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Review

» Last time: Looked at objective functions for movie
recommendation.

» Minimized sum of squares objective by steepest descent
and stochastic gradients.

» This time: explore least squares for regression.



Outline

Regression



Regression Examples

\4

Predict a real value, y; given some inputs x;.

\4

Predict quality of meat given spectral measurements
(Tecator data).

Radiocarbon dating, the C14 calibration curve: predict age
given quantity of C14 isotope.

v

v

Predict quality of different Go or Backgammon moves
given expert rated training data.



Olympic 100m Data

» Gold medal times for
Olympic 100 m runners
since 1896.

Image from Wikimedia
Commons
http://bit.1ly/191adDC
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Olympic Marathon Data

» Gold medal times for
Olympic Marathon since
1896.

» Marathons before 1924
didn’t have a
standardised distance.

» Present results using
pace per km.

» In 1904 Marathon was
badly organised leading
to very slow times.

Image from Wikimedia
Commons
http://bit.1ly/16kMKHQ


http://bit.ly/16kMKHQ
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What is Machine Learning?

data

» data: observations, could be actively or passively acquired
(meta-data).
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What is Machine Learning?

data + model = prediction

» data: observations, could be actively or passively acquired
(meta-data).

» model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

» prediction: an action to be taken or a categorization or a
quality score.



Regression: Linear Releationship
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Regression: Linear Releationship

y=mx+c

» y: winning time/pace.

v

: year of Olympics.

v

m: rate of improvement over time.

» c: winning time at year 0.



Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.
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Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

Y1 — Y2 =m(x1 — x2)
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Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.
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Two Simultaneous Equations

How do we deal with three
simultaneous equations with
only two unknowns?

time in min/km, y
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Overdetermined System

» With two unknowns and two observations:

Y1 =mx1 +c¢

Yo =mXy +C
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Overdetermined System

» With two unknowns and two observations:

Y1 =mx1 +c¢

Yo =mXy +C

» Additional observation leads to overdetermined system.

Y3 =mx3+¢

» This problem is solved through a noise model € ~ N (0, 02)

Y1 =mxy +Cc+e€
Yo =MmMxy +C+ €
Y3 =mx3 +Cc+e€3



Noise Models

» We aren’t modeling entire system.
» Noise model gives mismatch between model and data.

» Gaussian model justified by appeal to central limit
theorem.

» Other models also possible (Student-t for heavy tails).

» Maximum likelihood with Gaussian noise leads to least
squares.
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i y=mx+c







y = mx +c
pointl: x=1,y=3
3=m+c
point2: x =3,y =1
1=3m+c
point3: x =2,y =25
25=2m+c






SUR LES PROBABILITES. 3

riens. L'opinion contraire est une illusion de Pesprit
qui, perdant de yue les raisons fugitives du choix de la
volonté dans les choses indifférentes, se persnade qu'elle
sest déterminde d'elleméme et sans motifs.

Nous devons donc envisager I'état présent de I'uni-
vers, comme Ueflet de son état antévienr, et comme la
cause de celui gui va suivre. Une intelligence qui, pour
un instant donné, connaitrait toutes les forees dont la
natuve est animée, ot la sitnation respective des dtres
«qui la composent, si d'aillenrs elle était assex vaste pour
soumettre ces donndes & Panalyse, embrasserait dans la
méme formule les mouvemens des plus grands corps de
I'nnivers et ceux du plus léger atome : rien ne serait
incertain pour elle, ct Iavenir comme le passé, serait
preésent & ses yeux. L'esprit humain oflre, dans In per-
fection quil a su donmer & I'Astronomie, une faible
esquisse de cette intelligence, Ses découvertes en Méca-
nigue et en Geométrie, jointes i celle de la pesanteur
universelle, l'ont mis & portée de comprendre dans les
mémes expressions nnn]yliqur‘_ﬁ‘ les dtats passés ot futnrs
du systéme du monde. En appliqnnhtl 2 méme méthode
& quelques autres objets de ses conn:uxsancu il est par
vetiu & i des lois géndrales, les phé ne
observés, el & prévoir ceux que des clrconstnnuus don-
nées doivent faire éclore. Tous ces eiforts dans la ve-
he de la vérité , tendent i le rapprocher sans cesse
utelligence que nous venons de conceveir, mais
dont il restera toujours infiniment éloigné. Getle ten-
dance propre i Pespice humaine, est ce qui la rend
supérielire aus Animaux ; et ses progrés en ce genre.,

distinguent les nations et les sitcles, et font Jenr veri-
talde glulre
Rappelons-nons x||| "autrefois, et i une époque qui



4 A PHILOSOPHICAL ESSAY ON PROBABILITIES.

other, we say that its choice is an effect without a cause.
It is then, says Leibnitz, the blind chance of the
Epicureans. The contrary opinion is an illusion of the
mind, which, losing sight of the evasive reasons of the
choice of the will in indifferent things, belicves that
choice is determiined of itself and without metives.

We ought then to regard the present state of the
universe as the effect of its anterior state and as the
cause of the one which is to follow. Given for one
instant an intelligence which could comprehend all the
forces by which nature is animated and the respective
situation of the beings who compose it—an intelligence
sufficiently vast to submit these data to analysis—it
would embrace in the same formula the mevements of
the greatest bodies of the universe and those of the
lightest atom; for it, nothing would be uncertain and
the future, as the past, would be present to its cyes.
The human mind offers, in the perfection which it has
been able to give to astronomy, a feeble idea of this in-
telligence. Its discoveries in mechanics and geometry,
added to that of universal gravity, have enabled it to
comprehend in the same analytical expressions the
past and future states of the system of the world.
Applying the same method to some other objects of its
knowledge, it has succeeded in referring to general laws
observed phenomena and in foreseeing those which
given circumstances ought to produce. All these efforts
in the search for truth tend to lead it back continually
to the vast intelligence which we have just mentioned,
but from which it will always remain infinitely removed.
‘This tendency, peculiar to the human race, is that
which renders it superior to animals; and their progress






y=mx+c+e

pointl: x=1,y=3
3=m+c+ €

point2: x =3,y =1
1=3m+c+e

point3: x =2,y =25

25=2m+c+e€3



The Gaussian Density

» Perhaps the most common probability density.

o 1 -
p(y“lla)_ Wexp 202
= N (yl, %)

» The Gaussian density.



Gaussian Density

p(hly, o?)

0 | \
0 1 2

h, height/m

The Gaussian PDF with u = 1.7 and variance 6> = 0.0225. Mean
shown as red line. It could represent the heights of a
population of students.



Gaussian Density

1 (y — w)?
b enl 452

o2 is the variance of the density and u is
the mean.



Two Important Gaussian Properties

Sum of Gaussians

» Sum of Gaussian variables is also Gaussian.

vi~ N (i, 0?)
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Sum of Gaussians
» Sum of Gaussian variables is also Gaussian.

i~ N (i, )

And the sum is distributed as

i]/i NN{iHh " 012]
i=1 i=1

i=1



Two Important Gaussian Properties

Sum of Gaussians

» Sum of Gaussian variables is also Gaussian.
yi~N (IJi/ 01-2)
And the sum is distributed as
n n n
YL Lo
i=1 i=1 i=1

(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)
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Two Important Gaussian Properties

Scaling a Gaussian

» Scaling a Gaussian leads to a Gaussian.



Two Important Gaussian Properties

Scaling a Gaussian

» Scaling a Gaussian leads to a Gaussian.

y~N(u0?)



Two Important Gaussian Properties

Scaling a Gaussian
» Scaling a Gaussian leads to a Gaussian.
y~N(p0?)
And the scaled density is distributed as

wy ~ N(wy, wzoz)



A Probabilistic Process

» Set the mean of Gaussian to be a function.

exp[_w),

p (yilx;) = i 252

» This gives us a ‘noisy function’.

» This is known as a process.



Height as a Function of Weight

\4

In the standard Gaussian, parametized by mean and
variance.

v

Make the mean a linear function of an input.

v

This leads to a regression model.

vi =f (xi) + €,
€ ~N (O, 02).

» Assume y; is height and x; is weight.



Linear Function

2 L data points ~ x
best fit line

\ \ \ \ |
50 60 70 80 90 100

A linear regression between x and y.



Data Point Likelihood

» Likelihood of an individual data point

1 (y; — mx; — c)*
p (yilxi, m,c) = P2 exp( 252 :

» Parameters are gradient, m, offset, c of the function and

noise variance o2.



Data Set Likelihood

» If the noise, €; is sampled independently for each data
point.

» Each data point is independent (given m and c).
» For independent variables:

py) = [ [ pw)
i=1



Data Set Likelihood

» If the noise, €; is sampled independently for each data
point.

» Each data point is independent (given m and c).
» For independent variables:

p(ylx, m,c) = HP(yilxi, m,c)
i=1



Data Set Likelihood

» If the noise, €; is sampled independently for each data
point.

» Each data point is independent (given m and c).

exp (——(yi i C)Z] .

202

» For independent variables:

plylx,m,c) = H W



Data Set Likelihood

» If the noise, €; is sampled independently for each data

point.
» Each data point is independent (given m and c).

» For independent variables:
I (i —mxi = o)

exp 252

n
2

Py ) = (2mo?)



Log Likelihood Function

» Normally work with the log likelihood:

" (v — mxi — c)?
L(m,¢,0%) = ~Z log 2 - = loga® = ) | %
i=1



Consistency of Maximum Likelihood

» If data was really generated according to probability we
specified.
» Correct parameters will be recovered in limit as n — co.

» This can be proven through sample based approximations
(law of large numbers) of “KL divergences”.

» Mainstay of classical statistics.



Probabilistic Interpretation of the Error Function

\4

Probabilistic Interpretation for Error Function is Negative
Log Likelihood.

Minimizing error function is equivalent to maximizing log
likelihood.

» Maximizing log likelihood is equivalent to maximizing the
likelihood because log is monotonic.

v

\4

Probabilistic interpretation: Minimizing error function is
equivalent to maximum likelihood with respect to
parameters.



Error Function

» Negative log likelihood is the error function leading to an
error function

E(m, ca)——loga iy ZZ(% mx; — c)°.

» Learning proceeds by minimizing this error function for
the data set provided.



Connection: Sum of Squares Error

» Ignoring terms which don’t depend on m and c gives

E(m,c) «< Z(yi — f(xi)?
i=1

where f(x;) = mx; +c.
» This is known as the sum of squares error function.

» Commonly used and is closely associated with the
Gaussian likelihood.



Mathematical Interpretation

» What is the mathematical interpretation?

» There is a cost function.
» It expresses mismatch between your prediction and reality.

E(m,c) = Z (yi — mx; — c)?
i=1

» This is known as the sum of squares error.



Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set

to zero.
M = —Zle (yi — mx; —c)



Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set
to zero.

n
0= —Zin(yi — mx; — C)
i=1



Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set
to zero.

0= —2Zn:x,~yi +2imxf +ZZn:cxi
i=1 i=1 i=1



Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set

to zero. "
_ Yica (Vi —0)x

= =
Y X



Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set

to zero. ;
dE(c)
T 2 ; (yi — mx; —c)




Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set
to zero.

n
0= —ZZ(%’ — mx; = c)
=1



Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set

to zero. ; ,
0= —ZZyi+Zmei + 2nc
i=1 i=1



Learning is Optimization

» Learning is minimization of the cost function.
» At the minima the gradient is zero.

» Coordinate ascent, find gradient in each coordinate and set

to zero. "
_ Yo (yi — mx;)

B n



Fixed Point Updates

Worked example.
o _Z?:l (yi —m'x;)
= - ,
. _Lin %i(yi— )
m ==————",
Vi X

#\2
2" _Z?:l (yi —m"x; = ")
n




Coordinate Descent
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Coordinate Descent
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Important Concepts Not Covered

» Optimization methods.

» Second order methods, conjugate gradient, quasi-Newton
and Newton.
» Effective heuristics such as momentum.

» Local vs global solutions.



Linear Function

x data points  x
best fit line

¥, pace min/km

1900 1920 1940 1960 1980 2000 2020
x, year

Linear regression for Male Olympics Marathon Gold Medal
times.



Reading

» Section 1.1-1.2 of Rogers and Girolami for fitting linear
models.

» Section 1.2.5 of Bishop up to equation 1.65.



Multi-dimensional Inputs

\4

Multivariate functions involve more than one input.

\4

Height might be a function of weight and gender.

\4

There could be other contributory factors.

v

Place these factors in a feature vector x;.

v

Linear function is now defined as

q
f(xi) = Z wiXi,j +C
j=1



Vector Notation

mo

» Write in vector notation,
fx)=w'x;+c

» Can absorb c into w by assuming extra input xo which is
always 1.
fxi) = w'x;



Log Likelihood for Multivariate Regression

» The likelihood of a single data point is

1x;) = 1 (vi — WTXi)Z
p (yl Xi) = \/2717 exp 20_2 .

» Leading to a log likelihood for the data set of

Z?:l (vi — WTXi)Z
202 ’

L(w,0%) = Jz logo? - z log 27t —
2 2
» And a corresponding error function of

Z?:l (vi — WTXi)2
252 '

E(w,0?) = glog 0% +



Expand the Brackets

E(w,d?) :g log o2 + Z Yi — Z Yiw ' X;

Z w' xzx W + const.



Multivariate Derivatives

» We will need some multivariate calculus.

» For now some simple multivariate differentiation:

da™w
dw -a
and dwT A
w Aw T
T—(A-i-A )W

or if A is symmetric (i.e. A = AT)

dwT Aw

=2Aw.
dw W



Differentiate

Differentiating with respect to the vector w we obtain

aL(w ﬁ)_ﬁzx% [Z }w

Leading to

n -1 4
W = [Z xixl—.r] Z XiYi,

i=1 i=1
Rewrite in matrix notation:



Update Equations

» Update for w".
-1
w' =(X"X) Xy
» The equation for 6" may also be found

C T (mwT x))

(72

n



Reading

» Section 1.3 of Rogers and Girolami for Matrix & Vector
Review.
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