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MACHINE LEARNING AND ADAPTIVE INTELLIGENCE 2 hours

Answer THREE of the four questions.

All questions carry equal weight. Figures in square brackets indicate the per-
centage of available marks allocated to each part of a question.
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1. This question concerns general concepts in machine learning.

a) Overfitting is a common problem in machine learning, in both regression and classifi-
cation.

(i) Explain the problem, when it might occur, and how you can measure the extent
of overfitting. [10%]

(ii) With reference to the regression or classification models you have studied,
describe two different regularisation techniques for addressing the overfitting
problem. Provide a sentence or two on each, explaining how they limit overfit-
ting. [15%]

b) Model training for probabilistic models often involves taking point estimates for the
model parameters, such as the maximum a posteriori (MAP) estimate.

(i) Define the objective the MAP is optimising, making reference to Bayes’ rule.
[10%]

(ii) Bayesian inference is an alternative inference technique which also makes use
of a prior. Outline the Bayesian inference technique, and contrast it with the
use of point estimates. [20%]

(iii) Why might you choose to use Bayesian inference instead of a point estimate,
or vice-versa? In what circumstances would Bayesian inference be preferable?

[15%]

c) Several pairs of distributions are said to be conjugate, such as the Binomial and Beta;
Multinomial and Dirichlet; and Normal (mean) and Normal. Explain the notion of
conjugacy, and how this might be practically important in a classification or regression
scenario. [15%]

d) Logistic regression is a probabilistic model for binary classification. It defines the
probability of class 1 as

p(C1|x) =
1

1 + exp(−w>x)

and p(C1|x) = 1−p(C2|x). Show how this gives rise to a linear discriminant function.
You may want to start by formulating the log-odds ratio for predicting C1 versus C2.

[15%]
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2. This question is based on classifying the gender of Olympic 100m sprint winners. Shown
below is a plot of the winning times in each year for the women’s and men’s events.
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The women’s results are shown with plus symbols (+) and the men’s results with crosses
(x). We would now like to develop a classifier to predict the gender (t = male or female)
automatically based on a two dimensional data point, x = (year, winning time). Note that
we are seeking to model this as a classification dataset, not regression as used for your class
work.

a) We decide to model this data using a linear binary classifier.

(i) Draw a rough diagram to illustrate a decision boundary that you might hope
to learn from this data with a linear classifier. Label the regions corresponding
to the two classes, C1 = female, C2 = male. [10%]

(ii) Is a linear classifier an appropriate choice for this data? You should consider
both interpolation and extrapolation settings, and explain these terms in your
answer. [15%]

b) Basis functions can be used to develop non-linear models. Give an example of a basis
function that would be appropriate for this dataset, and explain why. Based on your
choice, state the basis vector φ(x) used to represent a data-point x. [15%]

c) Various techniques can be used for validation, such as using a fixed held-out validation
set, or cross-validation.

(i) Explain the purpose of validation. Define fixed held-out validation and cross-
validation. [10%]

(ii) Imagine we were to perform k-fold cross-validation on this data. We do so by
assigning the data points from the 100m dataset based on the year of each
race, such that each 20 year period forms a fold. Explain why this form of
evaluation might not give a reliable estimate of the generalisation error, and
how you might fix this. [15%]
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d) Kernel methods extend the basis functions technique to allow for richer and more
flexible data representations.

(i) Explain what is meant by a kernel function, and how they relate to basis func-
tions. [10%]

(ii) Using a linear perceptron with basis function φ, the perceptron update takes
the form

w← w + ηtiφ(xi)

after an error is made on the ith training instance. Show how the weights can
be represented as a linear combination of the training samples,

w =
∑
i

αitiφ(xi)

and show the dual form of the update rule, in terms of α. [15%]

(iii) Using the above reparameterisation, derive the kernel perceptron. This re-
quires you to prove that the perceptron discriminant function y(x) = wTφ(x)
can be expressed such that the basis functions occur solely as inner products
φ(xi)

Tφ(xj). Justify why this is important. [10%]
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3. This question concerns regression and maximum likelihood fits of regression models with
basis functions.

a) What role do the basis functions play in a regression model? [10%]

b) The polynomial basis with degree d computed for a one dimensional input has the
form

φ(xi) =
[
1 xi x

2
i x

3
i . . . xdi

]>
.

Give a disadvantage of the polynomial basis. Suggest a potential fix for this disad-
vantage and propose an alternative basis. [20%]

c) The likelihood of a single data point in a regression model is given by,

p(yi|w,xi, σ
2) =

1√
2πσ2

exp

(
−(yi − φ(xi)

>w)2

2σ2

)
.

Assuming that each data point is independent and identically distributed, derive a
suitable error function that should be minimized to recover w and σ2. Explain your
reasoning at each step. [25%]

d) Now show that this error function is minimized with respect to the vector w, at the
following point,

w∗ =
[
Φ>Φ

]−1
Φ>y

where Φ is a design matrix containing all the basis vectors, and y is a vector of
regression targets. [30%]

e) What problem will arise as the number of basis functions we use increases to become
larger than the number of the data points we are given? How can we perform a
regression in this case? [15%]
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4. This question deals with Bayesian approaches to machine learning problems.

a) Machine learning deals with data. What do we need to combine with the data in order
to make predictions? [10%]

b) Bayes’ Rule relates four terms: the likelihood, the prior, the posterior and the marginal
likelihood or evidence.

(i) Describe the role of each of these terms when modelling data. [20%]

(ii) Write down the relationship between these four terms as given by Bayes’ rule.
[10%]

c) In a regression problem we are given a vector of real valued targets, y, consisting of
N observations y1 . . . yN which are associated with multidimensional inputs x1 . . .xN .
We assume a linear relationship between yi and xi where the data is corrupted by
independent Gaussian noise giving a likelihood of the form

p(y|x,w, σ2) =
1

(2πσ2)N/2
exp

(
− 1

2σ2

N∑
i=1

(yi −w>xi)
2

)
.

Consider the following Gaussian prior density for the k dimensional vector of parame-
ters, w,

p(w) =
1

(2πα)
k
2

exp

(
− 1

2α
w>w

)
(i) This prior and likelihood can be combined to form the posterior. Explain why

the resulting posterior will be Gaussian distributed. [10%]

(ii) Show that the covariance of the posterior density for w is given by

Cw =

[
1

σ2
X>X +

1

α
I

]−1
,

where X is a design matrix of the input data. [35%]

(iii) Show that the mean of the posterior density for w is given by

µw = Cw
1

σ2
X>y.

[15%]

END OF QUESTION PAPER
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