Joint Modelling of Confounding Factors and Prominent Genetic Regulators Provides Increased Accuracy in Genetical Genomics Studies

[edit]

Nicoló Fusi, Microsoft Research, New England
Oliver Stegle, European Bioinformatics Institute
Neil D. Lawrence, University of Sheffield

PLoS Computat Biol 8, pp 0-0

Related Material

Abstract

Expression quantitative trait loci (eQTL) studies are an integral tool to investigate the genetic component of gene expression variation. A major challenge in the analysis of such studies are hidden confounding factors, such as unobserved covariates or unknown subtle environmental perturbations. These factors can induce a pronounced artifactual correlation structure in the expression profiles, which may create spurious false associations or mask real genetic association signals. Here, we report PANAMA (Probabilistic ANAlysis of genoMic dAta), a novel probabilistic model to account for confounding factors within an eQTL analysis. In contrast to previous methods, PANAMA learns hidden factors jointly with the effect of prominent genetic regulators. As a result, this new model can more accurately distinguish true genetic association signals from confounding variation. We applied our model and compared it to existing methods on different datasets and biological systems. PANAMA consistently performs better than alternative methods, and finds in particular substantially more trans regulators. Importantly, our approach not only identifies a greater number of associations, but also yields hits that are biologically more plausible and can be better reproduced between independent studies. A software implementation of PANAMA is freely available online at http://ml.sheffield.ac.uk/qtl/.


@Article{fusi-genomics12,
  title = 	 {Joint Modelling of Confounding Factors and Prominent Genetic Regulators Provides Increased Accuracy in Genetical Genomics Studies},
  journal =  	 {PLoS Computat Biol},
  author = 	 {Nicoló Fusi and Oliver Stegle and Neil D. Lawrence},
  pages = 	 {0},
  year = 	 {2012},
  volume = 	 {8},
  month = 	 {00},
  publisher = 	 {Public Library of Science},
  edit = 	 {https://github.com/lawrennd//publications/edit/gh-pages/_posts/2012-01-01-fusi-genomics12.md},
  url =  	 {http://inverseprobability.com/publications/fusi-genomics12.html},
  abstract = 	 {Expression quantitative trait loci (eQTL) studies are an integral tool to investigate the genetic component of gene expression variation. A major challenge in the analysis of such studies are hidden confounding factors, such as unobserved covariates or unknown subtle environmental perturbations. These factors can induce a pronounced artifactual correlation structure in the expression profiles, which may create spurious false associations or mask real genetic association signals. Here, we report PANAMA (Probabilistic ANAlysis of genoMic dAta), a novel probabilistic model to account for confounding factors within an eQTL analysis. In contrast to previous methods, PANAMA learns hidden factors jointly with the effect of prominent genetic regulators. As a result, this new model can more accurately distinguish true genetic association signals from confounding variation. We applied our model and compared it to existing methods on different datasets and biological systems. PANAMA consistently performs better than alternative methods, and finds in particular substantially more trans regulators. Importantly, our approach not only identifies a greater number of associations, but also yields hits that are biologically more plausible and can be better reproduced between independent studies. A software implementation of PANAMA is freely available online at .},
  key = 	 {Fusi-genomics12},
  doi = 	 {10.1371/journal.pcbi.1002330},
  linkpdf = 	 {http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002330},
  linksoftware = {http://ml.sheffield.ac.uk/qtl/},
  OPTgroup = 	 {}
 

}
%T Joint Modelling of Confounding Factors and Prominent Genetic Regulators Provides Increased Accuracy in Genetical Genomics Studies
%A Nicoló Fusi and Oliver Stegle and Neil D. Lawrence
%B 
%C PLoS Computat Biol
%D 
%F fusi-genomics12
%I Public Library of Science
%J PLoS Computat Biol	
%P 0--0
%R 10.1371/journal.pcbi.1002330
%U http://inverseprobability.com/publications/fusi-genomics12.html
%V 8
%X Expression quantitative trait loci (eQTL) studies are an integral tool to investigate the genetic component of gene expression variation. A major challenge in the analysis of such studies are hidden confounding factors, such as unobserved covariates or unknown subtle environmental perturbations. These factors can induce a pronounced artifactual correlation structure in the expression profiles, which may create spurious false associations or mask real genetic association signals. Here, we report PANAMA (Probabilistic ANAlysis of genoMic dAta), a novel probabilistic model to account for confounding factors within an eQTL analysis. In contrast to previous methods, PANAMA learns hidden factors jointly with the effect of prominent genetic regulators. As a result, this new model can more accurately distinguish true genetic association signals from confounding variation. We applied our model and compared it to existing methods on different datasets and biological systems. PANAMA consistently performs better than alternative methods, and finds in particular substantially more trans regulators. Importantly, our approach not only identifies a greater number of associations, but also yields hits that are biologically more plausible and can be better reproduced between independent studies. A software implementation of PANAMA is freely available online at .
TY  - CPAPER
TI  - Joint Modelling of Confounding Factors and Prominent Genetic Regulators Provides Increased Accuracy in Genetical Genomics Studies
AU  - Nicoló Fusi
AU  - Oliver Stegle
AU  - Neil D. Lawrence
PY  - 2012/01/01
DA  - 2012/01/01	
ID  - fusi-genomics12
PB  - Public Library of Science	
SP  - 0
EP  - 0
DO  - 10.1371/journal.pcbi.1002330
L1  - http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002330
UR  - http://inverseprobability.com/publications/fusi-genomics12.html
AB  - Expression quantitative trait loci (eQTL) studies are an integral tool to investigate the genetic component of gene expression variation. A major challenge in the analysis of such studies are hidden confounding factors, such as unobserved covariates or unknown subtle environmental perturbations. These factors can induce a pronounced artifactual correlation structure in the expression profiles, which may create spurious false associations or mask real genetic association signals. Here, we report PANAMA (Probabilistic ANAlysis of genoMic dAta), a novel probabilistic model to account for confounding factors within an eQTL analysis. In contrast to previous methods, PANAMA learns hidden factors jointly with the effect of prominent genetic regulators. As a result, this new model can more accurately distinguish true genetic association signals from confounding variation. We applied our model and compared it to existing methods on different datasets and biological systems. PANAMA consistently performs better than alternative methods, and finds in particular substantially more trans regulators. Importantly, our approach not only identifies a greater number of associations, but also yields hits that are biologically more plausible and can be better reproduced between independent studies. A software implementation of PANAMA is freely available online at .
ER  -

Fusi, N., Stegle, O. & Lawrence, N.D.. (2012). Joint Modelling of Confounding Factors and Prominent Genetic Regulators Provides Increased Accuracy in Genetical Genomics Studies. PLoS Computat Biol 8:0-0