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y = mx + c

point 1: x = 1, y = 3

3 = m + c

point 2: x = 3, y = 1

1 = 3m + c

point 3: x = 2, y = 2.5

2.5 = 2m + c









6 A PHILOSOPHICAL ESSAY ON PROBABILITIES.

height: "The day will come when, by study pursued

through several ages, the things now concealed will

appear with evidence; and posterity will be astonished

that truths so clear had escaped us.
' '

Clairaut then

undertook to submit to analysis the perturbations which

the comet had experienced by the action of the two

great planets, Jupiter and Saturn; after immense cal-

culations he fixed its next passage at the perihelion

toward the beginning of April, 1759, which was actually

verified by observation. The regularity which astronomy
shows us in the movements of the comets doubtless

exists also in all phenomena. -

The curve described by a simple molecule of air or

vapor is regulated in a manner just as certain as the

planetary orbits
;
the only difference between them is

that which comes from our ignorance.

Probability is relative, in part to this ignorance, in

part to our knowledge. We know that of three or a

greater number of events a single one ought to occur
;

but nothing induces us to believe that one of them will

occur rather than the others. In this state of indecision

it is impossible for us to announce their occurrence with

certainty. It is, however, probable that one of these

events, chosen at will, will not occur because we see

several cases equally possible which exclude its occur-

rence, while only a single one favors it.

The theory of chance consists in reducing all the

events of the same kind to a certain number of cases

equally possible, that is to say, to such as we may be

equally undecided about in regard to their existence,
and in determining the number of cases favorable to

the event whose probability is sought. The ratio of



y = mx + c + ε

point 1: x = 1, y = 3

3 = m + c + ε1

point 2: x = 3, y = 1

1 = 3m + c + ε2

point 3: x = 2, y = 2.5

2.5 = 2m + c + ε3



Underdetermined System

What about two unknowns and
one observation?

y1 = mx1 + c
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Underdetermined System

Can compute m given c.

m =
y1 − c
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Underdetermined System

Can compute m given c.

c = 1.75 =⇒ m = 1.25
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Underdetermined System

Can compute m given c.

c = −0.777 =⇒ m = 3.78
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Underdetermined System

Can compute m given c.

c = −4.01 =⇒ m = 7.01
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Underdetermined System

Can compute m given c.

c = −0.718 =⇒ m = 3.72
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Underdetermined System

Can compute m given c.

c = 2.45 =⇒ m = 0.545
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Underdetermined System

Can compute m given c.

c = −0.657 =⇒ m = 3.66
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Underdetermined System

Can compute m given c.

c = −3.13 =⇒ m = 6.13
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Underdetermined System

Can compute m given c.

c = −1.47 =⇒ m = 4.47
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Underdetermined System

Can compute m given c.
Assume

c ∼ N (0, 4) ,

we find a distribution of solu-
tions.
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Gaussian Process

yi(xi) = f (xi) + εi

I Place a prior over the process as well as the noise.
I Leads to models that are not i.i.d.
I Contrast with classical model’s objective function:

n∑
i=1

(1 − yi(w>xi − b))+ + λw>w



Model and Algorithm

I I’m keen on the idea of a conceptual separation model and
algorithm.

I Model is how you encode the regularities of the universe.
I Algorithm is how you combine that model with data.

data + model→ prediction

I Of course often we are restricted in modeling choice due to
lack of algorithms.



Gaussian Processes: Extremely Short Overview
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Sampling a Function

Multi-variate Gaussians

I We will consider a Gaussian with a particular structure of
covariance matrix.

I Generate a single sample from this 25 dimensional
Gaussian distribution, f =

[
f1, f2 . . . f25

]
.

I We will plot these points against their index.



Gaussian Distribution Sample
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Figure: A sample from a 25 dimensional Gaussian distribution.
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Gaussian Distribution Sample
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Prediction of f2 from f1
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I The single contour of the Gaussian density represents the
joint distribution, p( f1, f2).

I We observe that f1 = −0.313.
I Conditional density: p( f2| f1 = −0.313).
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Prediction with Correlated Gaussians

I Prediction of f2 from f1 requires conditional density.
I Conditional density is also Gaussian.

p( f2| f1) = N

 f2|
k1,2

k1,1
f1, k2,2 −

k2
1,2

k1,1


where covariance of joint density is given by

K =

[
k1,1 k1,2
k2,1 k2,2

]



Prediction of f5 from f1
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I Conditional density: p( f5| f1 = −0.313).
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Prediction with Correlated Gaussians

I Prediction of f∗ from f requires multivariate conditional
density.

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|K∗,fK−1

f,f f,K∗,∗ −K∗,fK−1
f,f Kf,∗

)

I Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]



Prediction with Correlated Gaussians

I Prediction of f∗ from f requires multivariate conditional
density.

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N (f∗|µ,Σ)

µ = K∗,fK−1
f,f f

Σ = K∗,∗ −K∗,fK−1
f,f Kf,∗

I Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.
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Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x1 = −3.0, x1 = −3.0

k1,1 = 1.00 × exp
(
−

(−3.0−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00
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(
xi, x j
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= α exp
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2
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x1 = −3.0, x1 = −3.0
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(
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Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?
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0.110

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)
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−
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)



Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?
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−
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2
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x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x2 = 1.20

k2,2 = 1.00 × exp
(
−

(1.20−1.20)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

k
(
xi, x j
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= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.
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k3,1 = 1.00 × exp
(
−

(1.40−−3.0)2
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Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

0.0889

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x1 = −3.0

k3,1 = 1.00 × exp
(
−

(1.40−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?
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Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?

k
(
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= α exp

(
−
||xi−x j||

2
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x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.
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k3,3 = 1.00 × exp
(
−

(1.40−1.40)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||
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2`2
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Covariance Functions
Where did this covariance matrix come from?

1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.
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k1,1 = 1.0 × exp
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−

(−3−−3)2

2×2.02
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Covariance Functions
Where did this covariance matrix come from?

1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0 × exp
(
−

(1.2−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0

0.11

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0 × exp
(
−

(1.2−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?
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= α exp
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−
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2
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x2 = 1.2, x1 = −3

k2,1 = 1.0 × exp
(
−

(1.2−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?
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(
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= α exp

(
−
||xi−x j||
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2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.
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k2,2 = 1.0 × exp
(
−

(1.2−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11
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k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x2 = 1.2

k2,2 = 1.0 × exp
(
−

(1.2−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0 × exp
(
−

(1.4−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0 × exp
(
−

(1.4−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0 × exp
(
−

(2.0−2.0)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0 × exp
(
−

(2.0−2.0)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0 × exp
(
−

(2.0−2.0)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00 × exp
(
−

(−3.0−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00 × exp
(
−

(−3.0−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00 × exp
(
−

(1.20−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00

2.81

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00 × exp
(
−

(1.20−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00 × exp
(
−

(1.20−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00 × exp
(
−

(1.20−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00 × exp
(
−

(1.20−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
(
−

(1.40−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

2.72

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
(
−

(1.40−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
(
−

(1.40−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00 × exp
(
−

(1.40−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00 × exp
(
−

(1.40−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00 × exp
(
−

(1.40−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)



Gaussian Process Interpolation
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Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
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Gaussian Process Interpolation
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Gaussian Process Interpolation
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Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).



Gaussian Process Interpolation
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Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).



Gaussian Noise

I Gaussian noise model,

p
(
yi| fi

)
= N

(
yi| fi, σ2

)
where σ2 is the variance of the noise.

I Equivalent to a covariance function of the form

k(xi, x j) = δi, jσ
2

where δi, j is the Kronecker delta function.
I Additive nature of Gaussians means we can simply add

this term to existing covariance matrices.



Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Fit to Olympic Marathon Data
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General Noise Models

Graph of a GP
I Relates input variables,

X, to vector, y, through f
given kernel parameters
θ.

I Plate notation indicates
independence of yi| fi.

I In general p
(
yi| fi

)
is

non-Gaussian.
I We approximate with

Gaussian
p
(
yi| fi

)
≈ N

(
mi| fi, β−1

i

)
.

yi

X

fi

θ

i = 1 . . . n

Figure: The Gaussian process
depicted graphically.



Gaussian Noise
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Figure: Inclusion of a data point with Gaussian noise.
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Expectation Propagation

Local Moment Matching

I Easiest to consider a single previously unseen data point,
y∗, x∗.

I Before seeing data point, prediction of f∗ is a GP, q
(

f∗|y,X
)
.

I Update prediction using Bayes’ Rule,

p
(

f∗|y, y∗,X, x∗
)

=
p
(
y∗| f∗

)
p
(

f∗|y,X, x∗
)

p
(
y, y∗|X, x∗

) .

This posterior is not a Gaussian process if p
(
y∗| f∗

)
is

non-Gaussian.



Classification Noise Model

Probit Noise Model

0

0.5

1

-4 -2 0 2 4

p(
y i
|f

i)

fi

yi = −1 yi = 1

Figure: The probit model (classification). The plot shows p
(
yi| fi

)
for

different values of yi. For yi = 1 we have

p
(
yi| fi

)
= φ

(
fi
)

=
∫ fi
−∞
N (z|0, 1) dz.



Expectation Propagation II

Match Moments

I Idea behind EP — approximate with a Gaussian process at
this stage by matching moments.

I This is equivalent to minimizing the following KL
divergence where q

(
f∗|y, y∗,X, x∗

)
is constrained to be a GP.

q
(

f∗|y, y∗X, x∗
)

= argminq( f∗ |y,y∗X,x∗)KL
(
p
(

f∗|y, y∗X, x∗
)
||q

(
f∗|y, y∗,X, x∗

))
I This is equivalent to setting〈

f∗
〉

q( f∗|y,y∗,X,x∗) =
〈

f∗
〉

p( f∗|y,y∗,X,x∗)〈
f 2
∗

〉
q( f∗|y,y∗,X,x∗)

=
〈

f 2
∗

〉
p( f∗|y,y∗,X,x∗)



Expectation Propagation III

Equivalent Gaussian

I This is achieved by replacing p
(
y∗| f∗

)
with a Gaussian

distribution

p
(

f∗|y, y∗,X, x∗
)

=
p
(
y∗| f∗

)
p
(

f∗|y,X, x∗
)

p
(
y, y∗|X, x∗

)
becomes

q
(

f∗|y, y∗,X, x∗
)

=
N

(
m∗| f∗, β−1

m

)
p
(

f∗|y,X, x∗
)

p
(
y, y∗|X, x∗

) .
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Figure: An EP style update with a classification noise model.
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Ordinal Noise Model

Ordered Categories

0

0.5

1
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p(
y i
|f

i)

fi

yi = −1 yi = 1yi = 0

Figure: The ordered categorical noise model (ordinal regression). The
plot shows p

(
yi| fi

)
for different values of yi. Here we have assumed

three categories.



Laplace Approximation

I Equivalent Gaussian is found by making a local 2nd order
Taylor approximation at the mode.

I Laplace was the first to suggest this1, so it’s known as the
Laplace approximation.



Learning Covariance Parameters
Can we determine covariance parameters from the data?

N
(
y|0,K

)
=

1

(2π)
n
2 |K|

1
2
exp

(
−

y>K−1y
2

)

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)
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Learning Covariance Parameters
Can we determine covariance parameters from the data?

logN
(
y|0,K

)
=−

1
2

log |K|−
y>K−1y

2
−

n
2

log 2π

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)



Learning Covariance Parameters
Can we determine covariance parameters from the data?

E(θ) =
1
2

log |K| +
y>K−1y

2

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)



Eigendecomposition of Covariance

A useful decomposition for understanding the objective
function.

K = RΛ2R>

λ1
λ2

Diagonal of Λ represents distance
along axes.
R gives a rotation of these axes.

where Λ is a diagonal matrix and R>R = I.

Useful representation since |K| =
∣∣∣Λ2

∣∣∣ = |Λ|2.
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Capacity control: log |K|

|RΛ| = λ1λ2

w1,1 w1,2

w2,1 w2,2

λ1
λ2

|Λ|
RΛ =



Data Fit: y>K−1y
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?
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Gene Expression Example

I Given given expression levels in the form of a time series
from Della Gatta et al. (2008).

I Want to detect if a gene is expressed or not, fit a GP to each
gene (Kalaitzis and Lawrence, 2011).



RESEARCH ARTICLE Open Access

A Simple Approach to Ranking Differentially
Expressed Gene Expression Time Courses through
Gaussian Process Regression
Alfredo A Kalaitzis* and Neil D Lawrence*

Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms
of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which
genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is
drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal
nature of the data based on a Gaussian process.

Results: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene
expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of
time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings
produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for
the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing
that the proposed approach considerably outperforms the current state of the art.

Conclusions: Gaussian processes offer an attractive trade-off between efficiency and usability for the analysis of
microarray time series. The Gaussian process framework offers a natural way of handling biological replicates and
missing values and provides confidence intervals along the estimated curves of gene expression. Therefore, we
believe Gaussian processes should be a standard tool in the analysis of gene expression time series.

Background
Gene expression profiles give a snapshot of mRNA con-
centration levels as encoded by the genes of an organ-
ism under given experimental conditions. Early studies
of this data often focused on a single point in time
which biologists assumed to be critical along the gene
regulation process after the perturbation. However, the
static nature of such experiments severely restricts the
inferences that can be made about the underlying dyna-
mical system.
With the decreasing cost of gene expression microar-

rays time series experiments have become commonplace
giving a far broader picture of the gene regulation pro-
cess. Such time series are often irregularly sampled and
may involve differing numbers of replicates at each time
point [1]. The experimental conditions under which

gene expression measurements are taken cannot be per-
fectly controlled leading the signals of interest to be cor-
rupted by noise, either of biological origin or arising
through the measurement process.
Primary analysis of gene expression profiles is often

dominated by methods targeted at static experiments, i.
e. gene expression measured on a single time-point, that
treat time as an additional experimental factor [1-6].
However, were possible, it would seem sensible to con-
sider methods that can account for the special nature of
time course data. Such methods can take advantage of
the particular statistical constraints that are imposed on
data that is naturally ordered [7-12].
The analysis of gene expression microarray time-series

has been a stepping stone to important problems in sys-
tems biology such as the genome-wide identification of
direct targets of transcription factors [13,14] and the full
reconstruction of gene regulatory networks [15,16]. A
more comprehensive review on the motivations and
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Sheffield, S10 2HQ, UK
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Basis Function Form

Radial basis functions commonly have the form

φk (xi) = exp
(
−
|xi − µk|

2

2`2

)
.

I Basis function
maps data into a
“feature space” in
which a linear
sum is a non linear
function.

0
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1

-8 -6 -4 -2 0 2 4 6 8

φ
(x

)

x
Figure: A set of radial basis functions with width
` = 2 and location parameters µ = [−4 0 4]>.



Basis Function Representations

I Represent a function by a linear sum over a basis,

f (xi,:; w) =

m∑
k=1

wkφk(xi,:), (1)

I Here: m basis functions and φk(·) is kth basis function and

w = [w1, . . . ,wm]> .

I For standard linear model: φk(xi,:) = xi,k.



Random Functions

Functions derived
using:

f (x) =

m∑
k=1

wkφk(x),

where elements of w
are independently
sampled from a
Gaussian density,

wk ∼ N (0, α) .

-2
-1
0
1
2

-8 -6 -4 -2 0 2 4 6 8
f(

x)
x

Figure: Functions sampled using the basis set from
figure 9. Each line is a separate sample, generated
by a weighted sum of the basis set. The weights, w
are sampled from a Gaussian density with variance
α = 1.



Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.
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2
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σ2
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
2. Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)
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Covariance Functions

RBF Basis Functions

k (x, x′) = αφ(x)>φ(x′)

φk(x) = exp

−
∥∥∥x − µk

∥∥∥2
2

`2


µ =


−1
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yi ∼ N
(
µi, σ

2
i

)
n∑

i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i


2. Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)



Multivariate Consequence

I If
x ∼ N (µ,Σ)

I And
y = Wx

I Then
y ∼ N

(
Wµ,WΣW>

)
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Selecting Number and Location of Basis

I Need to choose
1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.
I Consider uniform spacing over a region:

k
(
xi, x j

)
= αφk(xi)>φk(x j)



Selecting Number and Location of Basis

I Need to choose
1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.
I Consider uniform spacing over a region:

k
(
xi, x j

)
= α

m∑
k=1

φk(xi)φk(x j)



Selecting Number and Location of Basis

I Need to choose
1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.
I Consider uniform spacing over a region:

k
(
xi, x j

)
= α

m∑
k=1

exp
(
−

(xi − µk)2

2`2

)
exp

− (x j − µk)2

2`2





Selecting Number and Location of Basis

I Need to choose
1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.
I Consider uniform spacing over a region:

k
(
xi, x j

)
= α

m∑
k=1

exp

− (xi − µk)2

2`2 −
(x j − µk)2

2`2





Selecting Number and Location of Basis

I Need to choose
1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.
I Consider uniform spacing over a region:

k
(
xi, x j

)
= α

m∑
k=1

exp

−x2
i + x2

j − 2µk

(
xi + x j

)
+ 2µ2

k

2`2

 ,



Uniform Basis Functions

I Set each center location to

µk = a + ∆µ · (k − 1).

I Specify the basis functions in terms of their indices,

k
(
xi, x j

)
=α′∆µ

m∑
k=1

exp
(
−

x2
i + x2

j

2`2

−

2
(
a + ∆µ · (k − 1)

) (
xi + x j

)
+ 2

(
a + ∆µ · (k − 1)

)2

2`2

)
.

I Here we’ve scaled variance of process by ∆µ.
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Infinite Basis Functions

I Take
µ1 = a and µm = b so b = a + ∆µ · (m − 1)

I This implies
b − a = ∆µ(m − 1)

and therefore
m =

b − a
∆µ

+ 1

I Take limit as ∆µ→ 0 so m→∞

k(xi, x j) = α′
∫ b

a
exp

(
−

x2
i + x2

j

2`2 +
2
(
µ − 1

2

(
xi + x j

))2
−

1
2

(
xi + x j

)2

2`2

)
dµ,

where we have used a + k · ∆µ→ µ.
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Result

I Performing the integration leads to

k(xi,x j) = α′
√

π`2 exp

−
(
xi − x j

)2

4`2


×

1
2

erf


(
b − 1

2

(
xi + x j

))
`

 − erf


(
a − 1

2

(
xi + x j

))
`


 ,

I Now take limit as a→ −∞ and b→∞

k
(
xi, x j

)
= α exp

−
(
xi − x j

)2

4`2

 .
where α = α′

√

π`2.
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Infinite Feature Space

I An RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is given by the exponentiated
quadratic covariance function.

k
(
xi, x j

)
= α exp

−
(
xi − x j

)2

4`2
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Infinite Feature Space

I An RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is the exponentiated quadratic.
I Note: The functional form for the covariance function and

basis functions are similar.
I this is a special case,
I in general they are very different

Similar results can obtained for multi-dimensional input
models Williams (1998); Neal (1996).



Covariance Functions

RBF Basis Functions

k (x, x′) = αφ(x)>φ(x′)

φk(x) = exp

−
∥∥∥x − µk

∥∥∥2
2

`2


µ =


−1
0
1





Covariance Functions

RBF Basis Functions

k (x, x′) = αφ(x)>φ(x′)

φk(x) = exp

−
∥∥∥x − µk

∥∥∥2
2

`2


µ =


−1
0
1

 -3
-2
-1
0
1
2
3

-3 -2 -1 0 1 2 3



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.
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Covariance Functions

MLP Covariance Function

k (x, x′) = αasin
(

wx>x′ + b
√

wx>x + b + 1
√

wx′>x′ + b + 1

)

I Based on infinite neural
network model.

w = 40

b = 4
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Constructing Covariance Functions

I Sum of two covariances is also a covariance function.

k(x, x′) = k1(x, x′) + k2(x, x′)



Constructing Covariance Functions

I Product of two covariances is also a covariance function.

k(x, x′) = k1(x, x′)k2(x, x′)



Multiply by Deterministic Function

I If f (x) is a Gaussian process.
I g(x) is a deterministic function.
I h(x) = f (x)g(x)
I Then

kh(x, x′) = g(x)k f (x, x′)g(x′)

where kh is covariance for h(·) and k f is covariance for f (·).
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Covariance Functions

Linear Covariance Function

k (x, x′) = αx>x′

I Bayesian linear
regression.

α = 1
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k (x, x′) = αx>x′

I Bayesian linear
regression.

α = 1



Outline

Gaussian Processes

GP Non-Gaussian

GP Limitations

Kalman Filter

Dimensionality Reduction



Limitations of Gaussian Processes

I Inference is O(n3) due to matrix inverse (in practice use
Cholesky).

I Gaussian processes don’t deal well with discontinuities
(financial crises, phosphorylation, collisions, edges in
images).

I Widely used exponentiated quadratic covariance (RBF) can
be too smooth in practice (but there are many
alternatives!!).
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Simple Markov Chain

I Assume 1-d latent state, a vector over time, x = [x1 . . . xT].
I Markov property,

xi =xi−1 + εi,

εi ∼N (0, α)

=⇒ xi ∼N (xi−1, α)

I Initial state,
x0 ∼ N (0, α0)

I If x0 ∼ N (0, α) we have a Markov chain for the latent
states.

I Markov chain it is specified by an initial distribution
(Gaussian) and a transition distribution (Gaussian).



Gauss Markov Chain
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Gauss Markov Chain
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Gauss Markov Chain
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Multivariate Gaussian Properties: Reminder

If
z ∼ N (µ,C)

and
x = Wz + b

then
x ∼ N

(
Wµ + b,WCW>

)



Multivariate Gaussian Properties: Reminder

Simplified: If
z ∼ N

(
0, σ2I

)
and

x = Wz

then
x ∼ N

(
0, σ2WW>

)



Matrix Representation of Latent Variables
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x1 = ε1
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Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

×=

x5 = ε1 + ε2 + ε3 + ε4 + ε5



Matrix Representation of Latent Variables

x εL1 ×=



Multivariate Process

I Since x is linearly related to ε we know x is a Gaussian
process.

I Trick: we only need to compute the mean and covariance
of x to determine that Gaussian.



Latent Process Mean

x = L1ε



Latent Process Mean

〈x〉 = 〈L1ε〉



Latent Process Mean

〈x〉 = L1 〈ε〉



Latent Process Mean

〈x〉 = L1 〈ε〉

ε ∼ N (0, αI)



Latent Process Mean

〈x〉 = L10



Latent Process Mean

〈x〉 = 0



Latent Process Covariance

xx> = L1εε
>L>1

x> = ε>L>



Latent Process Covariance
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Latent Process Covariance
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Latent Process Covariance
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Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒



Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒

x ∼ N
(
0, αL1L>1

)



Covariance for Latent Process II

I Make the variance dependent on time interval.
I Assume variance grows linearly with time.
I Justification: sum of two Gaussian distributed random

variables is distributed as Gaussian with sum of variances.
I If variable’s movement is additive over time (as described)

variance scales linearly with time.



Covariance for Latent Process II

I Given
ε ∼ N (0, αI) =⇒ ε ∼ N

(
0, αL1L>1

)
.

Then
ε ∼ N (0,∆tαI) =⇒ ε ∼ N

(
0,∆tαL1L>1

)
.

where ∆t is the time interval between observations.



Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(
0, α∆tL1L>1

)

K = α∆tL1L>1

ki, j = α∆tl>:,il:, j

where l:,k is a vector from the kth row of L1: the first k elements
are one, the next T − k are zero.

ki, j = α∆t min(i, j)

define ∆ti = ti so

ki, j = αmin(ti, t j) = k(ti, t j)
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Covariance Functions
Where did this covariance matrix come from?

Markov Process

k (t, t′) = αmin(t, t′)

I Covariance matrix is
built using the inputs to
the function t.
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Covariance Functions
Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

I Precision matrix is
sparse: only neighbours
in matrix are non-zero.

I This reflects conditional
independencies in data.

I In this case Markov
structure.



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.
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Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic

Visualization of inverse covariance (precision).

I Precision matrix is not
sparse.

I Each point is dependent
on all the others.

I In this case
non-Markovian.



Covariance Functions
Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

I Precision matrix is
sparse: only neighbours
in matrix are non-zero.

I This reflects conditional
independencies in data.

I In this case Markov
structure.



Simple Kalman Filter I

I We have state vector X =
[
x1 . . . xq

]
∈ RT×q and if each state

evolves independently we have

p(X) =

q∏
i=1

p(x:,i)

p(x:,i) = N
(
x:,i|0,K

)
.

I We want to obtain outputs through:

yi,: = Wxi,:



Stacking and Kronecker Products I

I Represent with a ‘stacked’ system:

p(x) = N (x|0, I ⊗K)

where the stacking is placing each column of X one on top
of another as

x =


x:,1
x:,2
...

x:,q





Kronecker Product

aK bK
cK dK

Ka b

c d
⊗ =
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Column Stacking

⊗ =



For this stacking the marginal distribution over time is given by
the block diagonals.
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Two Ways of Stacking

Can also stack each row of X to form column vector:

x =


x1,:
x2,:
...

xT,:


p(x) = N (x|0,K ⊗ I)



Row Stacking

⊗ =



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
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For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



Observed Process

The observations are related to the latent points by a linear
mapping matrix,

yi,: = Wxi,: + εi,:

ε ∼ N
(
0, σ2I

)



Mapping from Latent Process to Observed

Wx1,:

Wx2,:

Wx3,:

x1,:

x2,:

x3,:

W 0 0

0 W 0

0 0 W

× =



Output Covariance

This leads to a covariance of the form

(I ⊗W)(K ⊗ I)(I ⊗W>) + Iσ2

Using (A ⊗ B)(C ⊗D) = AC ⊗ BD This leads to

K ⊗WW> + Iσ2

or
y ∼ N

(
0,WW>

⊗K + Iσ2
)
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c© 2012 M. A. Álvarez, L. Rosasco and N. D. Lawrence
DOI: 10.1561/2200000036

Kernels for Vector-Valued
Functions: A Review

By Mauricio A. Álvarez,
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Kronecker Structure GPs

I This Kronecker structure leads to several published
models.

(K(x, x′)) j, j′ = k(x, x′)kT( j, j′),

where k has x and kT has i as inputs.
I Can think of multiple output covariance functions as

covariances with augmented input.
I Alongside x we also input the j associated with the output

of interest.



Separable Covariance Functions

I Taking B = WW> we have a matrix expression across
outputs.

K(x, x′) = k(x, x′)B,

where B is a p × p symmetric and positive semi-definite
matrix.

I B is called the coregionalization matrix.
I We call this class of covariance functions separable due to

their product structure.



Sum of Separable Covariance Functions

I In the same spirit a more general class of kernels is given
by

K(x, x′) =

q∑
j=1

k j(x, x′)B j.

I This can also be written as

K(X,X) =

q∑
j=1

B j ⊗ k j(X,X),

I This is like several Kalman filter-type models added
together, but each one with a different set of latent
functions.

I We call this class of kernels sum of separable kernels (SoS
kernels).



Geostatistics

I Use of GPs in Geostatistics is called kriging.
I These multi-output GPs pioneered in geostatistics:

prediction over vector-valued output data is known as
cokriging.

I The model in geostatistics is known as the linear model of
coregionalization (LMC, Journel and Huijbregts (1978);
Goovaerts (1997)).

I Most machine learning multitask models can be placed in
the context of the LMC model.



Weighted sum of Latent Functions

I In the linear model of coregionalization (LMC) outputs are
expressed as linear combinations of independent random
functions.

I In the LMC, each component f j is expressed as a linear sum

f j(x) =

q∑
j=1

w j, ju j(x).

where the latent functions are independent and have
covariance functions k j(x, x′).

I The processes { f j(x)}qj=1 are independent for q , j′.



Kalman Filter Special Case

I The Kalman filter is an example of the LMC where
ui(x)→ xi(t).

I I.e. we’ve moved form time input to a more general input
space.

I In matrix notation:
1. Kalman filter

F = WX

2. LMC
F = WU

where the rows of these matrices F, X, U each contain q
samples from their corresponding functions at a different
time (Kalman filter) or spatial location (LMC).



Intrinsic Coregionalization Model

I If one covariance used for latent functions (like in Kalman
filter).

I This is called the intrinsic coregionalization model (ICM,
Goovaerts (1997)).

I The kernel matrix corresponding to a dataset X takes the
form

K(X,X) = B ⊗ k(X,X).



Autokrigeability

I If outputs are noise-free, maximum likelihood is
equivalent to independent fits of B and k(x, x′) (Helterbrand
and Cressie, 1994).

I In geostatistics this is known as autokrigeability
(Wackernagel, 2003).

I In multitask learning its the cancellation of intertask
transfer (Bonilla et al., 2008).



Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]
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Intrinsic Coregionalization Model

K(X,X) = B ⊗ k(X,X).

B =
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LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2
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LMC in Machine Learning and Statistics

I Used in machine learning for GPs for multivariate
regression and in statistics for computer emulation of
expensive multivariate computer codes.

I Imposes the correlation of the outputs explicitly through
the set of coregionalization matrices.

I Setting B = Ip assumes outputs are conditionally
independent given the parameters θ. (Minka and Picard,
1997; Lawrence and Platt, 2004; Yu et al., 2005).

I More recent approaches for multiple output modeling are
different versions of the linear model of coregionalization.



Semiparametric Latent Factor Model

I Coregionalization matrices are rank 1 Teh et al. (2005).
rewrite equation (??) as

K(X,X) =

q∑
j=1

w:, jw>:, j ⊗ k j(X,X).

I Like the Kalman filter, but each latent function has a
different covariance.

I Authors suggest using an exponentiated quadratic
characteristic length-scale for each input dimension.



Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)
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Gaussian processes for Multi-task, Multi-output and
Multi-class

I Bonilla et al. (2008) suggest ICM for multitask learning.
I Use a PPCA form for B: similar to our Kalman filter

example.
I Refer to the autokrigeability effect as the cancellation of

inter-task transfer.
I Also discuss the similarities between the multi-task GP

and the ICM, and its relationship to the SLFM and the
LMC.



Multitask Classification

I Mostly restricted to the case where the outputs are
conditionally independent given the hyperparameters φ
(Minka and Picard, 1997; Williams and Barber, 1998; Lawrence
and Platt, 2004; Seeger and Jordan, 2004; Yu et al., 2005;
Rasmussen and Williams, 2006).

I Intrinsic coregionalization model has been used in the
multiclass scenario. Skolidis and Sanguinetti (2011) use the
intrinsic coregionalization model for classification, by
introducing a probit noise model as the likelihood.

I Posterior distribution is no longer analytically tractable:
approximate inference is required.



Computer Emulation

I A statistical model used as a surrogate for a
computationally expensive computer model.

I Higdon et al. (2008) use the linear model of
coregionalization to model images representing the
evolution of the implosion of steel cylinders.

I In Conti and O’Hagan (2009) use the ICM to model a
vegetation model: called the Sheffield Dynamic Global
Vegetation Model (Woodward et al., 1998).
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N. D. Lawrence and J. Quiñonero Candela. Local distance preservation in the

GP-LVM through back constraints. In W. Cohen and A. Moore, editors,
Proceedings of the International Conference in Machine Learning, volume 23,
pages 513–520. Omnipress, 2006. [Google Books] . [PDF].

G. Leen and C. Fyfe. A Gaussian process latent variable model formulation
of canonical correlation analysis. Bruges (Belgium), 26-28 April 2006 2006.

S. Levine, J. M. Wang, A. Haraux, Z. Popović, and V. Koltun. Continuous
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