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Quick Review: Overdetermined Systems



Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.
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Two Simultaneous Equations

How do we deal with three
simultaneous equations with
only two unknowns?
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Overdetermined System

» With two unknowns and two observations:

Y1 =mx1 +c¢

Yo =mXy +C



Overdetermined System

» With two unknowns and two observations:

Y1 =mx1 +c¢
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» Additional observation leads to overdetermined system.
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Overdetermined System

» With two unknowns and two observations:

Y1 =mx1 +c¢

Yo =mXy +C

» Additional observation leads to overdetermined system.

Y3 =mx3+¢

» This problem is solved through a noise model € ~ N (0, 02)

Y1 =mxy +Cc+e€
Yo =MmMxy +C+ €
Y3 =mx3 +Cc+e€3



Noise Models

» We aren’t modeling entire system.
» Noise model gives mismatch between model and data.

» Gaussian model justified by appeal to central limit
theorem.

» Other models also possible (Student-t for heavy tails).

» Maximum likelihood with Gaussian noise leads to least
squares.
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y = mx +c
pointl: x=1,y=3
3=m+c
point2: x =3,y =1
1=3m+c
point3: x =2,y =25
25=2m+c






SUR LES PROBABILITES. 3

riens. L'opinion contraire est une illusion de Pesprit
qui, perdant de yue les raisons fugitives du choix de la
volonté dans les choses indifférentes, se persnade qu'elle
sest déterminde d'elleméme et sans motifs.

Nous devons donc envisager I'état présent de I'uni-
vers, comme Ueflet de son état antévienr, et comme la
cause de celui gui va suivre. Une intelligence qui, pour
un instant donné, connaitrait toutes les forees dont la
natuve est animée, ot la sitnation respective des dtres
«qui la composent, si d'aillenrs elle était assex vaste pour
soumettre ces donndes & Panalyse, embrasserait dans la
méme formule les mouvemens des plus grands corps de
I'nnivers et ceux du plus léger atome : rien ne serait
incertain pour elle, ct Iavenir comme le passé, serait
preésent & ses yeux. L'esprit humain oflre, dans In per-
fection quil a su donmer & I'Astronomie, une faible
esquisse de cette intelligence, Ses découvertes en Méca-
nigue et en Geométrie, jointes i celle de la pesanteur
universelle, l'ont mis & portée de comprendre dans les
mémes expressions nnn]yliqur‘_ﬁ‘ les dtats passés ot futnrs
du systéme du monde. En appliqnnhtl 2 méme méthode
& quelques autres objets de ses conn:uxsancu il est par
vetiu & i des lois géndrales, les phé ne
observés, el & prévoir ceux que des clrconstnnuus don-
nées doivent faire éclore. Tous ces eiforts dans la ve-
he de la vérité , tendent i le rapprocher sans cesse
utelligence que nous venons de conceveir, mais
dont il restera toujours infiniment éloigné. Getle ten-
dance propre i Pespice humaine, est ce qui la rend
supérielire aus Animaux ; et ses progrés en ce genre.,

distinguent les nations et les sitcles, et font Jenr veri-
talde glulre
Rappelons-nons x||| "autrefois, et i une époque qui



4 A PHILOSOPHICAL ESSAY ON PROBABILITIES.

other, we say that its choice is an effect without a cause.
It is then, says Leibnitz, the blind chance of the
Epicureans. The contrary opinion is an illusion of the
mind, which, losing sight of the evasive reasons of the
choice of the will in indifferent things, belicves that
choice is determiined of itself and without metives.

We ought then to regard the present state of the
universe as the effect of its anterior state and as the
cause of the one which is to follow. Given for one
instant an intelligence which could comprehend all the
forces by which nature is animated and the respective
situation of the beings who compose it—an intelligence
sufficiently vast to submit these data to analysis—it
would embrace in the same formula the mevements of
the greatest bodies of the universe and those of the
lightest atom; for it, nothing would be uncertain and
the future, as the past, would be present to its cyes.
The human mind offers, in the perfection which it has
been able to give to astronomy, a feeble idea of this in-
telligence. Its discoveries in mechanics and geometry,
added to that of universal gravity, have enabled it to
comprehend in the same analytical expressions the
past and future states of the system of the world.
Applying the same method to some other objects of its
knowledge, it has succeeded in referring to general laws
observed phenomena and in foreseeing those which
given circumstances ought to produce. All these efforts
in the search for truth tend to lead it back continually
to the vast intelligence which we have just mentioned,
but from which it will always remain infinitely removed.
‘This tendency, peculiar to the human race, is that
which renders it superior to animals; and their progress
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The Gaussian Density

» Perhaps the most common probability density.

o 1 -
p(y“lla)_ Wexp 202
= N (yl, %)

» The Gaussian density.



Gaussian Density

p(hly, o?)

0 | \
0 1 2

h, height/m

The Gaussian PDF with u = 1.7 and variance 6> = 0.0225. Mean
shown as red line. It could represent the heights of a
population of students.



Gaussian Density

1 (y — w)?
b enl 452

o2 is the variance of the density and u is
the mean.



Two Important Gaussian Properties

Sum of Gaussians

» Sum of Gaussian variables is also Gaussian.

vi~ N (i, 0?)



Two Important Gaussian Properties

Sum of Gaussians
» Sum of Gaussian variables is also Gaussian.

i~ N (i, )

And the sum is distributed as

i]/i NN{iHh " 012]
i=1 i=1
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Two Important Gaussian Properties

Sum of Gaussians

» Sum of Gaussian variables is also Gaussian.
yi~N (IJi/ 01-2)
And the sum is distributed as
n n n
YL Lo
i=1 i=1 i=1

(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)
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Sum of Gaussians
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(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)



Two Important Gaussian Properties

Scaling a Gaussian

» Scaling a Gaussian leads to a Gaussian.



Two Important Gaussian Properties

Scaling a Gaussian

» Scaling a Gaussian leads to a Gaussian.

y~N(u0?)



Two Important Gaussian Properties

Scaling a Gaussian
» Scaling a Gaussian leads to a Gaussian.
y~N(p0?)
And the scaled density is distributed as

wy ~ N(wy, wzoz)
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Underdetermined Systems



Underdetermined System

What about two unknowns and
one observation?

Y1 =mxy1 +¢

O R, N W k= O




Underdetermined System

Can compute m given c.

1—¢C
m=J1"°¢
X

O R, N W k= O




Underdetermined System

Can compute m given c.

c=175=m =125

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-0777 = m =378

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-401=m=7.01

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-0718 = m =372

O R, N W k= O




Underdetermined System

Can compute m given c.

c=245=m =0.545

O R, N W k= O




Underdetermined System

Can compute m given c.

¢ =-0.657 = m = 3.66

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-313=m=6.13

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-147 = m =447

O R, N W k= O




Underdetermined System

Can compute m given c.
Assume

c~ N(Ol4)l

we find a distribution of solu-
tions.




Different Types of Uncertainty

» The first type of uncertainty we are assuming is aleatoric
uncertainty.

» The second type of uncertainty we are assuming is
epistemic uncertainty.



Aleatoric Uncertainty

» This is uncertainty we couldn’t know even if we wanted to.
e.g. the result of a football match before it’s played.

» Where a sheet of paper might land on the floor.



Outline

Bayesian Regression



Prior Distribution

» Bayesian inference requires a prior on the parameters.
» The prior represents your belief before you see the data of
the likely value of the parameters.

» For linear regression, consider a Gaussian prior on the
intercept:
c~N(O,a1)



Posterior Distribution

» Posterior distribution is found by combining the prior with
the likelihood.

» Posterior distribution is your belief after you see the data of
the likely value of the parameters.

» The posterior is found through Bayes” Rule

p(ylo)p(c)

plcly) = oY)



Bayes Update

2 p(c) = N (clp, ar)
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Figure : A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Bayes Update

p(c) =N (c

p(ylm,c,x,0*) = N
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Figure : A Gaussian prior combines with a Gaussian likelihood for a

Gaussian posterior.



Bayes Update

2 p(c) = N (clp, ar)

p(ylm,c, x, ) =N ylmx +c, 02)

1r plcly, m, x,¢%) =
N (i 07+ a7h)™)
0 | ‘ | \

-3 -2 -1 0 1 2 3 4

Figure : A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Stages to Derivation of the Posterior

» Multiply likelihood by prior
» they are “exponentiated quadratics”, the answer is always
also an exponentiated quadratic because
exp(a?) exp(b?) = exp(a® + b?).
» Complete the square to get the resulting density in the
form of a Gaussian.

» Recognise the mean and (co)variance of the Gaussian. This
is the estimate of the posterior.



Main Trick

(c) = ! ex (—ch)
P V2may P 201

p(ylx, ¢, m, 0%) =
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Main Trick

(c) = ! ex (—ch)
P \V2ma P 204

p(ylx,c,m, 02)

(27-“72 3 ( 202 Z(yl i = C)Z]

p(ylx, ¢, m,a*)p(c)
p(ylx, m, g2)

p(cly,x, m, 02)



Main Trick

© = ——oxp(~5)
p V27T(X1 P 2a

piybe e, 02) (27'(02)2 ( 202 Z(yl mxi = C)Z]
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fP(ylx ¢, m,o2)p(c)dc
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Main Trick

p(c) = LIPS (—ch)
\V2ma P 20

p(ylx, c,m, 0%) =

p—y (202 2 mxz—c)z]

p(cly, x, m, 02) o p(ylx, ¢, m, az)p(c)



1 v 1
log p(cly, x, m, oz) =— 752 Z(yi —c- mxi)2 — 2—c2 + const

a1
2 n 2
Z(yz i - (2 2Oq)c
N CZizl(yi - mxi)l
02

complete the square of the quadratic form to obtain

log p(cly, x, m, 6%) = —=(c — u)* + const,

22

-1 2
2 _ (=2 o -1 _ 2 ¢N
where 74 = (na +aj ) and u =5 ) (yi — mxp).



The Joint Density

» Really want to know the joint posterior density over the
parameters c and m.

» Could now integrate out over m, but it’s easier to consider
the multivariate case.



Aleatoric Uncertainty

» This is uncertainty we couldn’t know even if we wanted to.
e.g. the result of a football match before it’s played.

» Where a sheet of paper might land on the floor.



Epistemic Uncertainty

» This is uncertainty we could in principal know the answer
too. We just haven’t observed enough yet, e.g. the result of
a football match after it’s played.

» What colour socks your lecturer is wearing.



Reading

» Bishop Section 1.2.3 (pg 21-24).

» Bishop Section 1.2.6 (start from just past eq 1.64 pg 30-32).

» Rogers and Girolami use an example of a coin toss for
introducing Bayesian inference Chapter 3, Sections 3.1-3.4
(pg 95-117). Although you also need the beta density
which we haven't yet discussed. This is also the example
that Laplace used.



» Bayesian Inference

» Rogers and Girolami use an example of a coin toss for
introducing Bayesian inference Chapter 3, Sections 3.1-3.4
(pg 95-117). Although you also need the beta density which
we haven't yet discussed. This is also the example that
Laplace used.

» Bishop Section 1.2.3 (pg 21-24).

» Bishop Section 1.2.6 (start from just past eq 1.64 pg 30-32).
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Univariate Bayesian Linear Regression



Prior Distribution

» Bayesian inference requires a prior on the parameters.
» The prior represents your belief before you see the data of
the likely value of the parameters.

» For linear regression, consider a Gaussian prior on the
intercept:
c~N(O,a1)



Posterior Distribution

» Posterior distribution is found by combining the prior with
the likelihood.

» Posterior distribution is your belief after you see the data of
the likely value of the parameters.

» The posterior is found through Bayes” Rule

p(ylo)p(c)

plcly) = oY)



Bayes Update

2 p(c) = N (clp, ar)

0 | | | |
-3 -2 -1 0 1 2 3 4

Figure : A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.
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Figure : A Gaussian prior combines with a Gaussian likelihood for a

Gaussian posterior.



Bayes Update

2 p(c) = N (clp, ar)

p(ylm,c, x, ) =N ylmx +c, 02)

1r plcly, m, x,¢%) =
N (i 07+ a7h)™)
0 | ‘ | \
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Figure : A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Stages to Derivation of the Posterior

» Multiply likelihood by prior
» they are “exponentiated quadratics”, the answer is always
also an exponentiated quadratic because
exp(a?) exp(b?) = exp(a® + b?).
» Complete the square to get the resulting density in the
form of a Gaussian.

» Recognise the mean and (co)variance of the Gaussian. This
is the estimate of the posterior.
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The Joint Density

» Really want to know the joint posterior density over the
parameters c and m.

» Could now integrate out over m, but it’s easier to consider
the multivariate case.



Two Dimensional Gaussian

» Consider height, h/m and weight, w/kg.

» Could sample height from a distribution:
p(h) ~ N (1.7,0.0225)
» And similarly weight:

p(w) ~ N (75, 36)



Height and Weight Models

p(h)
p(w)

h/m w/kg

Gaussian distributions for height and weight.



Sampling Two Dimensional Variables

Marginal Distributions

Joint Distribution
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Independence Assumption

» This assumes height and weight are independent.

p(h, w) = p(h)p(w)

> In reality they are dependent (body mass index) = ;5.



Sampling Two Dimensional Variables

Marginal Distributions

Joint Distribution

s
QL
£
~
S
S
Q

him



Sampling Two Dimensional Variables

Marginal Distributions

Joint Distribution

s
QL
£
~
S
S
Q

him



Sampling Two Dimensional Variables

Marginal Distributions

Joint Distribution

s
QL
£
~
S
S
Q

him
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Independent Gaussians

p(w, h) = p(w)p(h)



Independent Gaussians

p(w, h) = S S exp (—1 [(w ~ )’ + (h — p2)? )]
)= 2
2710% A\ /2710% 2 o} o

1 2



Independent Gaussians




Independent Gaussians

. - exp (—%(y -w)'D Ny - H))

p(y) = T
[2rtD|2



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) = : T exp (—%(y -w'D Ny - #))
[2tD|2



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

1 1
p(y) = - exp (—E(RTy -R"p)"D'RTy-RT y))
|2tD|2



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

1 1
p(y) = —— exp(~5(y— ) RD'R"(y - )
|21tD|2

this gives a covariance matrix:

C!1=RDIR”



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

py) = —— exp (-5~ W"C iy - )
|21t C|2

this gives a covariance matrix:

C=RDR'



Reading

» Section 2.3 of Bishop up to top of pg 85 (multivariate
Gaussians).

» Section 3.3 of Bishop up to 159 (pg 152-159).



Outline

Bayesian Polynomials



Revisit Olympics Data

» Use Bayesian approach on olympics data with
polynomials.

» Choose a prior w ~ N (0, alI) with o = 1.

» Choose noise variance ¢2 = 0.01



Sampling the Prior

» Always useful to perform a ‘sanity check” and sample from
the prior before observing the data.

» Since y = ®w + € just need to sample
w~N(QO,a)

€~ N(O, 02)
with @ =1 and € = 0.01.



Polynomial Fits to Olympics Data

55 5 75 |
5 L
45 | 70 |-
4L % 65 |-
% X X
35 |- T 60 -
3 L XK o 55 L
25 L \ \ \ L
1892 1932 1972 2012 01 2 3 4 5 6

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 0, model error 29.757, 62 = 0.286, ¢ = 0.535.



Polynomial Fits to Olympics Data

55 -
. 75 |-
5 L
45 - 70 -
4 - 65 -
35 60 -
3 55 |
25 Lo
1892 1932 1972 2012 012 3 45 6

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 1, model error 14.942, 62 = 0.0749, ¢ = 0.274.



Polynomial Fits to Olympics Data

55
x 75
5 L
45 |- 70 |-
4 - 65 -
35 R 60 -
3 - X 55 L
25 L | | | Lo
1892 1932 1972 2012 01 2 3 4 5 6

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 2, model error 9.7206, 02 = 0.0427, ¢ = 0.207.



Polynomial Fits to Olympics Data

55 - 75 |

5,

45 70 -

4 - 65 -

35 60 -

3 55 -

25 Lo
1892 1932 1972 2012 0123456

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 3, model error 10.416, 2 = 0.0402, ¢ = 0.200.



Polynomial Fits to Olympics Data

55 - 75 |

5,

45 70 -

4 - 65 -

35 60 -

3 55 -

25 Lo
1892 1932 1972 2012 0123456

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 4, model error 11.34, 62 = 0.0401, ¢ = 0.200.



Polynomial Fits to Olympics Data

55 - 75 |

5,

45 70 -

4 - 65 -

35 60 -

3 55 -

25 Lo
1892 1932 1972 2012 0123456

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 5, model error 11.986, 02 = 0.0399, ¢ = 0.200.



Polynomial Fits to Olympics Data

55 - 75 |

5,

45 70 -

4 - 65 -

35 60 -

3 55 -

25 Lo
1892 1932 1972 2012 0123456

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 6, model error 12.369, 02 = 0.0384, ¢ = 0.196.



Model Fit

» Marginal likelihood doesn’t always increase as model
order increases.

» Bayesian model always has 2 parameters, regardless of
how many basis functions (and here we didn’t even fit
them).

» Maximum likelihood model over fits through increasing
number of parameters.

» Revisit maximum likelihood solution with validation set.



Recall: Validation Set for Maximum Likelihood

55

% 100 —

5 - 80 L

45 + x 60 +

4 xx 40 +

35 X XX zg ;

3 L "xxxx _20 |
25 L \ \ \ 40 Lo
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 0, training
error -1.8774, validation error -0.13132, 6% = 0.302, ¢ = 0.549.



Recall: Validation Set for Maximum Likelihood

" 100 -

5 - 80 L

45 - 60 -

4 40 -

20 -

35 + 0k x

3 - 20 -
25 | 40 Loy
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 1, training
error -15.325, validation error 2.5863, 6% = 0.0733, ¢ = 0.271.



Recall: Validation Set for Maximum Likelihood

55 § 100 L

5 - 80 L

45 - 60 -

4 40 -

20 -

35 + 0% x

3 - 20 -
25 L | | | 40 Loy
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 2, training
error -17.579, validation error -8.4831, % = 0.0578, ¢ = 0.240.



Recall: Validation Set for Maximum Likelihood

N 100 +
5+ 80 L
45 - 60 +
4| 40 -
20 +
35 + 0% x x
3 - 2
25 | 40 [ N R B R
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 3, training
error -18.064, validation error 11.27, 6% = 0.0549, ¢ = 0.234.



Recall: Validation Set for Maximum Likelihood

55 § 100 L
5+ 80 L
45 - 60 +
4| 40 -
20 +
35 + 0% x x
3 - 2
25 | 40 [ N R B R
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 4, training
error -18.245, validation error 232.92, 6% = 0.0539, ¢ = 0.232.



Recall: Validation Set for Maximum Likelihood

100 -
5 - 80 L
45 - 60 -
4 40 -
20 -
35 + 0% x x
3 - 20 -
25 L | | | 40 Loy
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 5, training
error -20.471, validation error 9898.1, 6% = 0.0426, ¢ = 0.207.



Recall: Validation Set for Maximum Likelihood

55 § 100 L
5+ 80 L
45 - 60 +
4| 40 -
20 +
35 + 0% x x
3 - 2
25 | 40 [ N R B R
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 6, training
error -22.881, validation error 67775, 6% = 0.0331, ¢ = 0.182.



Validation Set

55

% 100 +

5+ 80 L

45 - x 60 -

4 | xx 40 L

35 | S 28 i

3 L "xxxx _20 |
25 L | | | -40 [ N N O |
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 0, training
error 29.757, validation error -0.29243, 6% = 0.302, ¢ = 0.550.



Validation Set

x 100 +

5+ 80 L

45 - 60 -

4 40

20 —

35 + 0L x

3 - 20 -
25 | 40 [ N R B R
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 1, training
error 14.942, validation error 4.4027, 6% = 0.0762, ¢ = 0.276.



Validation Set

100 +
5+ 80 L
45 60 +
4| 40 -
20 +
35 + 0L x
3 2
25 40 [ N R B R
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 2, training
error 9.7206, validation error -8.6623, 6% = 0.0580, ¢ = 0.241.



Validation Set

. 100 |-
5+ 80 L

45 |- 60 |-
il 40

35 - a0 .
3r 20 <7

25 _40 | | | | | | |

1892 1932 1972 2012 01234567

polynomial order

Left: fit to data, Right: model error. Polynomial order 3, training
error 10.416, validation error -6.4726, 6% = 0.0555, ¢ = 0.236.



Validation Set

% 100
5+ 80 L
45 + 60 -
4 40
35 - a0 .
3 L 20 L X X X
25 40 [ N R B R
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 4, training
error 11.34, validation error -8.431, 62 = 0.0555, ¢ = 0.236.



Validation Set

. 100 |-
5+ 80 L

45 |- 60 |-
il 40 |-

35 - a0 .
3 20 T

25 _40 | | | | | | |

1892 1932 1972 2012 01234567

polynomial order

Left: fit to data, Right: model error. Polynomial order 5, training
error 11.986, validation error -10.483, % = 0.0551, ¢ = 0.235.



Validation Set

100 |-
5+ 80 L

45 |- 60 |-
il 40 |-

35 - a0 . )
3 20 T

25 _40 | | | | | | |

1892 1932 1972 2012 01234567

polynomial order

Left: fit to data, Right: model error. Polynomial order 6, training
error 12.369, validation error -3.3823, 6% = 0.0537, ¢ = 0.232.



Regularized Mean

» Validation fit here based on mean solution for w only.

» For Bayesian solution
2y T ¢t 29T
yw:[a D D+a I] oDy
instead of .
w'=[0T®| @7y
» Two are equivalent when a@ — co.

» Equivalent to a prior for w with infinite variance.

» In other cases al reqularizes the system (keeps parameters
smaller).



Sampling the Posterior

» Now check samples by extracting w from the posterior.
» Now for y = ®w + € need

w~N (yw, Cw)
with C,, = [G‘ZCDTQJ + 04‘11]_1 and gy = Cpo 2@y
e~N (0, 02)

with @« =1 and € = 0.01.



Marginal Likelihood

» The marginal likelihood can also be computed, it has the
form:

1 _
p(ylX, 0%, a) = exp (—EyTK ly)

(2n)? K|?
where K = a®®T + 1.

» So it is a zero mean n-dimensional Gaussian with
covariance matrix K.



Computing the Expected Output

» Given the posterior for the parameters, how can we
compute the expected output at a given location?

» Output of model at location x; is given by
flxi;w) = p/w

» We want the expected output under the posterior density,
p(wly, X, %, a).
» Mean of mapping function will be given by

(f (Xi?W)>p(w|y,x,02,a) = ‘PiT (Wpwly X,0%,)
= ¢ o



Variance of Expected Output

» Variance of model at location x; is given by

var(f(x;w)) = (£ w))2) = (Fxi; w))?
=¢; <wa> Gi— P (W) (W)
= ¢ Cip;

where all these expectations are taken under the posterior
density, p(wly, X, 02, @).



Reading

» Section 3.7-3.8 of Rogers and Girolami (pg 122-133).
» Section 3.4 of Bishop (pg 161-165).
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