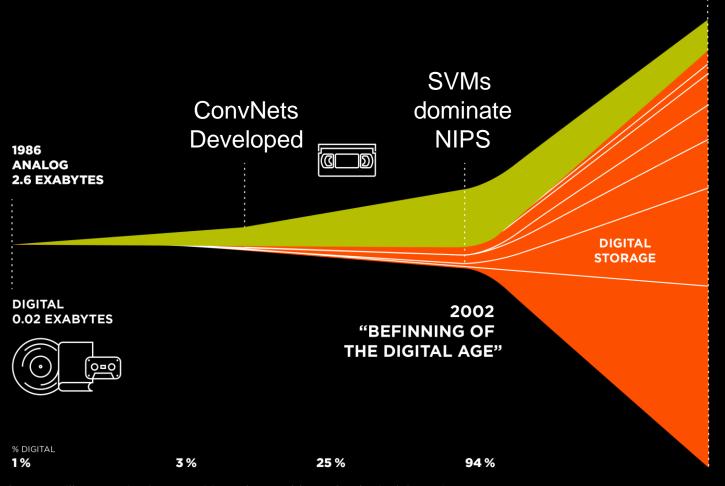
Gaussian Processes for Machine Learning

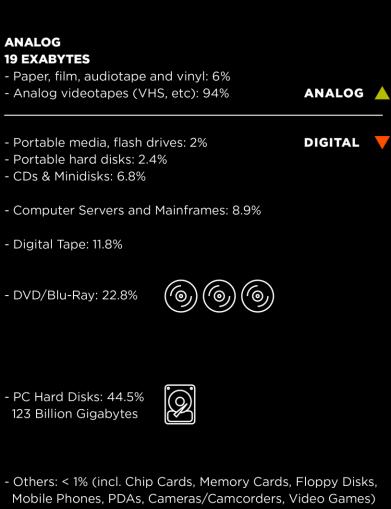
NEIL LAWRENCE UNIVERSITY OF SHEFFIELD

@lawrennd

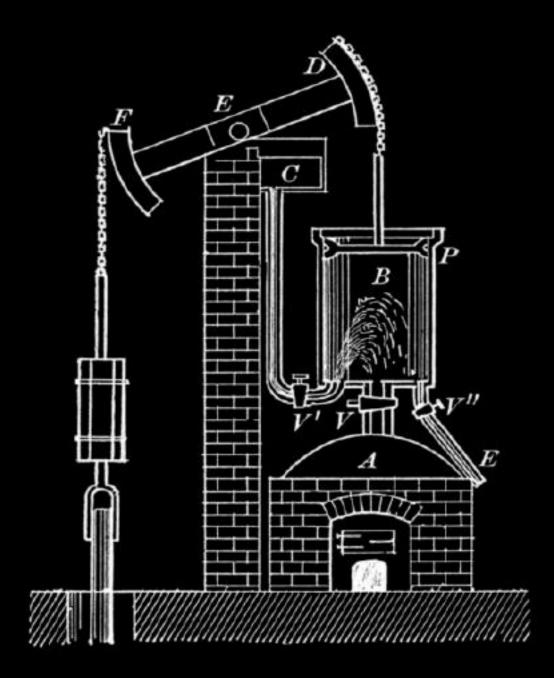
GLOBAL INFORMATION STORAGE CAPACITY IN OPTIMALLY COMPRESSED BYTES

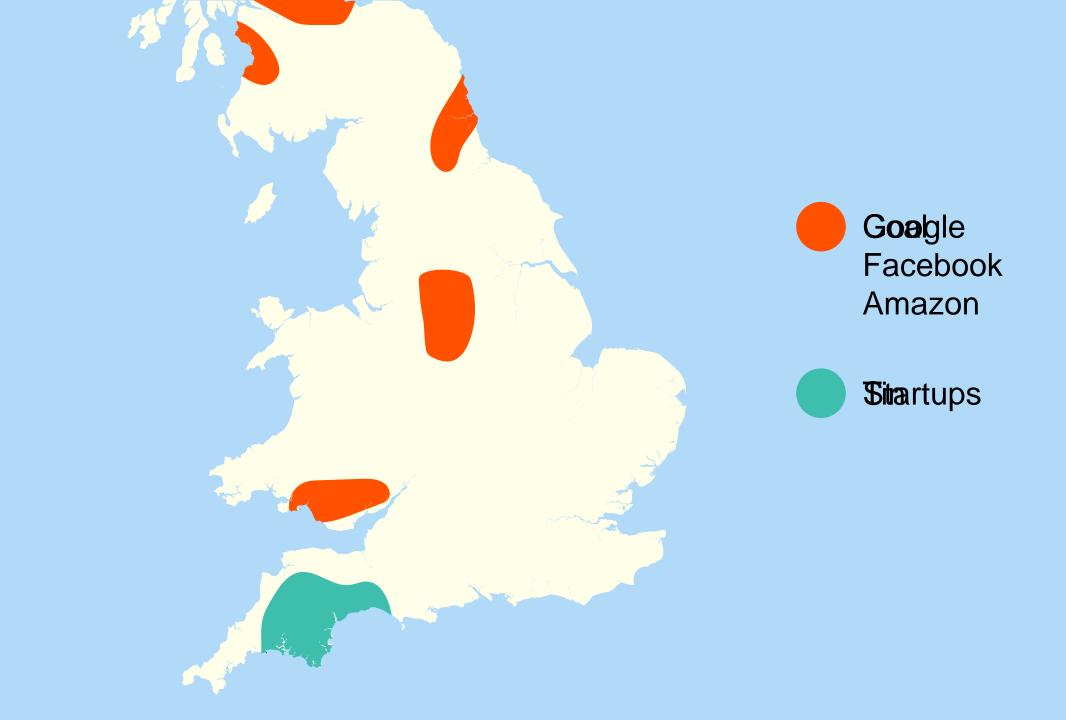


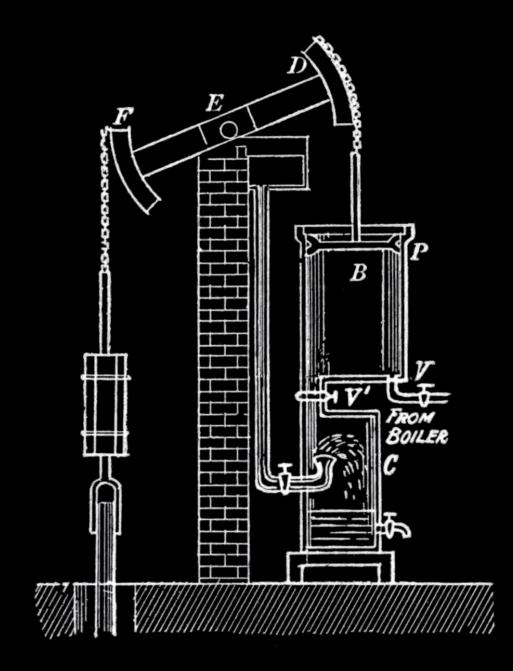
Source: Hilbert, M., & López, P. (2011). The World's Technological Capacity to Store, Communicate, andCompute Information. Science, 332 (6025), 60-65. martinhilbert.net/worldinfocapacity.html



DIGITAL 280 EXABYTES



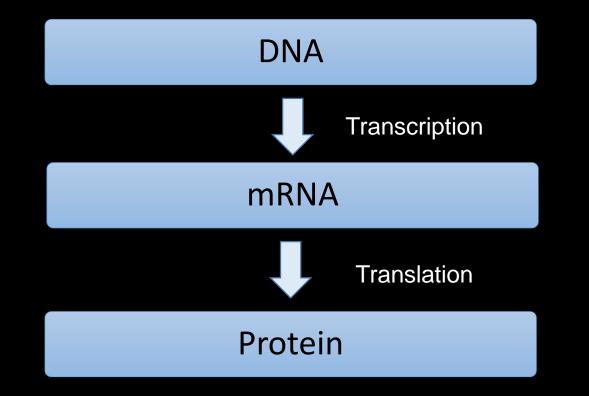




The Data are Not Enough

- Four pillars:
 - Deterministic/Stochastic
 - Mechanistic/Emipirical
- Goal: model complex phenomena over time
- Problem:
 - Mechanistic models are often inaccurate
 - Data is often not rich enough for an empirical approach
- Question 1: How do we combine inaccurate physical model with machine learning?

Central Dogma



Decision: Transcription Factors

Mechanistic Model

$$\frac{dp_{TF}(t)}{dt} = s_f m_{TF}(t) - d_f p_{TF}(t)$$

$$\frac{dm_i(t)}{dt} = s_i p_{TF}(t) - d_i m_i(t)$$

$$mRNA m_{TF}(t)$$
Translation
$$TF Protein p_{TF}(t)$$

$$Transcription$$

$$Other mRNAs m_i(t)$$

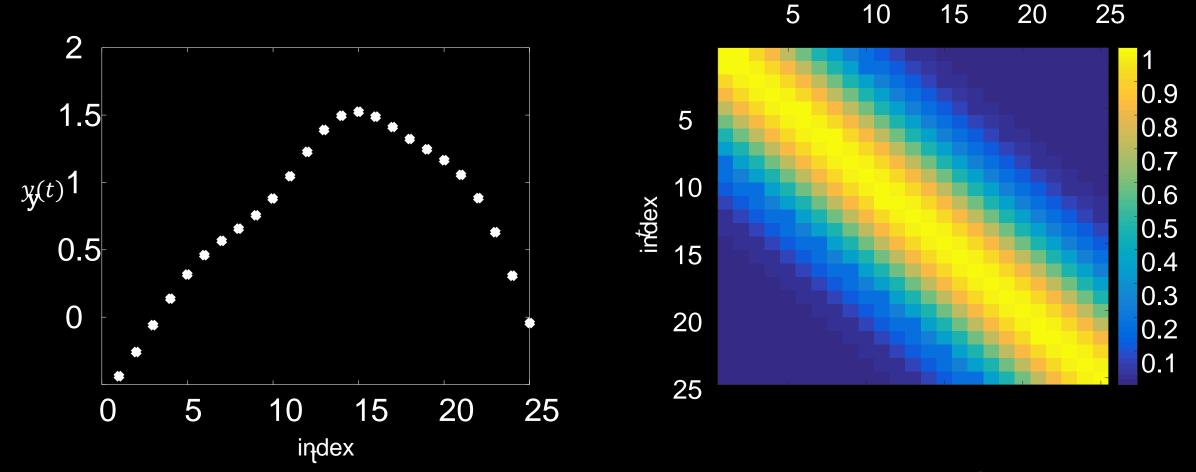
Need to Model $p_{TF}(t)$

- Gaussian process: a probabilistic model for functions.
- Formally known as a stochastic process.
- Multivariate Gaussian is normally defined by a mean vector, μ , and a covariance matrix, C.

 $y \sim N(\boldsymbol{\mu}, \mathbf{C})$

• Gaussian process defined by a mean function, $\mu(t)$, and a covariance function, c(t,t'). $y(t) \sim N(\mu(t), c(t,t'))$

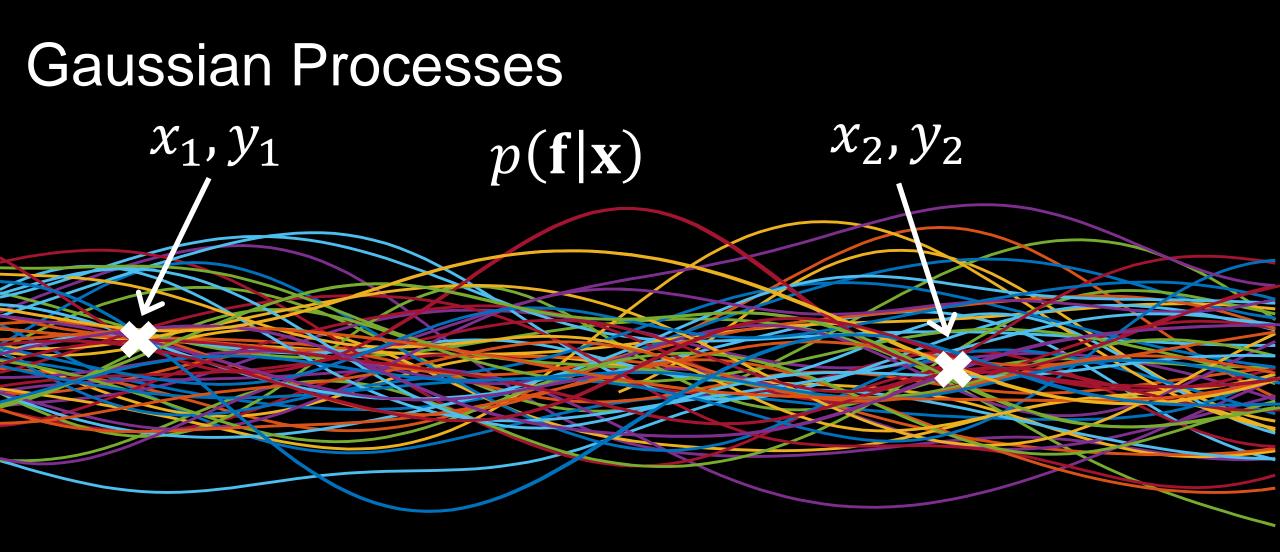
Zero Mean Gaussian Bamples Sample



sangalespleonfromusalespipeocess

covariance interior c(t,t')

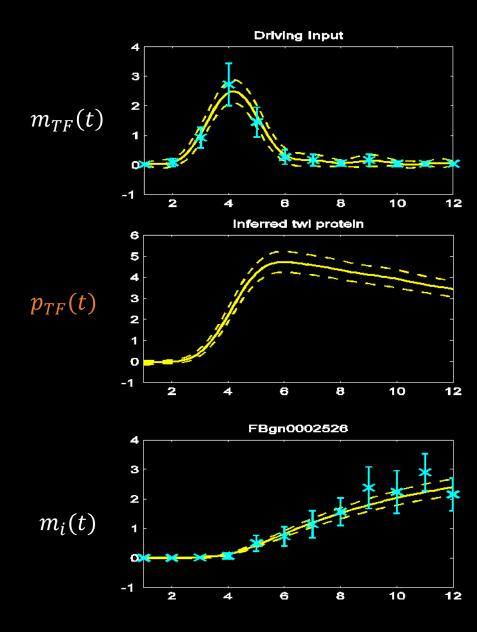
iadex

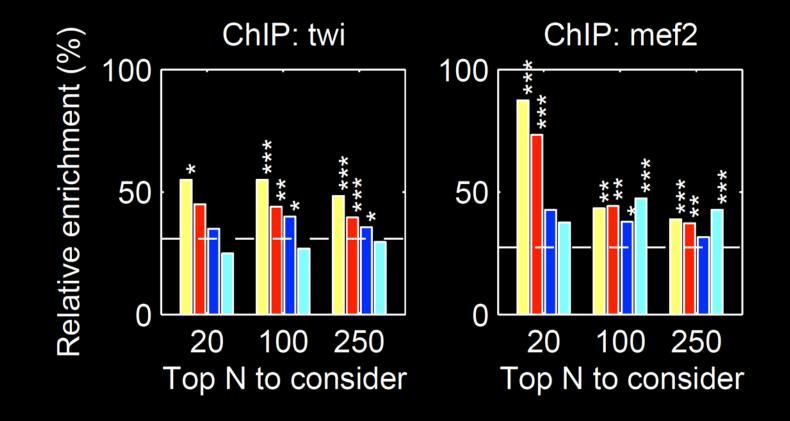


$p(y_1|f_1) \qquad p(\mathbf{f}|\mathbf{y},\mathbf{x}) \qquad p(y_2|f_2)$

Results

$$\frac{\mathrm{d}p_{TF}(t)}{\mathrm{d}t} = s_f m_{TF}(t) - d_f p_{TF}(t)$$
$$\frac{\mathrm{d}m_i(t)}{\mathrm{d}t} = s_i p_{TF}(t) - d_i m_i(t)$$





MATLAB Demo

• demo_2016_04_28_amazon.m

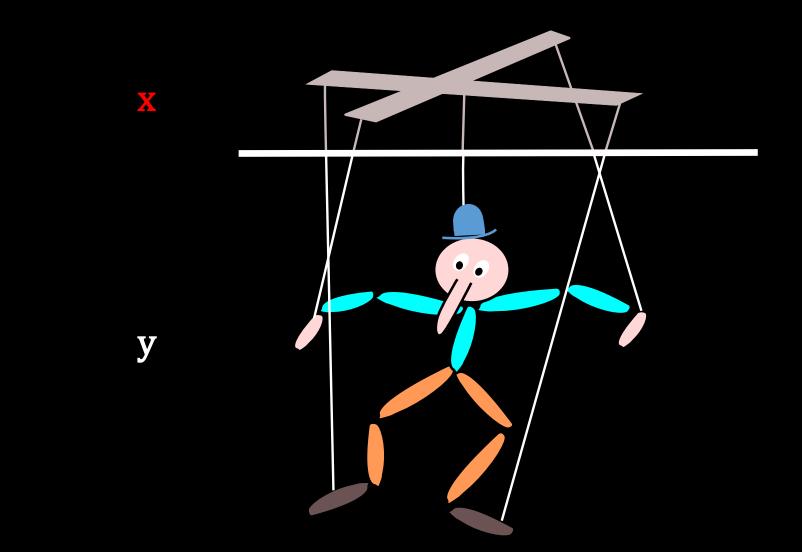
Further Challenge

- This model inter-relates different functions with mechanistic understanding.
- What if you need to inter-relate across different modalities of data at different scales.
- *E.g.* biopsy images + genetic test + mammogram for breast cancer diagnostics.

The Data are Not Enough

- Four pillars:
 - Deterministic/Stochastic
 - Mechanistic/Empirical
- Goal: model complex phenomena over time
- Problem:
 - Mechanistic models are often inaccurate
 - Data is often not rich enough for an empirical approach
- Question 2: How do we formulate the right representations to integrate different data modalities?

Classical Latent Variables



Classical Treatment

• Assume a priori that

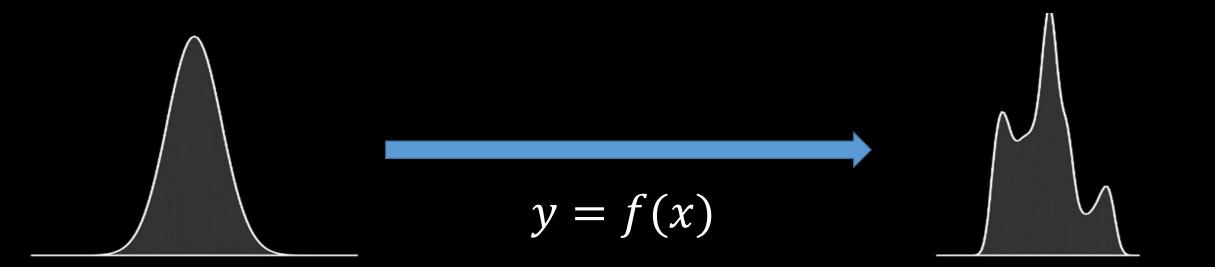
 $x \sim N(0, I)$

• Relate linearly to y

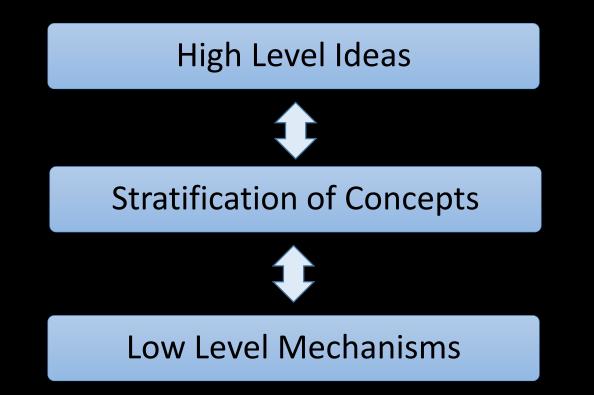
$$y = Wx + \epsilon$$

 Framework covers many classical models PCA, Factor Analysis, ICA

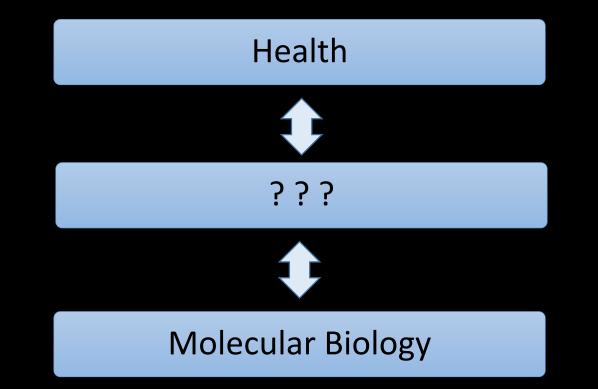
Render Gaussian Non Gaussian



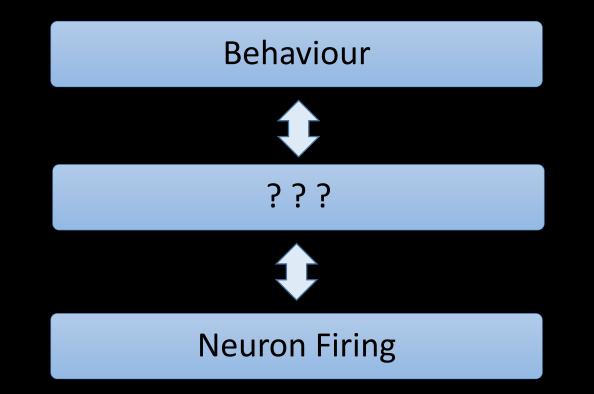
Use Abstraction for Complex Systems



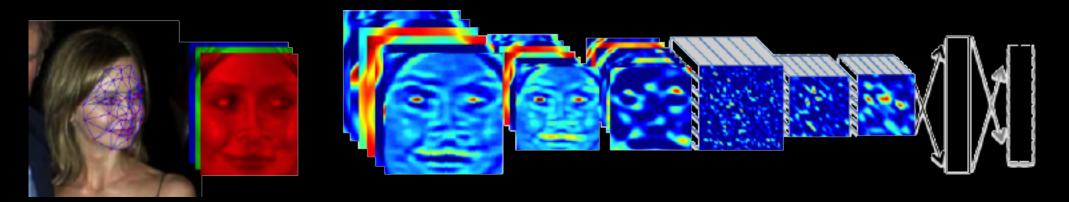
Biology and Health



Neuroscience



 $\mathbf{g}(\mathbf{x})$



 $\mathbf{f}_1(x) \quad \mathbf{f}_2(\cdot) \quad \mathbf{f}_3(\cdot) \quad \mathbf{f}_4(\cdot) \quad \mathbf{f}_5(\cdot) \quad \mathbf{f}_6(\cdot) \mathbf{f}_7(\cdot) \mathbf{f}_8(\cdot) \mathbf{f}_9(\cdot)$

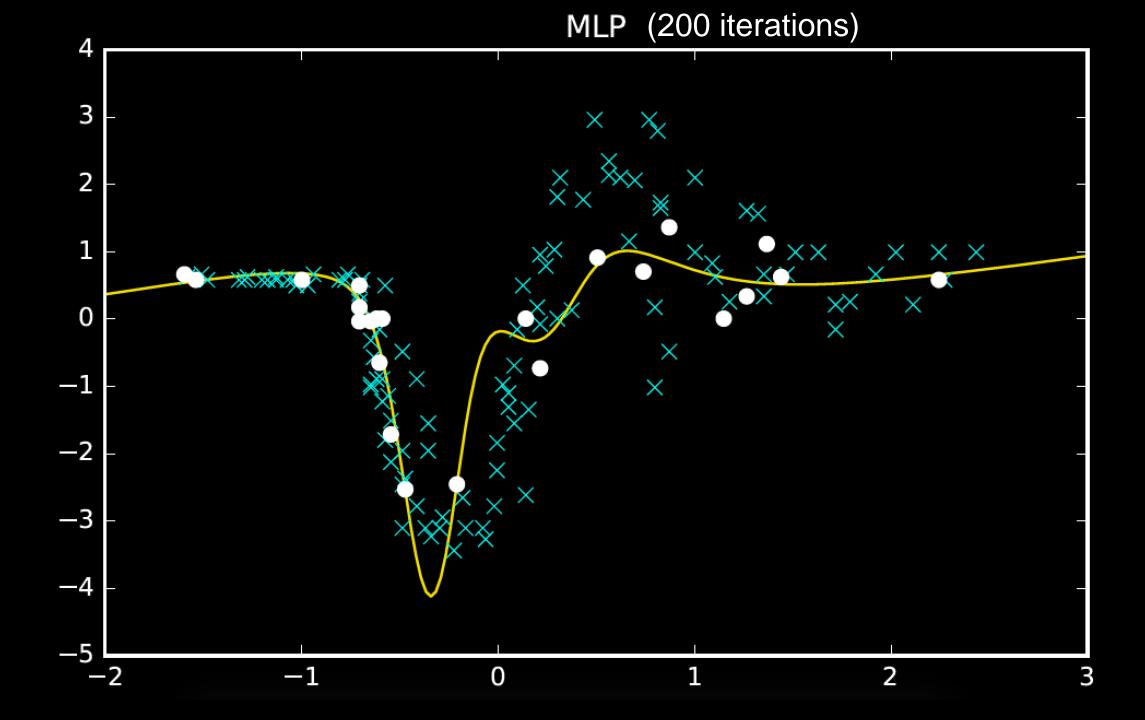
 $\mathbf{g}(x) = \mathbf{f}_9 \left(\mathbf{f}_8 \left(\mathbf{f}_7 (\mathbf{f}_6 (\cdots)) \right) \right)$

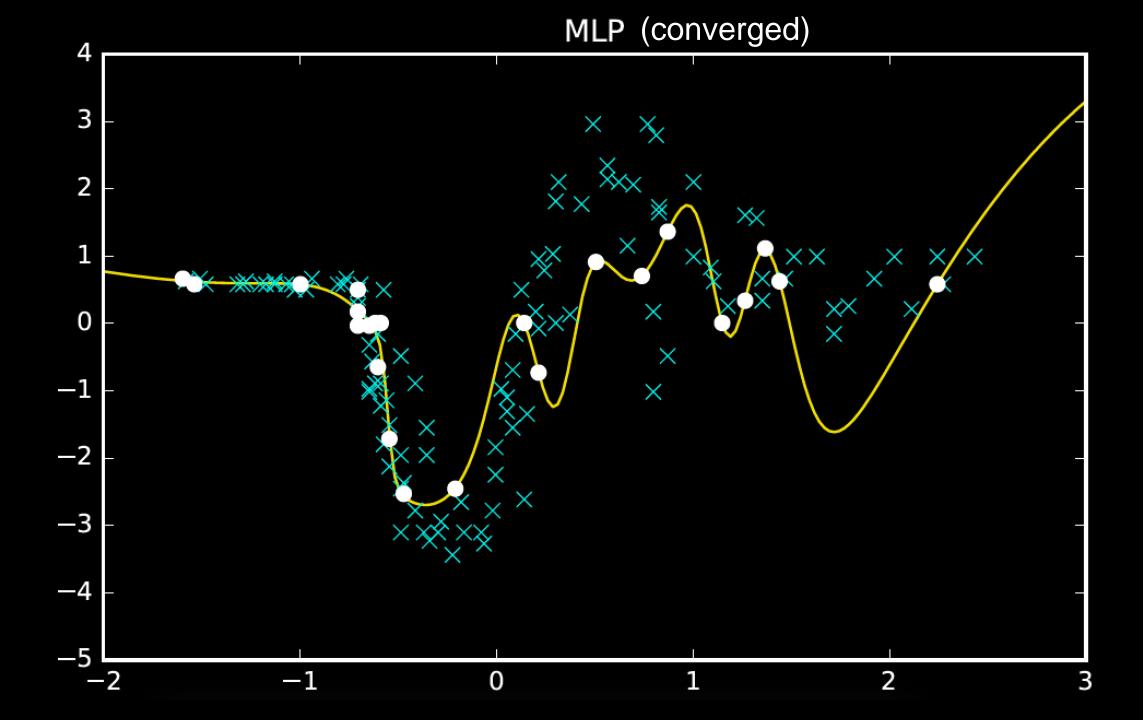
Stochastic Process Composition

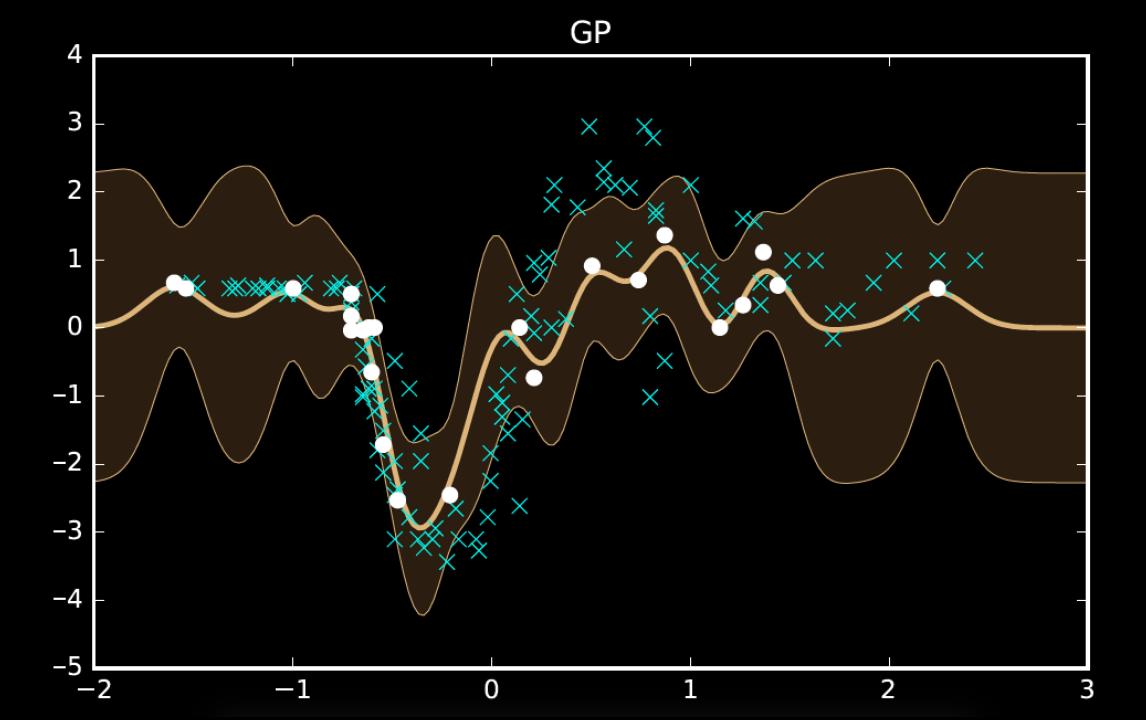
- A new approach to forming stochastic processes
- Mathematical composition:

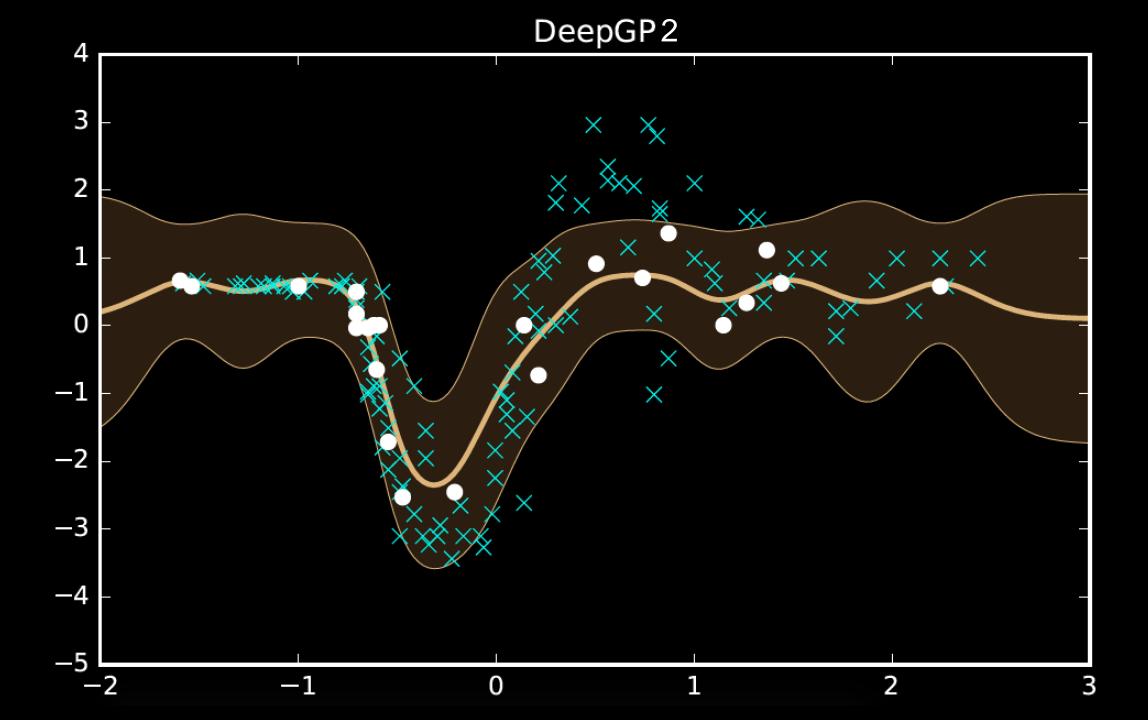
$$y(x) = f_1\left(f_2(f_3(x))\right)$$

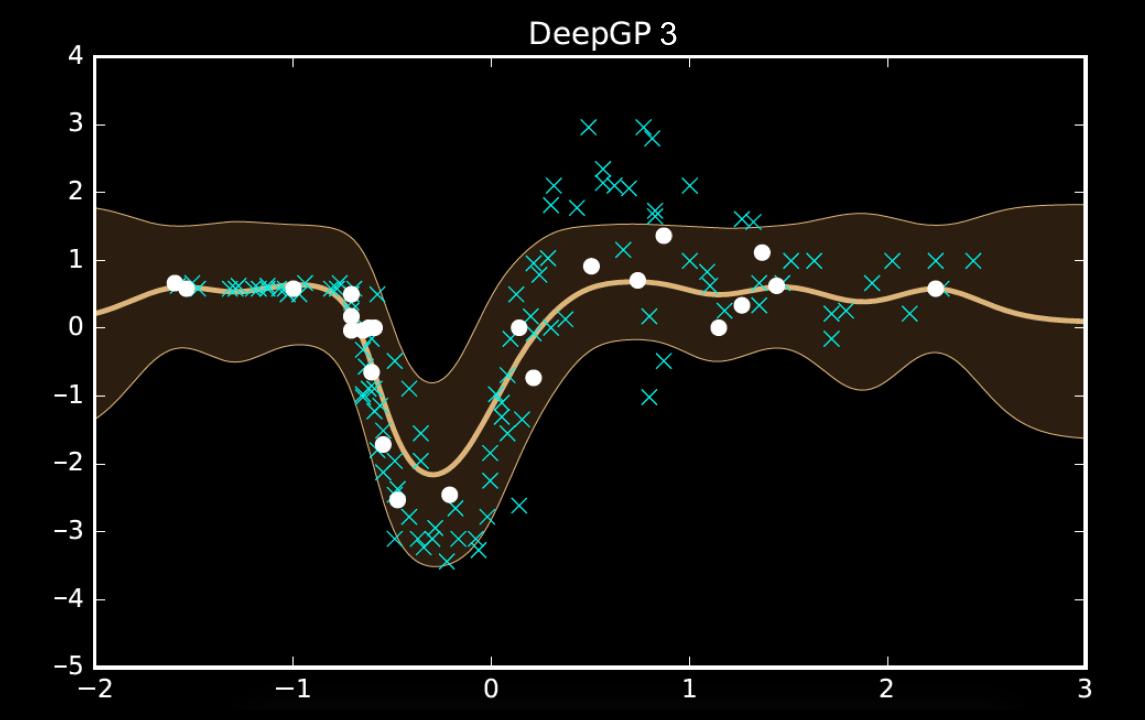
- Properties of resulting process highly non-Gaussian
- Allows for hierarchical structured form of model.
- Learning in models of this type has become known as: deep learning.











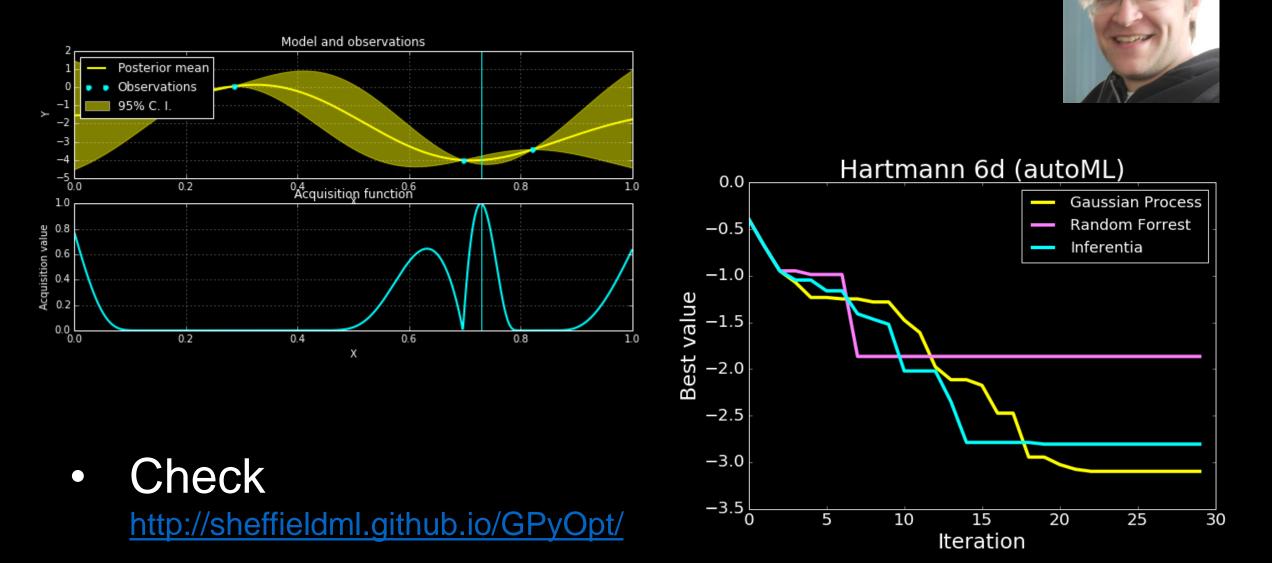
model	MSE (train)	MSE (test)
mlp (200 iters)	108.5	1185.1
mlp (converged)	24.0	1338.2
gp	59.2	1095.4
deep gp (2)	146.2	833.7
deep gp (3)	182.5	843.6

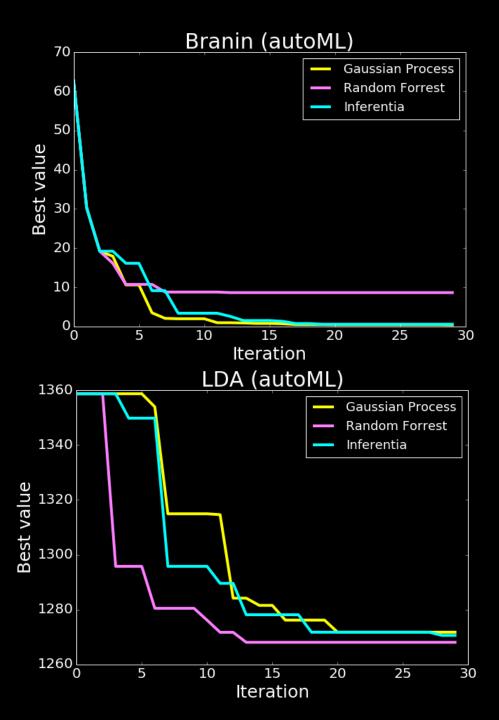
One hundred hidden nodes, one hundred inducing points

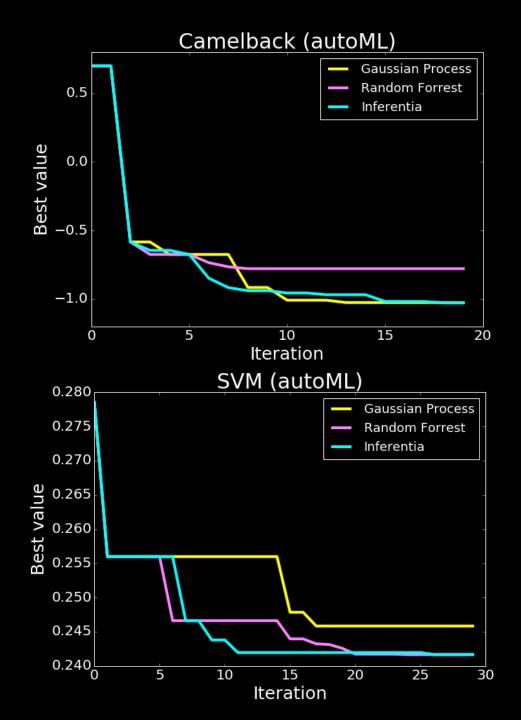
Regression

data set	n	p	GP	Sparse GP	Deep GP
housing	506	13	2.78±0.54	2.77±0.60	2.69±0.49
redwine	588	11	0.72±0.06	0.62±0.04	0.62±0.04
energy1	768	8	0.48±0.07	0.50±0.07	0.49±0.07
energy2	768	8	0.59±0.08	1.66±0.21	1.39±0.49
concrete	1030	8	5.26±0.67	5.81±0.62	5.66±0.62

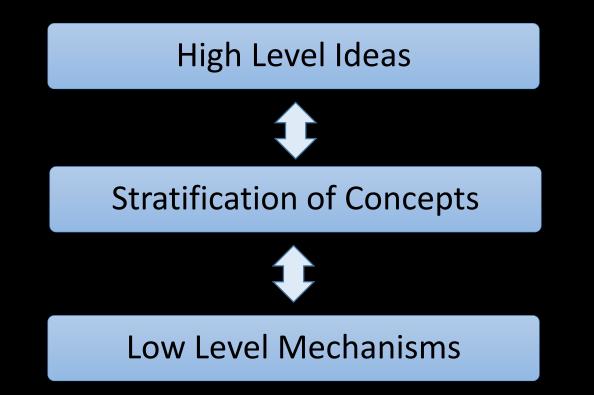
Bayesian Optimization



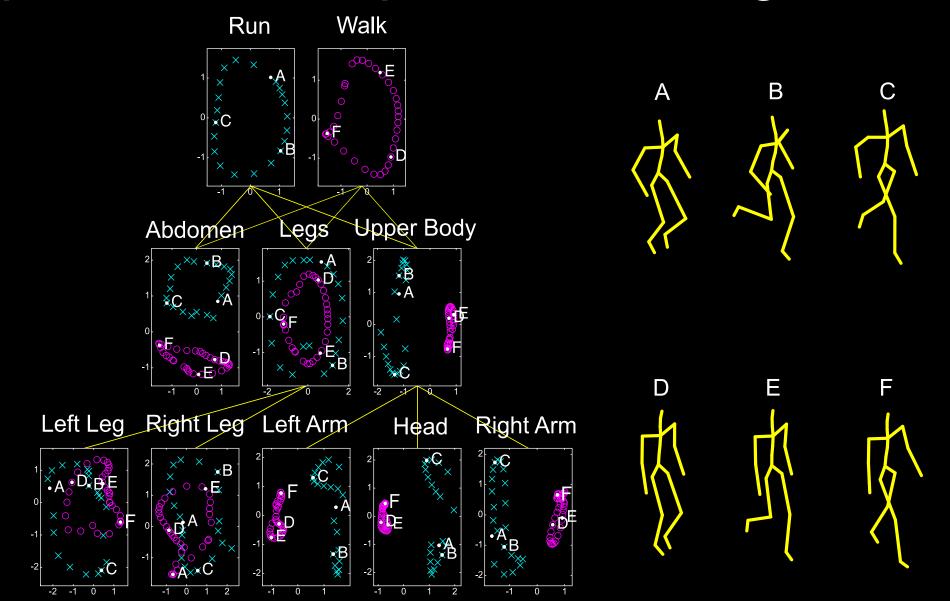




Use Abstraction for Complex Systems



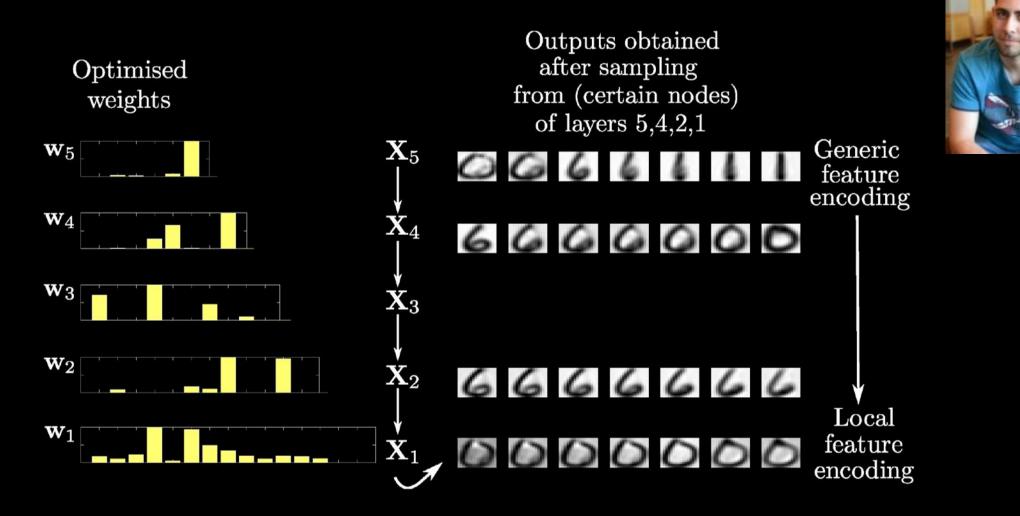
Example: Motion Capture Modelling



MATLAB Demo

• demo_2016_04_28_amazon.m

Modelling Digits

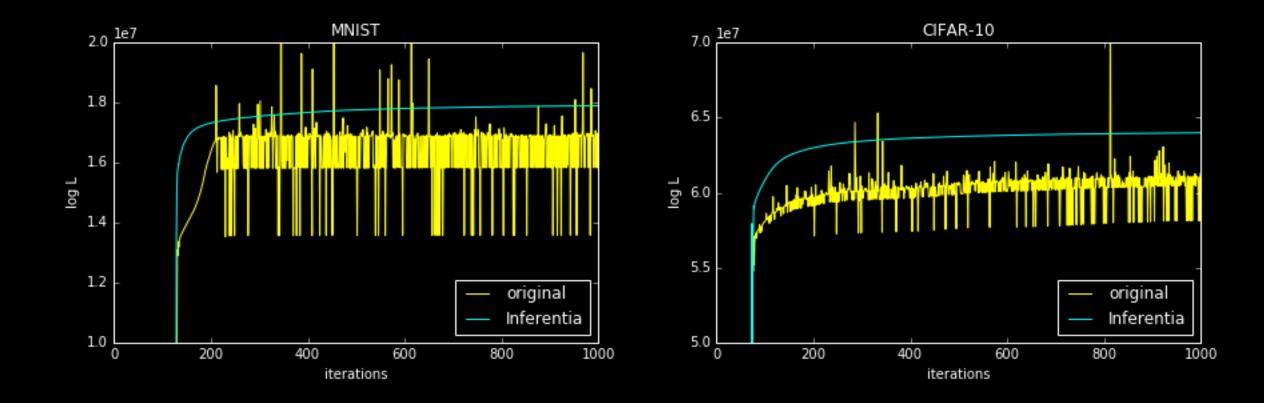


MATLAB Demo

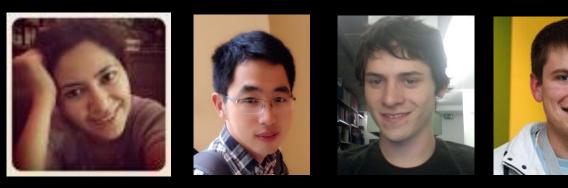
• demo_2016_04_28_amazon.m

Challenging Uncertainty

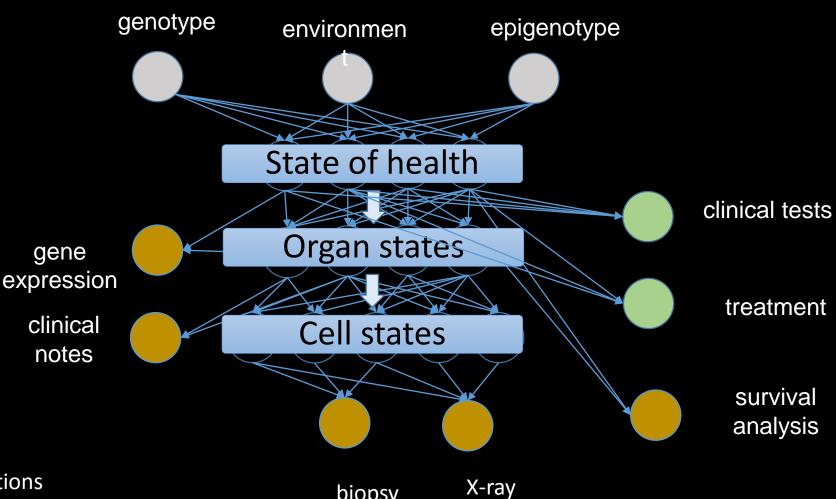
Numerical Issues



Health



- Complex system
- Scarce data
- Different modalities
- Poor understanding of mechanism
- Large scale



biopsy

To Find Out More

- Gaussian Process Summer School
 - 12th-15th September 2016 in Sheffield
 - This year in parallel with/themed as a UQ orientated school (coorganisation with Rich Wilkinson)
 - Occurring alongside ENBIS Meeting
 - <u>http://gpss.cc/</u>

Future

- Methodology
 - Deep GPs (also current)
 - Latent Force Models (current but dormant)
 - Latent Action Models and Stochastic Optimal Control (new)
 - Probabilistic Geometries (starting)
- Exemplar Applications
 - Health and Biology (existing)
 - Developing world (existing)
 - Robotics at different scales (starting)
 - Perception: vision (dormant) haptic (new)

Summary

- Complex systems:
 - 'big data' is too 'small'.
 - The data are not enough.
 - Need data efficient methods
 - <u>http://www.theguardian.com/media-network/2016/jan/28/google-ai-go-grandmaster-real-winner-deepmind</u>
- Solutions:
 - Hybrid mechanistic-empirical models
 - Structured models for automated data assimilation

Thank you

Neil Lawrence http://inverseprobability.com @lawrennd

The Digital Oligarchy

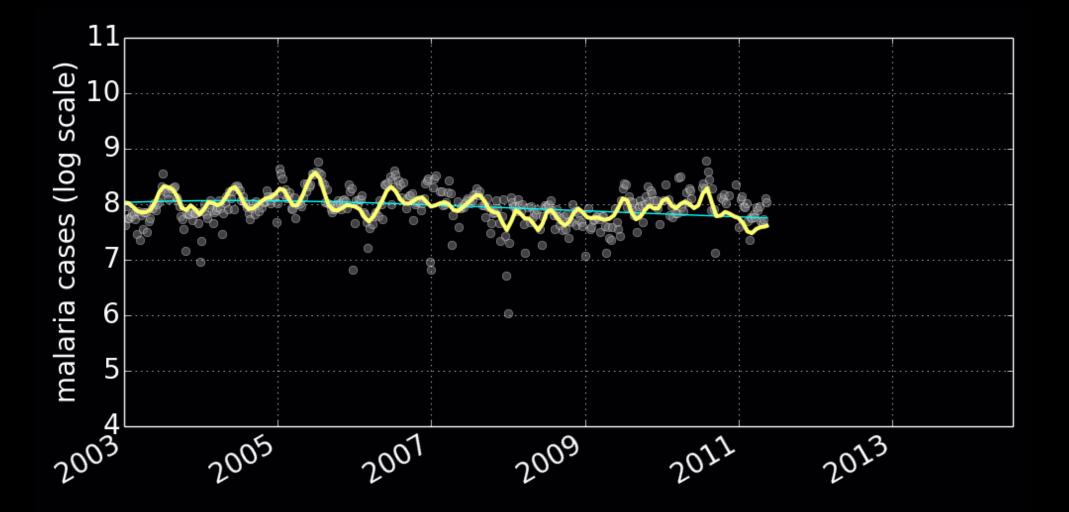
- Response to concentration of power with data
- CitizenMe
 - London based start up
 - User-centric data modelling
- New challenges in ML
 - Integration of ML, systems, cryptography.

Open Data Science and Africa

Challenge

- "Whole pipeline challenge"
- Make software available
- <u>Teach summer schools</u>
- Support local meetings
 - Publicity in the Guardian
- Opportunities to deploy pipeline solution

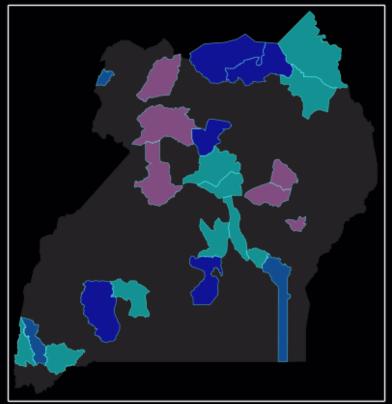
Disease Incidence for Malaria

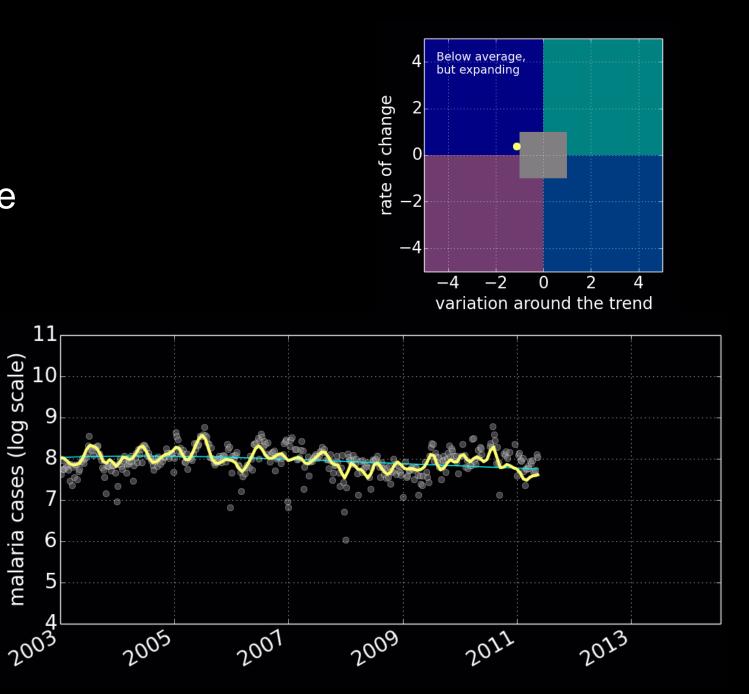


Uganda

• Spatial models of disease

2010: week 46





Deployed with UN Global Pulse Lab

http://pulselabkampala.ug/hmis/

