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Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

y1 =mx1 + c
y2 =mx2 + c
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Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

m =
y2 − y1

x2 − x1

c = y1 −mx1
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Two Simultaneous Equations

How do we deal with three
simultaneous equations with
only two unknowns?

y1 =mx1 + c
y2 =mx2 + c
y3 =mx3 + c
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Overdetermined System

I With two unknowns and two observations:

y1 =mx1 + c
y2 =mx2 + c

I Additional observation leads to overdetermined system.

y3 = mx3 + c

I This problem is solved through a noise model ε ∼ N
(
0, σ2

)
y1 = mx1 + c + ε1

y2 = mx2 + c + ε2

y3 = mx3 + c + ε3
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Overdetermined System

I With two unknowns and two observations:

y1 =mx1 + c
y2 =mx2 + c

I Additional observation leads to overdetermined system.

y3 = mx3 + c

I This problem is solved through a noise model ε ∼ N
(
0, σ2

)
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Noise Models

I We aren’t modeling entire system.
I Noise model gives mismatch between model and data.
I Gaussian model justified by appeal to central limit

theorem.
I Other models also possible (Student-t for heavy tails).
I Maximum likelihood with Gaussian noise leads to least

squares.
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y = mx + c

point 1: x = 1, y = 3

3 = m + c

point 2: x = 3, y = 1

1 = 3m + c

point 3: x = 2, y = 2.5

2.5 = 2m + c









6 A PHILOSOPHICAL ESSAY ON PROBABILITIES.

height: "The day will come when, by study pursued

through several ages, the things now concealed will

appear with evidence; and posterity will be astonished

that truths so clear had escaped us.
' '

Clairaut then

undertook to submit to analysis the perturbations which

the comet had experienced by the action of the two

great planets, Jupiter and Saturn; after immense cal-

culations he fixed its next passage at the perihelion

toward the beginning of April, 1759, which was actually

verified by observation. The regularity which astronomy
shows us in the movements of the comets doubtless

exists also in all phenomena. -

The curve described by a simple molecule of air or

vapor is regulated in a manner just as certain as the

planetary orbits
;
the only difference between them is

that which comes from our ignorance.

Probability is relative, in part to this ignorance, in

part to our knowledge. We know that of three or a

greater number of events a single one ought to occur
;

but nothing induces us to believe that one of them will

occur rather than the others. In this state of indecision

it is impossible for us to announce their occurrence with

certainty. It is, however, probable that one of these

events, chosen at will, will not occur because we see

several cases equally possible which exclude its occur-

rence, while only a single one favors it.

The theory of chance consists in reducing all the

events of the same kind to a certain number of cases

equally possible, that is to say, to such as we may be

equally undecided about in regard to their existence,
and in determining the number of cases favorable to

the event whose probability is sought. The ratio of



y = mx + c + ε

point 1: x = 1, y = 3

3 = m + c + ε1

point 2: x = 3, y = 1

1 = 3m + c + ε2

point 3: x = 2, y = 2.5

2.5 = 2m + c + ε3



The Gaussian Density

I Perhaps the most common probability density.

p(y|µ, σ2) =
1

√

2πσ2
exp

(
−

(y − µ)2

2σ2

)
4
= N

(
y|µ, σ2

)
I The Gaussian density.



Gaussian Density
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h, height/m

The Gaussian PDF with µ = 1.7 and variance σ2 = 0.0225. Mean
shown as red line. It could represent the heights of a
population of students.



Gaussian Density

N

(
y|µ, σ2

)
=

1
√

2πσ2
exp

(
−

(y − µ)2

2σ2

)
σ2 is the variance of the density and µ is
the mean.



Two Important Gaussian Properties

Sum of Gaussians

I Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)

And the sum is distributed as

n∑
i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i


(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)
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Two Important Gaussian Properties

Scaling a Gaussian

I Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
And the scaled density is distributed as

wy ∼ N
(
wµ,w2σ2

)
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Underdetermined System

What about two unknowns and
one observation?

y1 = mx1 + c
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Underdetermined System

Can compute m given c.

m =
y1 − c
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Underdetermined System

Can compute m given c.

c = 1.75 =⇒ m = 1.25
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Underdetermined System

Can compute m given c.

c = −0.777 =⇒ m = 3.78
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Underdetermined System

Can compute m given c.

c = −4.01 =⇒ m = 7.01
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Underdetermined System

Can compute m given c.

c = −0.718 =⇒ m = 3.72
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Underdetermined System

Can compute m given c.

c = 2.45 =⇒ m = 0.545
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Underdetermined System

Can compute m given c.

c = −0.657 =⇒ m = 3.66
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Underdetermined System

Can compute m given c.

c = −3.13 =⇒ m = 6.13
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Underdetermined System

Can compute m given c.

c = −1.47 =⇒ m = 4.47
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Underdetermined System

Can compute m given c.
Assume

c ∼ N (0, 4) ,

we find a distribution of solu-
tions.
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Different Types of Uncertainty

I The first type of uncertainty we are assuming is aleatoric
uncertainty.

I The second type of uncertainty we are assuming is
epistemic uncertainty.



Aleatoric Uncertainty

I This is uncertainty we couldn’t know even if we wanted to.
e.g. the result of a football match before it’s played.

I Where a sheet of paper might land on the floor.
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Prior Distribution

I Bayesian inference requires a prior on the parameters.
I The prior represents your belief before you see the data of

the likely value of the parameters.
I For linear regression, consider a Gaussian prior on the

intercept:
c ∼ N (0, α1)



Posterior Distribution

I Posterior distribution is found by combining the prior with
the likelihood.

I Posterior distribution is your belief after you see the data of
the likely value of the parameters.

I The posterior is found through Bayes’ Rule

p(c|y) =
p(y|c)p(c)

p(y)



Bayes Update
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p(c) = N (c|0, α1)

Figure : A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Bayes Update

0

1

2

-3 -2 -1 0 1 2 3 4
c

p(c) = N (c|0, α1)

p(y|m, c, x, σ2) = N
(
y|mx + c, σ2

)

Figure : A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Bayes Update

0

1

2

-3 -2 -1 0 1 2 3 4
c

p(c) = N (c|0, α1)

p(y|m, c, x, σ2) = N
(
y|mx + c, σ2

)
p(c|y,m, x, σ2) =

N

(
c| y−mx

1+σ2/α1
, (σ−2 + α−1

1 )−1
)

Figure : A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Stages to Derivation of the Posterior

I Multiply likelihood by prior
I they are “exponentiated quadratics”, the answer is always

also an exponentiated quadratic because
exp(a2) exp(b2) = exp(a2 + b2).

I Complete the square to get the resulting density in the
form of a Gaussian.

I Recognise the mean and (co)variance of the Gaussian. This
is the estimate of the posterior.



Main Trick

p(c) =
1

√
2πα1

exp
(
−

1
2α1

c2
)

p(y|x, c,m, σ2) =
1

(2πσ2)
n
2

exp

− 1
2σ2

n∑
i=1

(yi −mxi − c)2


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Main Trick

p(c) =
1

√
2πα1

exp
(
−

1
2α1

c2
)

p(y|x, c,m, σ2) =
1

(2πσ2)
n
2

exp
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log p(c|y, x,m, σ2) = −
1

2σ2

n∑
i=1

(yi − c −mxi)2
−

1
2α1

c2 + const

= −
1

2σ2

n∑
i=1

(yi −mxi)2
−

( n
2σ2 +

1
2α1

)
c2

+ c
∑n

i=1(yi −mxi)
σ2 ,

complete the square of the quadratic form to obtain

log p(c|y, x,m, σ2) = −
1

2τ2 (c − µ)2 + const,

where τ2 =
(
nσ−2 + α−1

1

)−1
and µ = τ2

σ2

∑N
n=1(yi −mxi).



The Joint Density

I Really want to know the joint posterior density over the
parameters c and m.

I Could now integrate out over m, but it’s easier to consider
the multivariate case.



Aleatoric Uncertainty

I This is uncertainty we couldn’t know even if we wanted to.
e.g. the result of a football match before it’s played.

I Where a sheet of paper might land on the floor.



Epistemic Uncertainty

I This is uncertainty we could in principal know the answer
too. We just haven’t observed enough yet, e.g. the result of
a football match after it’s played.

I What colour socks your lecturer is wearing.



Reading

I Bishop Section 1.2.3 (pg 21–24).
I Bishop Section 1.2.6 (start from just past eq 1.64 pg 30-32).
I Rogers and Girolami use an example of a coin toss for

introducing Bayesian inference Chapter 3, Sections 3.1-3.4
(pg 95-117). Although you also need the beta density
which we haven’t yet discussed. This is also the example
that Laplace used.
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The Joint Density

I Really want to know the joint posterior density over the
parameters c and m.

I Could now integrate out over m, but it’s easier to consider
the multivariate case.



Two Dimensional Gaussian

I Consider height, h/m and weight, w/kg.
I Could sample height from a distribution:

p(h) ∼ N (1.7, 0.0225)

I And similarly weight:

p(w) ∼ N (75, 36)



Height and Weight Models
p(

h)

h/m

p(
w

)

w/kg

Gaussian distributions for height and weight.
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Independence Assumption

I This assumes height and weight are independent.

p(h,w) = p(h)p(w)

I In reality they are dependent (body mass index) = w
h2 .
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Independent Gaussians

p(w, h) = p(w)p(h)



Independent Gaussians

p(w, h) =
1√

2πσ2
1

√
2πσ2

2

exp

−1
2

 (w − µ1)2

σ2
1

+
(h − µ2)2

σ2
2





Independent Gaussians

p(w, h) =
1√

2πσ2
12πσ2

2

exp

−1
2

([
w
h

]
−

[
µ1
µ2

])> [
σ2

1 0
0 σ2

2

]−1 ([
w
h

]
−

[
µ1
µ2

])



Independent Gaussians

p(y) =
1

|2πD|
1
2

exp
(
−

1
2

(y − µ)>D−1(y − µ)
)



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

|2πD|
1
2

exp
(
−

1
2

(y − µ)>D−1(y − µ)
)



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

|2πD|
1
2

exp
(
−

1
2

(R>y − R>µ)>D−1(R>y − R>µ)
)



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

|2πD|
1
2

exp
(
−

1
2

(y − µ)>RD−1R>(y − µ)
)

this gives a covariance matrix:

C−1 = RD−1R>



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

|2πC|
1
2

exp
(
−

1
2

(y − µ)>C−1(y − µ)
)

this gives a covariance matrix:

C = RDR>



Reading

I Section 2.3 of Bishop up to top of pg 85 (multivariate
Gaussians).

I Section 3.3 of Bishop up to 159 (pg 152–159).



Outline
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Underdetermined Systems

Bayesian Regression
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Bayesian Polynomials



Revisit Olympics Data

I Use Bayesian approach on olympics data with
polynomials.

I Choose a prior w ∼ N (0, αI) with α = 1.
I Choose noise variance σ2 = 0.01



Sampling the Prior

I Always useful to perform a ‘sanity check’ and sample from
the prior before observing the data.

I Since y =Φw + ε just need to sample

w ∼ N (0, α)

ε ∼ N
(
0, σ2

)
with α = 1 and ε = 0.01.



Polynomial Fits to Olympics Data
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 0, model error 29.757, σ2 = 0.286, σ = 0.535.
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 1, model error 14.942, σ2 = 0.0749, σ = 0.274.
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 2, model error 9.7206, σ2 = 0.0427, σ = 0.207.
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 3, model error 10.416, σ2 = 0.0402, σ = 0.200.
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 4, model error 11.34, σ2 = 0.0401, σ = 0.200.
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 5, model error 11.986, σ2 = 0.0399, σ = 0.200.



Polynomial Fits to Olympics Data
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 6, model error 12.369, σ2 = 0.0384, σ = 0.196.



Model Fit

I Marginal likelihood doesn’t always increase as model
order increases.

I Bayesian model always has 2 parameters, regardless of
how many basis functions (and here we didn’t even fit
them).

I Maximum likelihood model over fits through increasing
number of parameters.

I Revisit maximum likelihood solution with validation set.



Recall: Validation Set for Maximum Likelihood
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Left: fit to data, Right: model error. Polynomial order 0, training
error -1.8774, validation error -0.13132, σ2 = 0.302, σ = 0.549.
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Left: fit to data, Right: model error. Polynomial order 1, training
error -15.325, validation error 2.5863, σ2 = 0.0733, σ = 0.271.
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Left: fit to data, Right: model error. Polynomial order 2, training
error -17.579, validation error -8.4831, σ2 = 0.0578, σ = 0.240.
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Left: fit to data, Right: model error. Polynomial order 3, training
error -18.064, validation error 11.27, σ2 = 0.0549, σ = 0.234.
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Left: fit to data, Right: model error. Polynomial order 4, training
error -18.245, validation error 232.92, σ2 = 0.0539, σ = 0.232.
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Left: fit to data, Right: model error. Polynomial order 5, training
error -20.471, validation error 9898.1, σ2 = 0.0426, σ = 0.207.
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Left: fit to data, Right: model error. Polynomial order 6, training
error -22.881, validation error 67775, σ2 = 0.0331, σ = 0.182.
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Left: fit to data, Right: model error. Polynomial order 0, training
error 29.757, validation error -0.29243, σ2 = 0.302, σ = 0.550.
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Left: fit to data, Right: model error. Polynomial order 1, training
error 14.942, validation error 4.4027, σ2 = 0.0762, σ = 0.276.
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Left: fit to data, Right: model error. Polynomial order 2, training
error 9.7206, validation error -8.6623, σ2 = 0.0580, σ = 0.241.
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Left: fit to data, Right: model error. Polynomial order 3, training
error 10.416, validation error -6.4726, σ2 = 0.0555, σ = 0.236.
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Left: fit to data, Right: model error. Polynomial order 4, training
error 11.34, validation error -8.431, σ2 = 0.0555, σ = 0.236.
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Left: fit to data, Right: model error. Polynomial order 5, training
error 11.986, validation error -10.483, σ2 = 0.0551, σ = 0.235.
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Left: fit to data, Right: model error. Polynomial order 6, training
error 12.369, validation error -3.3823, σ2 = 0.0537, σ = 0.232.



Regularized Mean

I Validation fit here based on mean solution for w only.
I For Bayesian solution

µw =
[
σ−2Φ>Φ + α−1I

]−1
σ−2Φ>y

instead of
w∗ =

[
Φ>Φ

]−1
Φ>y

I Two are equivalent when α→∞.
I Equivalent to a prior for w with infinite variance.
I In other cases αI regularizes the system (keeps parameters

smaller).



Sampling the Posterior

I Now check samples by extracting w from the posterior.
I Now for y =Φw + ε need

w ∼ N
(
µw,Cw

)
with Cw =

[
σ−2Φ>Φ + α−1I

]−1
and µw = Cwσ−2Φ>y

ε ∼ N
(
0, σ2

)
with α = 1 and ε = 0.01.



Marginal Likelihood

I The marginal likelihood can also be computed, it has the
form:

p(y|X, σ2, α) =
1

(2π)
n
2 |K|

1
2

exp
(
−

1
2

y>K−1y
)

where K = αΦΦ> + σ2I.
I So it is a zero mean n-dimensional Gaussian with

covariance matrix K.



Computing the Expected Output

I Given the posterior for the parameters, how can we
compute the expected output at a given location?

I Output of model at location xi is given by

f (xi; w) = φ>i w

I We want the expected output under the posterior density,
p(w|y,X, σ2, α).

I Mean of mapping function will be given by〈
f (xi; w)

〉
p(w|y,X,σ2,α) = φ>i 〈w〉p(w|y,X,σ2,α)

= φ>i µw



Variance of Expected Output

I Variance of model at location xi is given by

var( f (xi; w)) =
〈
( f (xi; w))2

〉
−

〈
f (xi; w)

〉2

= φ>i
〈
ww>

〉
φi −φ

>

i 〈w〉 〈w〉
>φi

= φ>i Ciφi

where all these expectations are taken under the posterior
density, p(w|y,X, σ2, α).



Reading

I Section 3.7–3.8 of Rogers and Girolami (pg 122–133).
I Section 3.4 of Bishop (pg 161–165).
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