A Brief Introduction to Bayesian Inference

Neil D. LawrenceMagnus Rattray
, MIT Press , 2010.

Abstract

Computational systems biology aims to develop algorithms that uncover the structure and parameterization of the underlying mechanistic model—in other words, to answer specific questions about the underlying mechanisms of a biological system—in a process that can be thought of as learning or inference. This volume offers state-of-the-art perspectives from computational biology, statistics, modeling, and machine learning on new methodologies for learning and inference in biological networks. The chapters offer practical approaches to biological inference problems ranging from genome-wide inference of genetic regulation to pathway-specific studies. Both deterministic models (based on ordinary differential equations) and stochastic models (which anticipate the increasing availability of data from small populations of cells) are considered. Several chapters emphasize Bayesian inference, so the editors have included an introduction to the philosophy of the Bayesian approach and an overview of current work on Bayesian inference. Taken together, the methods discussed by the experts in Learning and Inference in Computational Systems Biology provide a foundation upon which the next decade of research in systems biology can be built.

Cite this Paper


BibTeX
@Misc{Lawrence:licsbbayes10, title = {A Brief Introduction to Bayesian Inference}, author = {Lawrence, Neil D. and Rattray, Magnus}, year = {2010}, editor = {Lawrence, Neil D. and Girolami, Mark and Rattray, Magnus and Sanguinetti, Guido}, address = {Cambridge, MA}, publisher = {MIT Press}, url = {http://inverseprobability.com/publications/lawrence-licsbbayes10.html}, abstract = {Computational systems biology aims to develop algorithms that uncover the structure and parameterization of the underlying mechanistic model—in other words, to answer specific questions about the underlying mechanisms of a biological system—in a process that can be thought of as learning or inference. This volume offers state-of-the-art perspectives from computational biology, statistics, modeling, and machine learning on new methodologies for learning and inference in biological networks. The chapters offer practical approaches to biological inference problems ranging from genome-wide inference of genetic regulation to pathway-specific studies. Both deterministic models (based on ordinary differential equations) and stochastic models (which anticipate the increasing availability of data from small populations of cells) are considered. Several chapters emphasize Bayesian inference, so the editors have included an introduction to the philosophy of the Bayesian approach and an overview of current work on Bayesian inference. Taken together, the methods discussed by the experts in Learning and Inference in Computational Systems Biology provide a foundation upon which the next decade of research in systems biology can be built.} }
Endnote
%0 Generic %T A Brief Introduction to Bayesian Inference %A Neil D. Lawrence %A Magnus Rattray %D 2010 %E Neil D. Lawrence %E Mark Girolami %E Magnus Rattray %E Guido Sanguinetti %F Lawrence:licsbbayes10 %I MIT Press %U http://inverseprobability.com/publications/lawrence-licsbbayes10.html %X Computational systems biology aims to develop algorithms that uncover the structure and parameterization of the underlying mechanistic model—in other words, to answer specific questions about the underlying mechanisms of a biological system—in a process that can be thought of as learning or inference. This volume offers state-of-the-art perspectives from computational biology, statistics, modeling, and machine learning on new methodologies for learning and inference in biological networks. The chapters offer practical approaches to biological inference problems ranging from genome-wide inference of genetic regulation to pathway-specific studies. Both deterministic models (based on ordinary differential equations) and stochastic models (which anticipate the increasing availability of data from small populations of cells) are considered. Several chapters emphasize Bayesian inference, so the editors have included an introduction to the philosophy of the Bayesian approach and an overview of current work on Bayesian inference. Taken together, the methods discussed by the experts in Learning and Inference in Computational Systems Biology provide a foundation upon which the next decade of research in systems biology can be built.
RIS
TY - GEN TI - A Brief Introduction to Bayesian Inference AU - Neil D. Lawrence AU - Magnus Rattray BT - Learning and Inference in Computational Systems Biology DA - 2010/01/01 ED - Neil D. Lawrence ED - Mark Girolami ED - Magnus Rattray ED - Guido Sanguinetti ID - Lawrence:licsbbayes10 PB - MIT Press UR - http://inverseprobability.com/publications/lawrence-licsbbayes10.html AB - Computational systems biology aims to develop algorithms that uncover the structure and parameterization of the underlying mechanistic model—in other words, to answer specific questions about the underlying mechanisms of a biological system—in a process that can be thought of as learning or inference. This volume offers state-of-the-art perspectives from computational biology, statistics, modeling, and machine learning on new methodologies for learning and inference in biological networks. The chapters offer practical approaches to biological inference problems ranging from genome-wide inference of genetic regulation to pathway-specific studies. Both deterministic models (based on ordinary differential equations) and stochastic models (which anticipate the increasing availability of data from small populations of cells) are considered. Several chapters emphasize Bayesian inference, so the editors have included an introduction to the philosophy of the Bayesian approach and an overview of current work on Bayesian inference. Taken together, the methods discussed by the experts in Learning and Inference in Computational Systems Biology provide a foundation upon which the next decade of research in systems biology can be built. ER -
APA
Lawrence, N.D. & Rattray, M.. (2010). A Brief Introduction to Bayesian Inference. Available from http://inverseprobability.com/publications/lawrence-licsbbayes10.html.

Related Material