standardised distance.

» Present results using
pace per km.

» In 1904 Marathon was
badly organised leading
to very slow times.

Image from Wikimedia
Commons
http://bit.1ly/16kMKHQ


http://bit.ly/16kMKHQ
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What is Machine Learning?

data + model = prediction

» data: observations, could be actively or passively acquired
(meta-data).

» model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

» prediction: an action to be taken or a categorization or a
quality score.
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Regression: Linear Releationship

y=mx+c

» y: winning time/pace.

v

: year of Olympics.

v

m: rate of improvement over time.

» c: winning time at year 0.
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Two Simultaneous Equations

A system of two simultaneous 5,
equations with two unknowns. 5
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Two Simultaneous Equations

How do we deal with three
simultaneous equations with

only two unknowns?

Y1 =mxy +c¢
Yo =Mmxy +C
Y3 =mx3 + ¢

time in min/km, y

a1

I

w

X

— Xy — X ’\
| | | |

1900 1940 1980 2020

year, x



Overdetermined System

» With two unknowns and two observations:

Y1 =mx1 +c¢

Yo =mXy +C
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Overdetermined System

» With two unknowns and two observations:

Y1 =mx1 +c¢

Yo =mXy +C

» Additional observation leads to overdetermined system.

Y3 =mx3+¢

» This problem is solved through a noise model € ~ N (0, 02)

Y1 =mxy +Cc+e€
Yo =MmMxy +C+ €
Y3 =mx3 +Cc+e€3



Noise Models

» We aren’t modeling entire system.
» Noise model gives mismatch between model and data.

» Gaussian model justified by appeal to central limit
theorem.

» Other models also possible (Student-t for heavy tails).

» Maximum likelihood with Gaussian noise leads to least
squares.
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y = mx +c
pointl: x=1,y=3
3=m+c
point2: x =3,y =1
1=3m+c
point3: x =2,y =25
25=2m+c



y=mx+c+e

pointl: x=1,y=3
3=m+c+ €

point2: x =3,y =1
1=3m+c+e

point3: x =2,y =25

25=2m+c+e€3



The Gaussian Density

» Perhaps the most common probability density.

o 1 -
p(y“lla)_ Wexp 202
= N (yl, %)

» The Gaussian density.



Gaussian Density

p(hly, o?)

0 | \
0 1 2

h, height/m

The Gaussian PDF with u = 1.7 and variance 6> = 0.0225. Mean
shown as red line. It could represent the heights of a
population of students.



Gaussian Density

1 (y — w)?
b el 452)

o2 is the variance of the density and u is
the mean.
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Two Important Gaussian Properties

Scaling a Gaussian
» Scaling a Gaussian leads to a Gaussian.
y~N(p0?)
And the scaled density is distributed as

wy ~ N(wy, wzoz)



A Probabilistic Process

» Set the mean of Gaussian to be a function.

exp[_w),

p (yilx;) = i 252

» This gives us a ‘noisy function’.

» This is known as a process.



Height as a Function of Weight

\4

In the standard Gaussian, parametized by mean and
variance.

v

Make the mean a linear function of an input.

v

This leads to a regression model.

vi =f (xi) + €,
€ ~N (O, 02).

» Assume y; is height and x; is weight.



Linear Function

2 L data points ~ x
best fit line

\ \ \ \ |
50 60 70 80 90 100

A linear regression between x and y.



Data Point Likelihood

» Likelihood of an individual data point

1 (y; — mx; — c)*
p (yilxi, m,c) = P2 exp( 252 :

» Parameters are gradient, m, offset, c of the function and

noise variance o2.



Data Set Likelihood

» If the noise, €; is sampled independently for each data
point.
» Each data point is independent (given m and c).

» For independent variables:

N
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Data Set Likelihood

» If the noise, €; is sampled independently for each data
point.
» Each data point is independent (given m and c).

» For independent variables:

p(ylx, m,c) = ﬁ . exp (_—(yi = C)Z]
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Data Set Likelihood

» If the noise, €; is sampled independently for each data
point.

» Each data point is independent (given m and c).

» For independent variables:

exp— Yty (yi = mxi — o)
(2n02)¥ 207

p(ylx, m,c) =



Log Likelihood Function

» Normally work with the log likelihood:

N )2
L(m, c,0%) = —glogZR - glogaz - Z (yl;”#c)

2
i=1 g



Consistency of Maximum Likelihood

» If data was really generated according to probability we
specified.
» Correct parameters will be recovered in limit as N — co.

» This can be proven through sample based approximations
(law of large numbers) of “KL divergences”.

» Mainstay of classical statistics.



Probabilistic Interpretation of the Error Function

\4

Probabilistic Interpretation for Error Function is Negative
Log Likelihood.

Minimizing error function is equivalent to maximizing log
likelihood.

» Maximizing log likelihood is equivalent to maximizing the
likelihood because log is monotonic.

v

\4

Probabilistic interpretation: Minimizing error function is
equivalent to maximum likelihood with respect to
parameters.



Error Function

» Negative log likelihood is the error function leading to an
error function

N 1
E(m,c,0%) = 5 loga2 + 752 Z (yi — mx; — c)z.
i=1

» Learning proceeds by minimizing this error function for
the data set provided.



Connection: Sum of Squares Error

» Ignoring terms which don’t depend on m and c gives

N
E(m,c) < Z(yi — f(x))?
i=1

where f(x;) = mx; +c.
» This is known as the sum of squares error function.

» Commonly used and is closely associated with the
Gaussian likelihood.



Mathematical Interpretation

» What is the mathematical interpretation?

» There is a cost function.
» It expresses mismatch between your prediction and reality.

N
E(w) = Z (yi —mx;j +c— yl-)2
i=1

» This is known as the sum of squares error.



Learning is Optimization

» Learning is minimization of the cost function.

» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set
to zero.

M = —2le(yl mx; — c)



Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set
to zero.

N
0= —Zin(yi — mx; — C)
i=1



Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set
to zero.

N N N
0= —2inyi +ZZ:mxi2 +220xi
i=1 i=1 i=1



Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set
to zero. N
_ Li=1 (yi — ) xi
m= —————

N 2
Yis X



Learning is Optimization

» Learning is minimization of the cost function.

» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set
to zero.

N
dE(c) _ ' '
T - 2 ;:1 (yi — mx; —c)




Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set
to zero.

N
0= —ZZ(yi—mxi—c)
i=1



Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set

to zero.
N N

0=-2)"yi+2) mx;+2Nc

i=1 i=1



Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set

to zero. N
_ Yoy (yi — cx)

B N



Fixed Point Updates

Worked example.
& _Zﬁl (yi —m"x;)
= N ,
. _ g\il xi (yi = )
m _—ZN 2
i=1"

e I =)’
B N




Coordinate Descent
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Iteration 4
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 4
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 5
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 5
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 6
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 6
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 7
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 7
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 8
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 8
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 9
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 9
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35

0.4



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

11 L 4

0.9 I | |
0.2 0.25 0.3 0.35 0.4




Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |
0.2 0.25 0.3 0.35 0.4




Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |
0.2 0.25 0.3 0.35 0.4




Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |
0.2 0.25 0.3 0.35 0.4




Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |
0.2 0.25 0.3 0.35 0.4




Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |
0.2 0.25 0.3 0.35 0.4




Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 10
15

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 20

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 30

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 30

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Coordinate Descent
Iteration 30

1.5

14 -

13

o 12 -

1.1 +

0.9 I | |

0.2 0.25 0.3 0.35



Important Concepts Not Covered

» Optimization methods.

» Second order methods, conjugate gradient, quasi-Newton
and Newton.
» Effective heuristics such as momentum.

» Local vs global solutions.



Linear Function

x data points  x
best fit line

¥, pace min/km

1900 1920 1940 1960 1980 2000 2020
x, year

Linear regression for Male Olympics Marathon Gold Medal
times.



Reading

» Section 1.2.5 of Bishop up to equation 1.65.

» Section 1.1-1.2 of Rogers and Girolami for fitting linear
models.



Multi-dimensional Inputs

\4

Multivariate functions involve more than one input.

\4

Height might be a function of weight and gender.

\4

There could be other contributory factors.

v

Place these factors in a feature vector x;.

v

Linear function is now defined as

q
f(xi) = Z wiXi,j +C
j=1



Vector Notation

mo

» Write in vector notation,
fx)=w'x;+c

» Can absorb c into w by assuming extra input xo which is
always 1.
fxi) = w'x;



Log Likelihood for Multivariate Regression

» The likelihood of a single data point is

1x;) = 1 (vi — WTXi)Z
p (yl Xi) = \/2717 exp 20_2 .

» Leading to a log likelihood for the data set of

Zg\il (vi — WTXi)2
252 ’

N N
L(w,0%) = —= log0® — = log 27 —
2 2
» And a corresponding error function of

YN i - W)
202 ’

E(w,0%) = %jlog o> +



Expand the Brackets

E(w, 0?) :—logo + Zyl - —Zyzw X;

N
1 TooT
+ — E W X;X; W + const.

N 1 al
_ 2 T .
—Eloga +2(72 E yl w E X Vi

i=1 i=1

T|w + const.




Multivariate Derivatives

» We will need some multivariate calculus.

» For now some simple multivariate differentiation:

da™w
dw -a
and dwT A
w Aw T
T—(A-i-A )W

or if A is symmetric (i.e. A = AT)

dwT Aw

=2Aw.
dw W



Differentiate

Differentiating with respect to the vector w we obtain

)

Leading to

Z



Update Equations

» Update for w".
-1
w' =(X"X) Xy
» The equation for 6" may also be found

c I (i wT x))

2
< N




Reading

» Section 1.3 of Rogers and Girolami for Matrix & Vector
Review.



Outline

Basis Functions



Basis Functions

Nonlinear Regression

» Problem with Linear Regression—x may not be linearly
related to y.

» Potential solution: create a feature space: define ¢(x)
where ¢(-) is a nonlinear function of x.

» Model for target is a linear combination of these nonlinear
functions

K
f69 =) w0 (1)
j=1



Quadratic Basis

» Basis functions can be global. E.g. quadratic basis:

[1,x,%°]
2 _
P(x) =1
]_ L
2 0l
<
1k
2 \ \ \
1 1
X

Figure: A quadratic basis.



Quadratic Basis

» Basis functions can be global. E.g. quadratic basis:

[l,x,xz]
2 _
=1
1L P(x)
= ol
5
10 P(x) =x
-2 \ \ !
-1 1
X

Figure: A quadratic basis.



Quadratic Basis

» Basis functions can be global. E.g. quadratic basis:

[1,x,2%]

Figure: A quadratic basis.



Functions Derived from Quadratic Basis

f(x) = wy + wox + wsx?
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Figure: Function from quadratic basis with weights w; = 0.87466,
wy, = —0.38835, w3 = —2.0058 .



Functions Derived from Quadratic Basis

f(x) = wy + wox + wsx?
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Figure: Function from quadratic basis with weights w; = —0.35908,
wy = 1.2274, w3 = —0.32825 .



Functions Derived from Quadratic Basis

f(x) = wy + wox + wsx?

= N
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Figure: Function from quadratic basis with weights w; = —1.5638,
wy, = —0.73577, w3 = 1.6861 .



Radial Basis Functions

» Or they can be local. E.g. radial (or Gaussian) basis

$;(x) = exp( (x— #;) )

P(x)

(Pl(x = 2(x+1)2

-2 -1 0 1 2
x

Figure: Radial basis functions.



Radial Basis Functions

» Or they can be local. E.g. radial (or Gaussian) basis

$;(x) = exp( (x— #;) )

Pa(x) = 2

P(x)

qbl(x = 2(x+1)2

-2 -1 0 1 2
x

Figure: Radial basis functions.



Radial Basis Functions

» Or they can be local. E.g. radial (or Gaussian) basis

$;(x) = exp( (x— #;) )

po(x) = 2

P(x)

2(x+1)2
qbl(x =e ¢3(x) — e—Z(Jc—l)2
| | | |

-2 -1 0 1 2

X

Figure: Radial basis functions.



Functions Derived from Radial Basis

. 2 2 _ _1)\2
F(x) = wie 2D 4 wpe™? + wsem 2D

3 2 -1 0 1 2 3
X

Figure: Function from radial basis with weights w; = —0.47518,
wy = —0.18924, w3 = —1.8183 .



Functions Derived from Radial Basis

. 2 2 _ _1)\2
F(x) = wie 2D 4 wpe™? + wsem 2D
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X

Figure: Function from radial basis with weights w; = 0.50596,
wy, = —0.046315, w3 = 0.26813 .



Functions Derived from Radial Basis

. 2 2 _ _1)\2
F(x) = wie 2D 4 wpe™? + wsem 2D

3 2 -1 0 1 2 3
X

Figure: Function from radial basis with weights w; = 0.07179,
wy = 1.3591, ws = 0.50604 .



Reading

» Chapter 1, pg 1-6 of Bishop.
» Section 1.4 of Rogers and Girolami.

» Chapter 3, Section 3.1 of Bishop up to pg 143.



Reading Summary

» In Rogers and Girolami:

>

>

»

Section 1.1-1.2 for fitting linear models.
Section 1.3 for Matrix & Vector Review.
Section 1.4.

» In Bishop:

>

>

Chapter 1, pg 1-6.

Complete Section 1.2.4 (from last time), page 26-28 (don't
worry about material on bias).

For material on information theory and KL divergence try
Section 1.6 & 1.6.1 of (pg 48 onwards). Suggest skipping
rest of Section 1.2.4, page 26-28 (don’t worry about material
on bias).

Section 1.2.5 of up to equation 1.65.

Section 1.1.

Chapter 3, Section 3.1 up to pg 143.
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