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The Gaussian Density

I Perhaps the most common probability density.

p(y|µ, σ2) =
1

√

2πσ2
exp

(
−

(y − µ)2

2σ2

)
4
= N

(
y|µ, σ2

)
I The Gaussian density.



Gaussian Density
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The Gaussian PDF with µ = 1.7 and variance σ2 = 0.0225. Mean
shown as red line. It could represent the heights of a
population of students.



Gaussian Density

N

(
y|µ, σ2

)
=

1
√

2πσ2
exp

(
−

(y − µ)2

2σ2

)
σ2 is the variance of the density and µ is
the mean.



Two Important Gaussian Properties

Sum of Gaussians

I Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)

And the sum is distributed as

n∑
i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i


(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)
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Linear Function
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A linear regression between x and y.



Regression Examples

I Predict a real value, yi given some inputs xi.
I Predict quality of meat given spectral measurements

(Tecator data).
I Radiocarbon dating, the C14 calibration curve: predict age

given quantity of C14 isotope.
I Predict quality of different Go or Backgammon moves

given expert rated training data.
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y = mx + c

point 1: x = 1, y = 3

3 = m + c

point 2: x = 3, y = 1

1 = 3m + c

point 3: x = 2, y = 2.5

2.5 = 2m + c









6 A PHILOSOPHICAL ESSAY ON PROBABILITIES.

height: "The day will come when, by study pursued

through several ages, the things now concealed will

appear with evidence; and posterity will be astonished

that truths so clear had escaped us.
' '

Clairaut then

undertook to submit to analysis the perturbations which

the comet had experienced by the action of the two

great planets, Jupiter and Saturn; after immense cal-

culations he fixed its next passage at the perihelion

toward the beginning of April, 1759, which was actually

verified by observation. The regularity which astronomy
shows us in the movements of the comets doubtless

exists also in all phenomena. -

The curve described by a simple molecule of air or

vapor is regulated in a manner just as certain as the

planetary orbits
;
the only difference between them is

that which comes from our ignorance.

Probability is relative, in part to this ignorance, in

part to our knowledge. We know that of three or a

greater number of events a single one ought to occur
;

but nothing induces us to believe that one of them will

occur rather than the others. In this state of indecision

it is impossible for us to announce their occurrence with

certainty. It is, however, probable that one of these

events, chosen at will, will not occur because we see

several cases equally possible which exclude its occur-

rence, while only a single one favors it.

The theory of chance consists in reducing all the

events of the same kind to a certain number of cases

equally possible, that is to say, to such as we may be

equally undecided about in regard to their existence,
and in determining the number of cases favorable to

the event whose probability is sought. The ratio of



y = mx + c + ε

point 1: x = 1, y = 3

3 = m + c + ε1

point 2: x = 3, y = 1

1 = 3m + c + ε2

point 3: x = 2, y = 2.5

2.5 = 2m + c + ε3



Underdetermined System

What about two unknowns and
one observation?

y1 = mx1 + c
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Underdetermined System

Can compute m given c.

m =
y1 − c

x
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Underdetermined System

Can compute m given c.

c = 1.75 =⇒ m = 1.25

0
1
2
3
4
5

0 1 2 3
y

x



Underdetermined System

Can compute m given c.

c = −0.777 =⇒ m = 3.78
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Underdetermined System

Can compute m given c.

c = −4.01 =⇒ m = 7.01
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Underdetermined System

Can compute m given c.

c = −0.718 =⇒ m = 3.72
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Underdetermined System

Can compute m given c.

c = 2.45 =⇒ m = 0.545
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Underdetermined System

Can compute m given c.

c = −0.657 =⇒ m = 3.66
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Underdetermined System

Can compute m given c.

c = −3.13 =⇒ m = 6.13
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Underdetermined System

Can compute m given c.

c = −1.47 =⇒ m = 4.47
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Underdetermined System

Can compute m given c.
Assume

c ∼ N (0, 4) ,

we find a distribution of solu-
tions.
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Probability for Under- and Overdetermined

I To deal with overdetermined introduced probability
distribution for ‘variable’, εi.

I For underdetermined system introduced probability
distribution for ‘parameter’, c.

I This is known as a Bayesian treatment.



Multivariate Prior Distributions

I For general Bayesian inference need multivariate priors.
I E.g. for multivariate linear regression:

yi =
∑

i

w jxi, j + εi

(where we’ve dropped c for convenience), we need a prior
over w.

I This motivates a multivariate Gaussian density.
I We will use the multivariate Gaussian to put a prior directly

on the function (a Gaussian process).
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Prior Distribution

I Bayesian inference requires a prior on the parameters.
I The prior represents your belief before you see the data of

the likely value of the parameters.
I For linear regression, consider a Gaussian prior on the

intercept:
c ∼ N (0, α1)



Posterior Distribution

I Posterior distribution is found by combining the prior with
the likelihood.

I Posterior distribution is your belief after you see the data of
the likely value of the parameters.

I The posterior is found through Bayes’ Rule

p(c|y) =
p(y|c)p(c)

p(y)



Bayes Update
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Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.
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Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Stages to Derivation of the Posterior

I Multiply likelihood by prior
I they are “exponentiated quadratics”, the answer is always

also an exponentiated quadratic because
exp(a2) exp(b2) = exp(a2 + b2).

I Complete the square to get the resulting density in the
form of a Gaussian.

I Recognise the mean and (co)variance of the Gaussian. This
is the estimate of the posterior.



Multivariate Regression Likelihood

I Noise corrupted data point

yi = w>xi,: + εi

I Multivariate regression likelihood:

p(y|X,w) =
1

(2πσ2)n/2 exp

− 1
2σ2

n∑
i=1

(
yi −w>xi,:

)2


I Now use a multivariate Gaussian prior:

p(w) =
1

(2πα)
p
2

exp
(
−

1
2α

w>w
)
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Two Dimensional Gaussian

I Consider height, h/m and weight, w/kg.
I Could sample height from a distribution:

p(h) ∼ N (1.7, 0.0225)

I And similarly weight:

p(w) ∼ N (75, 36)



Height and Weight Models
p(

h)

h/m

p(
w

)

w/kg

Gaussian distributions for height and weight.



Sampling Two Dimensional Variables

Joint Distribution
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Independence Assumption

I This assumes height and weight are independent.

p(h,w) = p(h)p(w)

I In reality they are dependent (body mass index) = w
h2 .
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Independent Gaussians

p(w, h) = p(w)p(h)



Independent Gaussians

p(w, h) =
1√

2πσ2
1

√
2πσ2

2

exp

−1
2

 (w − µ1)2

σ2
1

+
(h − µ2)2

σ2
2





Independent Gaussians

p(w, h) =
1√

2πσ2
12πσ2

2

exp

−1
2

([
w
h

]
−

[
µ1
µ2

])> [
σ2

1 0
0 σ2

2

]−1 ([
w
h

]
−

[
µ1
µ2

])



Independent Gaussians

p(y) =
1

|2πD|
1
2

exp
(
−

1
2

(y − µ)>D−1(y − µ)
)



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

|2πD|
1
2

exp
(
−

1
2

(y − µ)>D−1(y − µ)
)



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

|2πD|
1
2

exp
(
−

1
2

(R>y − R>µ)>D−1(R>y − R>µ)
)



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

|2πD|
1
2

exp
(
−

1
2

(y − µ)>RD−1R>(y − µ)
)

this gives a covariance matrix:

C−1 = RD−1R>



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

|2πC|
1
2

exp
(
−

1
2

(y − µ)>C−1(y − µ)
)

this gives a covariance matrix:

C = RDR>



Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.
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Sampling a Function

Multi-variate Gaussians

I We will consider a Gaussian with a particular structure of
covariance matrix.

I Generate a single sample from this 25 dimensional
Gaussian distribution, f =

[
f1, f2 . . . f25

]
.

I We will plot these points against their index.
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Figure: A sample from a 25 dimensional Gaussian distribution.
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Prediction of f2 from f1
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I The single contour of the Gaussian density represents the
joint distribution, p( f1, f2).

I We observe that f1 = −0.313.
I Conditional density: p( f2| f1 = −0.313).
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Prediction with Correlated Gaussians

I Prediction of f2 from f1 requires conditional density.
I Conditional density is also Gaussian.

p( f2| f1) = N

 f2|
k1,2

k1,1
f1, k2,2 −

k2
1,2

k1,1


where covariance of joint density is given by

K =

[
k1,1 k1,2
k2,1 k2,2

]
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I The single contour of the Gaussian density represents the
joint distribution, p( f1, f5).

I We observe that f1 = −0.313.
I Conditional density: p( f5| f1 = −0.313).
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Prediction with Correlated Gaussians

I Prediction of f∗ from f requires multivariate conditional
density.

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|K∗,fK−1

f,f f,K∗,∗ −K∗,fK−1
f,f Kf,∗

)

I Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]



Prediction with Correlated Gaussians

I Prediction of f∗ from f requires multivariate conditional
density.

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|µ,Σ

)
µ = K∗,fK−1

f,f f

Σ = K∗,∗ −K∗,fK−1
f,f Kf,∗

I Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel. ¡1¿ ¡2¿
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Outline

The Gaussian Density

Covariance from Basis Functions



Basis Function Form

Radial basis functions commonly have the form

φk (xi) = exp

−
∣∣∣xi − µk

∣∣∣2
2`2

 .

I Basis function
maps data into a
“feature space” in
which a linear sum
is a non linear
function.
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x
Figure: A set of radial basis functions with width
` = 2 and location parameters µ = [−4 0 4]>.



Basis Function Representations

I Represent a function by a linear sum over a basis,

f (xi,:; w) =

m∑
k=1

wkφk(xi,:), (1)

I Here: m basis functions and φk(·) is kth basis function and

w = [w1, . . . ,wm]> .

I For standard linear model: φk(xi,:) = xi,k.



Random Functions

Functions derived
using:

f (x) =

m∑
k=1

wkφk(x),

where elements of w
are independently
sampled from a
Gaussian density,

wk ∼ N (0, α) .

-2
-1
0
1
2

-8 -6 -4 -2 0 2 4 6 8
f(

x)
x

Figure: Functions sampled using the basis set from
figure 3. Each line is a separate sample, generated
by a weighted sum of the basis set. The weights, w
are sampled from a Gaussian density with variance
α = 1.
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Direct Construction of Covariance Matrix

Use matrix notation to write function,

f (xi; w) =

m∑
k=1

wkφk (xi)

computed at training data gives a vector

f =Φw.

w ∼ N (0, αI)

w and f are only related by an inner product.

Φ ∈ <n×p is a design matrix

Φ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.



Expectations

I We have
〈f〉 =Φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈
ff>

〉
− 〈f〉 〈f〉>

We use 〈·〉 to denote expectations under prior distributions.
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Expectations

I We have
〈f〉 =Φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈
ff>

〉
− 〈f〉 〈f〉>

〈
ff>

〉
=Φ

〈
ww>

〉
Φ>,

giving
K = αΦΦ>.

We use 〈·〉 to denote expectations under prior distributions.



Covariance between Two Points

I The prior covariance between two points xi and x j is

k
(
xi, x j

)
= αφ: (xi)

> φ:

(
x j

)
,

or in sum notation

k
(
xi, x j

)
= α

m∑
k=1

φk (xi)φk

(
x j

)
I For the radial basis used this gives

k
(
xi, x j

)
= α

m∑
k=1

exp

−
∣∣∣xi − µk

∣∣∣2 +
∣∣∣x j − µk

∣∣∣2
2`2

 .
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Covariance Functions

RBF Basis Functions

k (x, x′) = αφ(x)>φ(x′)

φk(x) = exp

−
∥∥∥x − µk

∥∥∥2
2

`2


µ =


−1
0
1


¡1¿ ¡2¿
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Selecting Number and Location of Basis

I Need to choose
1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.
I Consider uniform spacing over a region:

k
(
xi, x j

)
= αφk(xi)>φk(x j)
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Selecting Number and Location of Basis

I Need to choose
1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.
I Consider uniform spacing over a region:

k
(
xi, x j

)
= α

m∑
k=1

exp

−x2
i + x2

j − 2µk

(
xi + x j

)
+ 2µ2

k

2`2

 ,



Uniform Basis Functions

I Set each center location to

µk = a + ∆µ · (k − 1).

I Specify the basis functions in terms of their indices,

k
(
xi, x j

)
=α′∆µ

m∑
k=1

exp
(
−

x2
i + x2

j

2`2

−

2
(
a + ∆µ · (k − 1)

) (
xi + x j

)
+ 2

(
a + ∆µ · (k − 1)

)2

2`2

)
.

I Here we’ve scaled variance of process by ∆µ.
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Infinite Basis Functions

I Take
µ1 = a and µm = b so b = a + ∆µ · (m − 1)

I This implies
b − a = ∆µ(m − 1)

and therefore
m =

b − a
∆µ

+ 1

I Take limit as ∆µ→ 0 so m→∞

k(xi, x j) = α′
∫ b

a
exp

(
−

x2
i + x2

j

2`2 +
2
(
µ − 1

2

(
xi + x j

))2
−

1
2

(
xi + x j

)2

2`2

)
dµ,

where we have used a + k · ∆µ→ µ.
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xi + x j

)2

2`2

)
dµ,

where we have used a + k · ∆µ→ µ.



Result
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Infinite Feature Space

I An RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is given by the exponentiated
quadratic covariance function.

k
(
xi, x j

)
= α exp

−
(
xi − x j

)2

4`2

 .
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I The covariance function is given by the exponentiated
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k
(
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)
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(
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)2
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 .



Infinite Feature Space

I An RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is the exponentiated quadratic.
I Note: The functional form for the covariance function and

basis functions are similar.
I this is a special case,
I in general they are very different

Similar results can obtained for multi-dimensional input
models Williams (1998); Neal (1996).



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel. ¡1¿ ¡2¿



Covariance Functions

RBF Basis Functions

k (x, x′) = αφ(x)>φ(x′)

φk(x) = exp

−
∥∥∥x − µk

∥∥∥2
2

`2


µ =


−1
0
1


¡1¿ ¡2¿
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