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Y =mx+c
pointl: x=1,y=3
3=m+c
point2: x =3, y=1
1=3m+c
point3: x =2,y =25
25=2m+c






SUR LES PROBABILITES. 3

riens. L'opinion contraire est une illusion de Pesprit
qui, perdant de yue les raisons fugitives du choix de la
volonté dans les choses indifférentes, se persnade qu'elle
sest déterminde d'elleméme et sans motifs.

Nous devons donc envisager I'état présent de I'uni-
vers, comme Ueflet de son état antévienr, et comme la
cause de celui gui va suivre. Une intelligence qui, pour
un instant donné, connaitrait toutes les forees dont la
natuve est animée, ot la sitnation respective des dtres
«qui la composent, si d'aillenrs elle était assex vaste pour
soumettre ces donndes & Panalyse, embrasserait dans la
méme formule les mouvemens des plus grands corps de
I'nnivers et ceux du plus léger atome : rien ne serait
incertain pour elle, ct Iavenir comme le passé, serait
preésent & ses yeux. L'esprit humain oflre, dans In per-
fection quil a su donmer & I'Astronomie, une faible
esquisse de cette intelligence, Ses découvertes en Méca-
nigue et en Geométrie, jointes i celle de la pesanteur
universelle, l'ont mis & portée de comprendre dans les
mémes expressions nnn]yliqur‘_ﬁ‘ les dtats passés ot futnrs
du systéme du monde. En appliqnnhtl 2 méme méthode
& quelques autres objets de ses conn:uxsancu il est par
vetiu & i des lois géndrales, les phé ne
observés, el & prévoir ceux que des clrconstnnuus don-
nées doivent faire éclore. Tous ces eiforts dans la ve-
he de la vérité , tendent i le rapprocher sans cesse
utelligence que nous venons de conceveir, mais
dont il restera toujours infiniment éloigné. Getle ten-
dance propre i Pespice humaine, est ce qui la rend
supérielire aus Animaux ; et ses progrés en ce genre.,

distinguent les nations et les sitcles, et font Jenr veri-
talde glulre
Rappelons-nons x||| "autrefois, et i une époque qui



4 A PHILOSOPHICAL ESSAY ON PROBABILITIES.

other, we say that its choice is an effect without a cause.
It is then, says Leibnitz, the blind chance of the
Epicureans. The contrary opinion is an illusion of the
mind, which, losing sight of the evasive reasons of the
choice of the will in indifferent things, belicves that
choice is determiined of itself and without metives.

We ought then to regard the present state of the
universe as the effect of its anterior state and as the
cause of the one which is to follow. Given for one
instant an intelligence which could comprehend all the
forces by which nature is animated and the respective
situation of the beings who compose it—an intelligence
sufficiently vast to submit these data to analysis—it
would embrace in the same formula the mevements of
the greatest bodies of the universe and those of the
lightest atom; for it, nothing would be uncertain and
the future, as the past, would be present to its cyes.
The human mind offers, in the perfection which it has
been able to give to astronomy, a feeble idea of this in-
telligence. Its discoveries in mechanics and geometry,
added to that of universal gravity, have enabled it to
comprehend in the same analytical expressions the
past and future states of the system of the world.
Applying the same method to some other objects of its
knowledge, it has succeeded in referring to general laws
observed phenomena and in foreseeing those which
given circumstances ought to produce. All these efforts
in the search for truth tend to lead it back continually
to the vast intelligence which we have just mentioned,
but from which it will always remain infinitely removed.
‘This tendency, peculiar to the human race, is that
which renders it superior to animals; and their progress






y=mx+c+e

pointl: x=1,y=3
3=m+c+ €

point2: x=3,y=1
1=3m+c+e

point3: x =2,y =25

25=2m+c+e€3



Underdetermined System

What about two unknowns and
one observation?

Y1 =mxy+¢

O R, N W k= O




Underdetermined System

Can compute m given c.

1—¢C
m=J1"°¢
X

O R, N W k= O




Underdetermined System

Can compute m given c.

c=175=m =125

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-0777 = m =378

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-401=m=7.01

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-0718 = m =372

O R, N W k= O




Underdetermined System

Can compute m given c.

c=245=m =0.545

O R, N W k= O




Underdetermined System

Can compute m given c.

¢ =-0.657 = m = 3.66

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-313=m=46.13

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-147 = m =447

O R, N W k= O




Underdetermined System

Can compute m given c.
Assume

c~ N(014)1

we find a distribution of solu-
tions.




Gaussian Process

yi(xi) = f(x;) + €

» Place a prior over the process as well as the noise.
» Leads to models that are not i.i.d.

» Contrast with classical model’s objective function:

n

Z(l —yiw'x; = b))y + AW'w
i=1



Model and Algorithm

» I'm keen on the idea of a conceptual separation model and
algorithm.

\4

Model is how you encode the regularities of the universe.

\4

Algorithm is how you combine that model with data.
data + model — prediction

» Of course often we are restricted in modeling choice due to
lack of algorithms.



Gaussian Processes: Extremely Short Overview
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Sampling a Function

Multi-variate Gaussians

» We will consider a Gaussian with a particular structure of
covariance matrix.

» Generate a single sample from this 25 dimensional
Gaussian distribution, f = [f1, f2. .. f25].

» We will plot these points against their index.
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Gaussian Distribution Sample
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Gaussian Distribution Sample
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J i

Prediction of f, from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).
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Prediction of f, from f;
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Prediction with Correlated Gaussians

» Prediction of f, from f; requires conditional density.

» Conditional density is also Gaussian.

K,
p(falfi) = N [le f1,k22 kll)

where covariance of joint density is given by

kip ki
K=
[k2,1 kz,z]



J i

Prediction of f5 from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, fs).
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Prediction of f5 from f;
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Prediction of f5 from f;
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Prediction of f5 from f;
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Prediction with Correlated Gaussians

» Prediction of f. from f requires multivariate conditional
density.

» Multivariate conditional density is also Gaussian.

P(EIE) = N (EIK KL, K. — KoK 1K

» Here covariance of joint density is given by

[ Kee Kig
K B |:Kf,>(- K*,*



Prediction with Correlated Gaussians

» Prediction of f. from f requires multivariate conditional
density.

» Multivariate conditional density is also Gaussian.
PEID) = N (Eln, D)
p =K K i f
3 =K., - KK K,
» Here covariance of joint density is given by

[ Kee Ko
K B |:Kf,>(- K*,*



Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

2
lIx —X'Il;
22

k(x,x') = aexp [—

» Covariance matrix is
built using the inputs to
the function x.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel.




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

, Ix = xll3
k(X/X ) = aexp —7

» Covariance matrix is

built using the inputs to 3r
) 2 b
the function x. 1k
» For the example above it 0
was based on Euclidean -1k
distance. 2+
-3 \ \ \ |

» The covariance function
is also know as a kernel.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

x1=-3.0,x; =-3.0
ki1 =1.00 x exp (_w)

2x2.002

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

[l

202

)

1.00

x1 =-3.0,x1 =-3.0

— — —. 2
ki1 =1.00 x exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

Xy = 120, X1 = -3.0

— 2
kp1 =1.00 x exp (—%)

[l

202

1.00

)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

[l

202

1.00

)

Xy = 120, X1 = -3.0

0.110

— 2
kp1 =1.00 x exp (—%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

Xy = 120, X1 = -3.0

— 2
kp1 =1.00 x exp (—%)

[l

)

1.00 0.110

0.110

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

x2 =1.20,x, =1.20

ko = 1.00 X exp (_%)

[l

)

1.00 0.110

0.110

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.00 0.110

x2 =1.20,x, =1.20
0.110 | 1.00

ko = 1.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

X3 = 140, X1 = -3.0

k3,1 =1.00 x exp (_%)

[l

)

1.00 0.110

0.110 1.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.00 0110
x3 =140, x, = =3.0
0.110 1.00
—— 2
k31 = 1.00 x exp (- 45502 ) 0.0889

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

2
k(xi,xj) = aexp (——HXZ;JH )
1.00 0.110 0.0889

X3 = 140, X1 = -3.0
0.110 1.00

k31 = 1.00 x exp (- 45 520) 0.0889

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

2
k(xi,xj) = aexp (——HXZ;JH )
1.00 0.110 0.0889

x3 =1.40,x, =1.20
0.110 1.00

— 2
k32 = 1.00 x exp (- 455552 ) 0.0889

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

2
k(xi,x]') = aexp (——llxi;;/|| )
1.00 0.110 0.0889

x3 =1.40,x, =1.20
0.110 1.00

k32 = 1.00 x exp (- Lot 0.0889| 0.995

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

x3 =1.40,x, =1.20

ks> = 1.00 X exp (_%)

[l

)

1.00 0.110 0.0889
0.110 1.00 0.995

0.0889 0.995

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

x3 = 140, x3 = 1.40

k3 = 1.00 X exp (_%)

[l

)

1.00 0.110 0.0889
0.110 1.00 0.995

0.0889 0.995

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

2
k(xi,x]') = aexp (——llxi;;/|| )
1.00 0.110 0.0889

x3 =1.40,x3 =1.40
0.110 1.00 0.995

_ 2
ks = 1.00 x exp (- L35 140%) 0.0889 0.995 | 1.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

x3 = 140, x3 = 1.40

k3 = 1.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

X1 = —3, X1 = -3

_2__7\2
k11 =1.0xexp (—(212032) )

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0

X1 = —3, X1 = -3

_2__7\2
k11 =1.0xexp (—(212032) )

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0

Xy = 12, X1 = -3

_ (1.2--3) )

krp =1.0x% exp( S0

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0

Xp = 12, X1 = -3 0.11

_ (1.2--3) )

krp =1.0x% exp( S0

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11

Xp = 12, X1 = -3 0.11

_ (1.2--3) )

krp =1.0x% exp( S0

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11

Xy = 12, Xy = 1.2 0.11

_(12-1.2° )

koo =1.0 % exp( S0

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11

Xx=12,x=12 0.11] 1.0

_(12-1.2° )

koo =1.0 % exp( S0

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11

x3=14,x1=-3 0.11 1.0

_ (14--3) )

ksp =1.0x% exp( SO0

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11
x3=14,x; =-3 01l 10
0.089
k31 =1.0 X exp (_(1;_2})32)2)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
x3=14,x; =-3 01l 10
0.089
k31 =1.0 X exp (_(1;_2})32)2)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
x3=14,x =12 0.11 1.0
0.089
ks> = 1.0 X exp (_%)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11 0.089
x3=14,x =12 0.11 1.0
0.089| 1.0
ks> = 1.0 X exp (_%)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
x3=14,x =12 0.11 1.0 1.0
0.089 1.0
ks> = 1.0 X exp (_%)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
x3=14, %3 = 1.4 011 10 1.0
0.089 1.0
k33 =1.0x exp (_%)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11 0.089
x3=14, %3 = 1.4 011 10 1.0
0.089 1.0 | 1.0
k33 =1.0x exp (_%)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
Xy =20,2 =-3 011 1.0 1.0
0.089 1.0 1.

fur = 10 exp (~5575)

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11 0.089
X4 =20,x = -3 011 1.0 1.0
0.089 1.0 1.0
ki =10 x exp (- 5535) 0.044

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089 0.044

X, =20, = -3 011 1.0 1.0
0089 1.0 1.0
2.0——3)2
ka1 = 1.0 x exp (-G ) 0.044

x1=-3,x%=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

x1=-3.0,x; =-3.0
ki1 = 4.00 x exp (_w)

2x5.002

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

4.00

x1 =-3.0,x1 =-3.0

— — —. 2
ki1 = 4.00 x exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (— _HXZ;AF )

4.00
Xy = 120, X1 = -3.0

— 2
kp1 =4.00 X exp (—%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (— _||x,»2—;,||2 )

4.00

Xy = 120, X1 = -3.0
2.81

— 2
kp1 =4.00 X exp (—%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

2
k (xi,x]-) = aexp (_ —HXZZH )
400 281

Xy = 120, X1 = -3.0
2.81

— 2
kp1 =4.00 X exp (—%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

2
k (Xi, xj) = aexp (— —”ﬁ;’” )
4.00 281

x2 =1.20,x, =1.20
2.81

kop = 4.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

4.00 281

x2 =1.20,x, =1.20
2.81 | 4.00

kop = 4.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

2
k (Xi, xj) = aexp (— —”ﬁ;’” )
4.00 281

X3 = 140, X1 = -3.0
2.81 4.00

k3,1 =4.00 x exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (— _||x,»2—;,||2 )

400 281
X3 = 140, X1 = -3.0
281 4.00
__ 2
k31 = 4.00 X exp (—%) 2.72

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (— _HXZ;AF )

4.00 281 272

X3 = 140, X1 = -3.0
2.81 4.00

k31 =4.00 X exp (—%) 2.72

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )
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Covariance Functions

Where did this covariance matrix come from?

_ b=
k(Xi,xj) = aexp (_T
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Covariance Functions
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Covariance Functions

Where did this covariance matrix come from?
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

x3 = 140, x3 = 1.40

ks3 = 4.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Gaussian Process Interpolation

3,
2,
1 .
= o0l
<
1L
2L x
-3 \ \ \ |
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Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).



Gaussian Noise

» Gaussian noise model,
p(ilf) = N (vilfi, 0%

where ¢2 is the variance of the noise.

» Equivalent to a covariance function of the form
k(xi, xj) = 8, jo°

where 0; jis the Kronecker delta function.

» Additive nature of Gaussians means we can simply add
this term to existing covariance matrices.



Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Fit to Olympic Marathon Data

45

35 -

25

2 \ \ \ \
1892 1932 1972 2012




Outline

GP Non-Gaussian



General Noise Models

Graph of a GP
> Relates input variables,
X, to vector, y, through £ -

given kernel parameters e

(o]

0.
» Plate notation indicates
independence of y;lf;.

> Ingeneralp(yi|ﬁ) is i=1...n
non-Gaussian. - g

» We approximate with

Gaussian Figure: The Gaussian process
pilfi) » N (mil fz,,Bl_l) depicted graphically.



Gaussian Noise

2+ p(flX, %, y)

0 ! ! ! !
-3 -2 -1 0 1 2 3 4

Figure: Inclusion of a data point with Gaussian noise.




Gaussian Noise

2 - p(fIX,x.,y)

p(y- = 0.6lf.)
1L _
0 | | |

3 2 - 0 1 2 3 4

Figure: Inclusion of a data point with Gaussian noise.



Gaussian Noise

2 p(LXx,y) A
p(y. = 0.6lf.)

1 B p(ﬂ|xlxx—/YIyx-) N

0 | | |

3 2 - 0 1 2 3 4

Figure: Inclusion of a data point with Gaussian noise.



Expectation Propagation

Local Moment Matching

» Easiest to consider a single previously unseen data point,
Vs, Xa.

» Before seeing data point, prediction of f. is a GP, q (f.ly, X).

» Update prediction using Bayes’ Rule,

p (y:lf) p (fly, X, x.)
p(y, yIX, x.)

p (fly, v, X, x:) =

This posterior is not a Gaussian process if p (y.|f.) is
non-Gaussian.



Classification Noise Model

Probit Noise Model
L= 1 yi=1
=
= 05 - s
QU
0 |

Figure: The probit model (classification). The plot shows p (y;|f;) for
different values of y;. For y; = 1 we have

pilf) = o (f) = [1 N (=0,1) d.



Expectation Propagation II

Match Moments

» Idea behind EP — approximate with a Gaussian process at
this stage by matching moments.

» This is equivalent to minimizing the following KL
divergence where g (f.ly, v., X, x.) is constrained to be a GP.

q(fly, y-X,x.) = argmin .\ VKL (p (fly, v X x) llg (£ly, y-, X, x.))

» This is equivalent to setting

<ﬂ>q(f*|y,y*,x,x*) = <f*>P(f*|y,y*,X,x*)

<f*2>q(f,¢|y,y&,x,x*) - <ﬂ2>p(f&|y,y*,x,x,)



Expectation Propagation III

Equivalent Gaussian

» This is achieved by replacing p (v.|f.) with a Gaussian

distribution
p (vl f)p (£ly, X, x.)
*l 7 Ys, X/ X« ) =
p (Ll v X, %) Dy, 7%, %)
becomes
N (mdfo, Bt ) p (fily, X, x0)
q(fly, v X, x.) = ( )

p(y, yIX,x.)



Classification

3 F T T T
p (X, %, y)

0 ! ! !
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Figure: An EP style update with a classification noise model.




Classification

3F ! ‘ : -
p (fIX x.,y)
p(y-=1f)

2 L _

1 |

0 | | |
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Figure: An EP style update with a classification noise model.



Classification

31 ‘ ‘ ‘ -
p (flX, %, y)
p(y-=1f)

2 b p (flX, ., y, y.) -

1 |

0 | | |

-3 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model.



Classification

3F ‘ ‘ ‘ =
p (fX, x., y)
p(y. =1If)

2 | p (fIX, %, y, y) §
g (fIX, x.,y)

1 |

0 | |

-3 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model.



Ordinal Noise Model

Ordered Categories
L i= -1 hi=1
:':_\i‘
2 05 -
QU
0

fi

Figure: The ordered categorical noise model (ordinal regression). The

plot shows p (vilf;) for different values of y;. Here we have assumed
three categories.



Laplace Approximation

» Equivalent Gaussian is found by making a local 2nd order
Taylor approximation at the mode.

» Laplace was the first to suggest this!, so it’s known as the
Laplace approximation.



Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 TK—l
N(yIO, K) = Texp —¥
(2m)2|K|2

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 6)
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Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 TK—l
lOgN (YlO, K) :—E 10g |K|—¥

- glog2n

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 6)



Learning Covariance Parameters

Can we determine covariance parameters from the data?

T -1

y Ky

1
E0) = 5 log K| + >

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 6)



Eigendecomposition of Covariance

A useful decomposition for understanding the objective
function.

K = RA’R”

Diagonal of A represents distance
along axes.
R gives a rotation of these axes.
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Capacity control: log |K|
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Capacity control: log [K]|

A0 0
A= 0 A 0
0 0 A

|A] = A1A2A3
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Capacity control: log [K]|
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

20

15

y(x)

107! 10° 10
x length scale, £
TK-!

1
E(9) = 5 log K| + yz—y
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

7L 20

15

1 10

® 0 /\\\/ 5
= 0
1 5

2 F \ \ \ -10

-2 -1 0 1 2 1071 10° 10!
x length scale, £

T-1

1 K
E(9) = 5 log K| + y> v



Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

D) 20
15
1 10
E 0 //P—-\.\\\ 5
= 0

-1 5 X
-2 ! ! ! | -10

-2 -1 0 1 2 107! 10° 10°
x length scale, £
Tc-1

1 K
E(9) = 5 log K| + y> v



Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

)L 20
15
1 x 10
= 5
-1 - —x
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

' 20
15
1 - 10 /
2 oF 5 /
= ¥ 0 - Vi
1 = -y
2 b \ \ \ | -10 \N
2 0 1 2 107! 10° 10!
x length scale, £
TK-1

1 K
E(9) = 5 log K| + y> v



Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

y(x)

L 20
15 /‘
% x 10
B x 5 // x
0 J/
i 5 :
L | S -10 S
-2 -1 1 2 107! 10° 10°
length scale, £
y'Kly

E0) = %loglKl +



Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

y(x)

20

I 15 ///
X x 10
e 5 [ 4
x 0 i/ //
-5 3
C \ \ \ -10
2 A 1 2 107! 10° 10
length scale, £
TK-1

1 K
E(9) = 5 log K| + y> v



Gene Expression Example

» Given given expression levels in the form of a time series
from Della Gatta et al. (2008).

» Want to detect if a gene is expressed or not, fit a GP to each
gene (Kalaitzis and Lawrence, 2011).



Kalaitzis and Lawrence BMC Bioinformatics 2011, 12:180
http://www.biomedcentral.com/1471-2105/12/180

BMC
Bioinformatics

ESEARCH ARTICLE Open Access

A Simple Approach to Ranking Differentially
Expressed Gene Expression Time Courses through
Gaussian Process Regression

Alfredo A Kalaitzis” and Neil D Lawrence”

Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms
of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which
genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is
drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal
nature of the data based on a Gaussian process.

Results: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene
expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of
time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings
produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for
the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing
that the proposed approach considerably outperforms the current state of the art.



http://www.biomedcentral.com/1471-2105/12/180

log,, SNR

1152253 35
log,, length scale

Contour plot of Gaussian process likelihood.



log,, SNR

Optima: length scale of 1.2221 and log;, SNR of 1.9654 log

S o
Qo
=
0

.’I—‘
N O1
T

-2.5

1152253 35
log,, length scale

y(x)

1

05
0
05

-1

0 5010015@0@51B00

likelihood is -0.22317.

X




log,, SNR

Optima: length scale of 1.5162 and log;, SNR of 0.21306 log

S o
Qo
=
0

.’I—‘
N O1
T

-2.5

1152253 35
log,, length scale

y(x)

1
0.5

-0.5
-1

likelihood is -0.23604.

e

0 5010015@0@51B00

X



V"

s
N O1
% =
__
y(x)

log,, SNR
S
&
——T
/

COO0 QOO0
[ 1o !N 1T SN Yo Xe'd

-2.5
115 2 25 3 35

log,, length scale

XK

X X

V2

D I B B
0 5010015R0@5B00

X

Optima: length scale of 2.9886 and log;, SNR of -4.506 log

likelihood is -2.1056.



Basis Function Form

Radial basis functions commonly have the form

» Basis function
maps data into a
“feature space” in
which a linear

Ix; — pl?
X;) = eX _ .
1 _
E 05 -
g
0 | | | | | |
8 6 4 2 0 2 4 6 8

sum is a non linear
function.

x
Figure: A set of radial basis functions with width
¢ =2 and location parameters p = [-4 0 4]".



Basis Function Representations

» Represent a function by a linear sum over a basis,

fOq5w) = ) wie(xi,), (1)
k=1

» Here: m basis functions and ¢(-) is kth basis function and
w=[w,...,wn]".

» For standard linear model: ¢x(x;.) = x; .



Random Functions

Functions derived
using:

flx) = Z wrPr(x),
P}

where elements of w
are independently
sampled from a
Gaussian density,

Wy ~ N(O,a).

f()

[
864202 4 6 8

X
Figure: Functions sampled using the basis set from
figure 9. Each line is a separate sample, generated
by a weighted sum of the basis set. The weights, w
are sampled from a Gaussian density with variance
a=1
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Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.
vi~ N (ui0?)

iyi NN[in’f ” ‘712]
i=1 i=1 i=1

2. Scaling a Gaussian leads to a Gaussian.

y~N(g,0%)

wy ~ N(wy, wzoz)
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Multivariate Consequence

> If
XNN(le)

» And
y = Wx

» Then
y~N(Wp, WEWT)
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RBF Basis Functions

k(x,x) = ap(x)" (x)

(P (x = exp[ ||x _{“k“Z]
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> If
XNN(le)

» And
y = Wx

» Then
y~N(Wp, WEWT)



Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

» Consider uniform spacing over a region:

k(xi, xj) = agy(x;) " r(x;)
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Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

» Consider uniform spacing over a region:

. (x; — ) (xj = )
xz,x] aZe ( 2{7’;’( )exp[ ]2—52")
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Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

» Consider uniform spacing over a region:

. (¢ — w)? (= )’
k() “Z;e [ 20 2



Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

» Consider uniform spacing over a region:

m X3 +x]2.—2‘uk(xi+xj)+2[ui
xl, x] az; ex 7 ,




Uniform Basis Functions

» Set each center location to

(,lk=tZ+A‘LL‘(k—1).
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» Set each center location to

(,lk=tZ+A‘LL‘(k—1).

» Specify the basis functions in terms of their indices,
m x? + x?
o ! ]
k(xi,x]-) = Ay;exp( Y
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Uniform Basis Functions

» Set each center location to

(,lk=tZ+A‘LL‘(k—1).

» Specify the basis functions in terms of their indices,
m x? + x?
o ! ]
k(xi,x]-) = Ay;exp( Y
2(L1+Ay-(k—1))(9q+xj)+2(a+Ay-(k—1))2
- 202 '

» Here we’ve scaled variance of process by Ap.
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Infinite Basis Functions

» Take
pr=aand y, =bsob=a+ Au-(m-1)

» This implies
b—a=Au(m-1)

and therefore

» Take limit as Ay — 0som — oo

+

2 2 1. 4 2 1. ' 2
k(x;, xj) = o fb exp (_X,-ZJ;ZXJ. 2(# 2 (xl +x2]2 5 (x, +x]) )dy,

where we have used a + k- Ay — p.



Result

» Performing the integration leads to
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2
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442

1 erf[(b—%(Xi”f))J_erf{(“—%(xi”f))]]/

X3 ; 7

2
k(xixj) = a’ mexp [—M]

» Now take limitasa — —coand b — oo



Result

» Performing the integration leads to

442

1 erf[(b—%(Xi”f))J_erf{(“—%(xi”f))]]/

X3 ; 7

2
k(xixj) = a’ mexp [—M]

» Now take limitasa — —coand b — oo

(xi—xj)z
k(xi,xj) = aexp iz |

where a = a’ Vrf?.



Infinite Feature Space

» An RBF model with infinite basis functions is a Gaussian
process.



Infinite Feature Space

» An RBF model with infinite basis functions is a Gaussian
process.

» The covariance function is given by the exponentiated
quadratic covariance function.

(xi - x]-)2

k(xi,xj) =aexp|-— 1



Infinite Feature Space

» An RBF model with infinite basis functions is a Gaussian
process.

» The covariance function is the exponentiated quadratic.

» Note: The functional form for the covariance function and
basis functions are similar.

» this is a special case,
» in general they are very different

Similar results can obtained for multi-dimensional input
models Williams (1998); Neal (1996).
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Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

2
lIx —X'Il;
22

k(x,x') = aexp [—

» Covariance matrix is
built using the inputs to
the function x.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel.




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

, Ix = xll3
k(X/X ) = aexp —7

» Covariance matrix is

built using the inputs to 3r
) 2 b
the function x. 1k
» For the example above it 0
was based on Euclidean -1k
distance. 2+
-3 \ \ \ |

» The covariance function
is also know as a kernel.



Covariance Functions

MLP Covariance Function

k(x,x") = qasin
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» Based on infinite neural
network model.

w =40
b=4




Covariance Functions

MLP Covariance Function

k(x,x") = aasin

wx'x' +b )

Vox™x+b+ 1 Vux’Tx +b+1

» Based on infinite neural 2 -
network model. 1 -
0 ,
w =40
1L
b=4 2 b
| | | |




Constructing Covariance Functions

» Sum of two covariances is also a covariance function.

k(x,x") = ki(x,x") + ka(x,x")



Constructing Covariance Functions

» Product of two covariances is also a covariance function.

k(x,x") = ky(x, x")ka(x, x")



Multiply by Deterministic Function

\4

If f(x) is a Gaussian process.

\4

g(x) is a deterministic function.

h(x) = f(x)g(x)
Then

\4

v

kn(x,x") = §()k(x,x")g(x)

where kj, is covariance for h(-) and ky is covariance for f(-).
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Covariance Functions

MLP Covariance Function

k(x,x") = aasin

wx'x' +b )

Vox™x+b+ 1 Vux’Tx +b+1

» Based on infinite neural 2 -
network model. 1 -
0 ,
w =40
1L
b=4 2 b
| | | |




Covariance Functions

Linear Covariance Function

k(x,x") = ax"x’

» Bayesian linear
regression.

a=1

F

-




Covariance Functions

Linear Covariance Function

k(x,x') = ax"x’

3 ~
2 L
» Bayesian linear 1k
regression. 0 F
a=1 1E
2L

-3 | | | |



Outline

GP Limitations



Limitations of Gaussian Processes

» Inference is O(n®) due to matrix inverse (in practice use
Cholesky).

» Gaussian processes don’t deal well with discontinuities
(financial crises, phosphorylation, collisions, edges in
images).

» Widely used exponentiated quadratic covariance (RBF) can
be too smooth in practice (but there are many
alternatives!!).



Outline

Kalman Filter



Simple Markov Chain

v

v

Markov property,

X =Xj—1 + €j,
€; NN (0/ (X)
= x; ~N (xi-1,a)

v

Initial state,
xo ~ N (0, a0)

v

If xo ~ N (0, 2) we have a Markov chain for the latent
states.

\4

Markov chain it is specified by an initial distribution
(Gaussian) and a transition distribution (Gaussian).

Assume 1-d latent state, a vector over time, x = [x7 ...

XT].



Gauss Markov Chain

X0 =0, 61'~N(0,1)

xo =0.000, € =-224
x1 =0.000-224=-224



Gauss Markov Chain

X0 =0, 61'~N(0,1)

x1=-224, €, =0457
Xy = =224+ 0.457 = -1.78



Gauss Markov Chain

X0 =0, 61'~N(0,1)

x,=-178, €3=0.178
x3=-178+0.178 = -1.6



Gauss Markov Chain

X0 =0, 61'~N(0,1)

x3=-16, €4=-0.292
x4 =-16-0292 =-1.89



Gauss Markov Chain

X0 =0, 61'~N(0,1)

x3 =-189, €5=-0.501
x5 = —1.89 — 0.501 = -2.39



Gauss Markov Chain

X0 =0, 61'~N(0,1)

x5 =-239, € =132
X =—2.39+ 132 =-1.08



Gauss Markov Chain

X0 =0, 61'~N(0,1)

xe = —1.08, €7 =0.989
x7 = —1.08 + 0.989 = —-0.0881



Gauss Markov Chain

X0 =0, 61'~N(0,1)

x7 = —0.0881, €3 =-0.842
xg = —0.0881 — 0.842 = —0.93



Gauss Markov Chain

X0 =0, 61'~N(0,1)

xg =—-0093, €9=-041
x9 = —0.93 -0.410 = -1.34



Multivariate Gaussian Properties: Reminder

If
z~ N(H, C)

and
x=Wz+b

then
x~ N (W +b,WCWT)



Multivariate Gaussian Properties: Reminder

Simplified: If
z~N (0, 021)
and
x =Wz

then
x~N (0, a2wa)



Matrix Representation of Latent Variables
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Matrix Representation of Latent Variables

X1 €1

X3 €2
X3 - €3
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Matrix Representation of Latent Variables



Multivariate Process

» Since x is linearly related to € we know x is a Gaussian
process.

» Trick: we only need to compute the mean and covariance
of x to determine that Gaussian.



Latent Process Mean

X:L1€



Latent Process Mean

(x) = (L1€)



Latent Process Mean

(x) = L1(€)



Latent Process Mean

(x) = L1(€)

e ~N(0,al)



Latent Process Mean

<X> — L10



Latent Process Mean

(x)=0



Latent Process Covariance

xx' = LleeTLlT

x'=€'L'



Latent Process Covariance

(xx") = <L166TL1T>



Latent Process Covariance
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Latent Process Covariance

(xx") =L;(ee" )L,

e ~ N (0,al)



Latent Process Covariance

(xx") = al L



Latent Process
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Latent Process

X:L1€
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Latent Process

X:L1€

e ~N(0,al)



Latent Process

X:L1€

e ~N(0,al)

x ~ N (0, aLsL])



Covariance for Latent Process II

v

Make the variance dependent on time interval.

» Assume variance grows linearly with time.

v

Justification: sum of two Gaussian distributed random
variables is distributed as Gaussian with sum of variances.

\4

If variable’s movement is additive over time (as described)
variance scales linearly with time.



Covariance for Latent Process II

» Given
e~N(0,al) = e~ N (0,aL,L]).

Then
€~ N (0, Atal) = e ~ N (0, AtaL{L] ).

where At is the time interval between observations.



Covariance for Latent Process II

e~ N(O,aAtl), x~N(0,aAtL L)
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Covariance for Latent Process II

e~ N(O,aAtl), x~N(0,aAtL L)

K = aAfL L]

ki,]' = O(Aﬂ:—il;,]'

where 1. is a vector from the kth row of Ly: the first k elements
are one, the next T — k are zero.



Covariance for Latent Process II

e~ N(O,aAtl), x~N(0,aAtL L)

K = aAfL L]

ki,]' = O(Aﬂ:—il;,]'

where 1. is a vector from the kth row of Ly: the first k elements
are one, the next T — k are zero.

kij = aAt min(, j)
define Ati = t; so

ki,]' = O(mil’l(ti, t]) = k(ti, t])



Covariance Functions

Where did this covariance matrix come from?

Markov Process

k(t,t') = amin(t, t')

» Covariance matrix is
built using the inputs to
the function ¢.




Covariance Functions

Where did this covariance matrix come from?

Markov Process

k(t,t') = amin(t, t')

» Covariance matrix is
built using the inputs to
the function ¢.




Covariance Functions

Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

» Precision matrix is
sparse: only neighbours
in matrix are non-zero.

» This reflects conditional
independencies in data.

» In this case Markov
structure.




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

2
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» Covariance matrix is
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the function x.

» For the example above it
was based on Euclidean
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» The covariance function
is also know as a kernel.




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

, Ix = xll3
k(X/X ) = aexp —7

» Covariance matrix is

built using the inputs to 3r
) 2 b
the function x. 1k
» For the example above it 0
was based on Euclidean -1k
distance. 2+
-3 \ \ \ |

» The covariance function
is also know as a kernel.



Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic

Visualization of inverse covariance (precision).

» Precision matrix is not o
sparse.

» Each point is dependent
on all the others.

» In this case
non-Markovian.




Covariance Functions

Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

» Precision matrix is
sparse: only neighbours
in matrix are non-zero.

» This reflects conditional
independencies in data.

» In this case Markov
structure.




Simple Kalman Filter I

» We have state vector X = [x1 ... xq] e R™4 and if each state
evolves independently we have

q
o0 = [ [ ptx.)
i=1
p(x.;) = N (x,i]0,K).

» We want to obtain outputs through:

Yi: = Wxi,:



Stacking and Kronecker Products I

» Represent with a ‘stacked” system:
p(x) = N (x|0,I ® K)

where the stacking is placing each column of X one on top
of another as
X:1

X:2
X =

X.q



Kronecker Product

aK bK
cK dK
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Stacking and Kronecker Products I

» Represent with a ‘stacked” system:
p(x) = N (x|0,I ® K)

where the stacking is placing each column of X one on top
of another as
X:1

X:2
X =

X.q



Column Stacking

LN




For this stacking the marginal distribution over time is given by
the block diagonals.
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For this stacking the marginal distribution over time is given by
the block diagonals.



Two Ways of Stacking

Can also stack each row of X to form column vector:
X1,:
X2,
X =

XT,:

p(x) = N (x/0,K®1I)



Row Stacking

.®E:




For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



Observed Process

The observations are related to the latent points by a linear
mapping matrix,
Yi: = wxi,: + €.

€~ N(O, 021)



Mapping from Latent Process to Observed

W 0 0 X1,: WXL;
0 WO X X2, — WX2,:
0 0 W X3, WX3I;




Output Covariance

This leads to a covariance of the form
IOW)KDIWT) + Io?
Using (A ® B)(C ® D) = AC® BD This leads to
K@ WW' +10°

or
y~N(0,WW™ @K +10?)
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Kronecker Structure GPs

» This Kronecker structure leads to several published
models.

(K(X, x/))j,j’ = k(X, X,)kT(j, j/)/
where k has x and kr has i as inputs.

» Can think of multiple output covariance functions as
covariances with augmented input.

» Alongside x we also input the j associated with the output
of interest.



Separable Covariance Functions

» Taking B = WWT we have a matrix expression across
outputs.
K(x,x") = k(x,x")B,
where B is a p X p symmetric and positive semi-definite
matrix.
» B is called the coregionalization matrix.

» We call this class of covariance functions separable due to
their product structure.



Sum of Separable Covariance Functions

» In the same spirit a more general class of kernels is given
by
9
K(x,x) = Y ki(x,x)B;.
j=1

» This can also be written as

q
K(X,X) = ) B;®k(X,X),
j=1

» This is like several Kalman filter-type models added
together, but each one with a different set of latent
functions.

» We call this class of kernels sum of separable kernels (SoS
kernels).



Geostatistics

» Use of GPs in Geostatistics is called kriging.

» These multi-output GPs pioneered in geostatistics:
prediction over vector-valued output data is known as
cokriging.

» The model in geostatistics is known as the linear model of
coregionalization (LMC, Journel and Huijbregts (1978);
Goovaerts (1997)).

» Most machine learning multitask models can be placed in
the context of the LMC model.



Weighted sum of Latent Functions

» In the linear model of coregionalization (LMC) outputs are
expressed as linear combinations of independent random
functions.

» In the LMC, each component f; is expressed as a linear sum

q
00 =Y wu(x).
j=1

where the latent functions are independent and have
covariance functions k;j(x, x’).

» The processes { fj(x)}?:1 are independent for g # j'.



Kalman Filter Special Case

» The Kalman filter is an example of the LMC where
ui(x) = xi(t).
» Le. we've moved form time input to a more general input
space.
» In matrix notation:
1. Kalman filter
F =WX

2. LMC
F=WU

where the rows of these matrices F, X, U each contain g
samples from their corresponding functions at a different
time (Kalman filter) or spatial location (LMC).



Intrinsic Coregionalization Model

» If one covariance used for latent functions (like in Kalman
filter).

» This is called the intrinsic coregionalization model (ICM,
Goovaerts (1997)).

» The kernel matrix corresponding to a dataset X takes the
form
K(X, X) = B®k(X, X).



Autokrigeability

» If outputs are noise-free, maximum likelihood is
equivalent to independent fits of B and k(x, x") (Helterbrand
and Cressie, 1994).

» In geostatistics this is known as autokrigeability
(Wackernagel, 2003).

» In multitask learning its the cancellation of intertask
transfer (Bonilla et al., 2008).



Intrinsic Coregionalization Model

K(X,X) = ww' ® k(X, X).
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Intrinsic Coregionalization Model

KX, X) = ww" ®k(X, X).
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Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).
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Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).

1 05 -
B‘[o.s 1.5]
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LMC Samples
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LMC in Machine Learning and Statistics

» Used in machine learning for GPs for multivariate
regression and in statistics for computer emulation of
expensive multivariate computer codes.

» Imposes the correlation of the outputs explicitly through
the set of coregionalization matrices.
» Setting B = I, assumes outputs are conditionally

independent given the parameters . (Minka and Picard,
1997; Lawrence and Platt, 2004; Yu et al., 2005).

» More recent approaches for multiple output modeling are
different versions of the linear model of coregionalization.



Semiparametric Latent Factor Model

» Coregionalization matrices are rank 1 Teh et al. (2005).
rewrite equation (??) as

K(X, X) =

q
W:,]'W:Tj ® k](X, X).

j=1

» Like the Kalman filter, but each latent function has a
different covariance.

» Authors suggest using an exponentiated quadratic
characteristic length-scale for each input dimension.
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Gaussian processes for Multi-task, Multi-output and
Multi-class

» Bonilla et al. (2008) suggest ICM for multitask learning.

» Use a PPCA form for B: similar to our Kalman filter
example.

» Refer to the autokrigeability effect as the cancellation of
inter-task transfer.

» Also discuss the similarities between the multi-task GP
and the ICM, and its relationship to the SLFM and the
LMC.



Multitask Classification

» Mostly restricted to the case where the outputs are
conditionally independent given the hyperparameters ¢
(Minka and Picard, 1997; Williams and Barber, 1998; Lawrence
and Platt, 2004; Seeger and Jordan, 2004; Yu et al., 2005;
Rasmussen and Williams, 2006).

» Intrinsic coregionalization model has been used in the
multiclass scenario. Skolidis and Sanguinetti (2011) use the
intrinsic coregionalization model for classification, by
introducing a probit noise model as the likelihood.

» Posterior distribution is no longer analytically tractable:
approximate inference is required.



Computer Emulation

» A statistical model used as a surrogate for a
computationally expensive computer model.

» Higdon et al. (2008) use the linear model of
coregionalization to model images representing the
evolution of the implosion of steel cylinders.

» In Conti and O’'Hagan (2009) use the ICM to model a
vegetation model: called the Sheffield Dynamic Global
Vegetation Model (Woodward et al., 1998).
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