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Challenges for Companies

» Trying to dominate the modern interconnected data
market (e.g. Amazon, Google, Facebook) — buying up
talent and competitors.

» or trying to exploit current “data silos’ (e.g. Tescos
clubcard, Experian) — monetising our data today (limited
shelf life?)

» or trying to understand their own systems (the internal
google search)

» or new companies with new ideas that will generate data.



Challenges for Companies

» How do they break the natural data monopoly?

» How do they access the necessary expertise?



Challenges in Science

Data sharing is more widely accepted but:

» Most analysis is simple statistical tests or explorative
modelling with PCA or clustering.

» Few scientists understand these methodologies, apply
them as black box.

» There is an understanding gap between the data & scientist
and the data scientist.



Challenges in Health

» Ensure the privacy of patients is respected.

» Leverage the wide range of data available for wider
societal benefit.



International Development

» Exploit new telecommunications infrastructure to develop
a leap-frog developed countries.

» Needs mechanisms for data sharing that retain the
individual’s control.

» Widespread education of local talent in code and model
development.



Common Strands

» Improving access to data whilst balancing against
individual’s right to privacy against societal needs to
advance.

» Advancing methodologies: development of methodologies
needed to characterize large interconnected complex data
sets.

» Analysis empowerment: giving scientists, clinicians,
students, commercial and academic partners ability to
analyze their own data with latest methodologies.



Open Data Science: A Magic Bullet?

» Make new methodologies available as widely and rapidly
as possible with as few conditions on their use as possible.

» Educate commercial, scientific and medical partners in use
of these methodologies.

» Act to achieve a balance between data sharing for societal
benefit and right of an individual to own their own data.



Achieving This

» Use BSD-like licenses on software.
» Educate our partners (summer schools, courses etc).

» Act to achieve a balance between data sharing for societal
benefit and rights of the individual.



Make Analysis Available
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But we need to do much more!
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Digital Identity and Data Ownership
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Data Warehousing
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Not sure if this is really a blog post, its more of a ‘position paper’ or a proposal, but it's something that Id be very happy to have comment on, so
publishing it i the form of a blog seems most appropriate.

We are in the midst of the information revolution and it s being driven by our increasing ability to monitor, store, interconnect and analyse large
interacting sets of data. Industrial mechanisation required a combination of coal and heat engine. Informational mechanisation requires the
combination of data and data engines. By analogy with a heat engine, which takes high entropy heat energy, and converts it to low entropy,
actionable, kinetic energy, a data engine is powered by large unstructured data sources and converts them to actionable knowledge. This can be
achieved through a ion of modelling and ion of required skill sets falls across traditional

academic boundaries.
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Modern Tools: Github
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Modern Tools: Reddit
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Modern Tools: IPython Notebook
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Literate Computing
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Thoughts and notes on open scientific computing, with a focus on Python-based tools
(IPython, numpy, scipy, matplotiib and friends).

Friday, April 19;2013

"Literate ing" and i
in the age of data-driven journalism

ibility: IPython

As "software eats the world" and we become awash in the flood of quantitative information denoted by
the "Big Data” buzzword, it's clear that informed debate in society will increasingly depend on our ability
to communicate information that is based on data. And for this communication to be a truly effective
dialog, itis necessary that the arguments made based on data can be deconstructed, analyzed, rebutted
or expanded by others. Since these arguments in practice often rely critically on the execution of code
(whether an Excel spreadsheet or a proper program), it means that we really need tools to effectively

icate narratives th i . data and the i fon of the results

1 will point out here two recent examples, taken from events in the news this week, where IPython has
helped this kind of discussion, in the hopes that it can motivate a more informed style of debate where all
the moving parts of a quantitative argument are available to all participants.
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Example: Prediction of Malaria Incidence in Uganda

» Work with John Quinn and Martin Mubaganzi (Makerere
University, Uganda)

» See http://air.ug/research.html.



Malaria Prediction in Uganda
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Malaria Prediction in Uganda

Nagongera / Tororo (Multiple output model)

Sentinel - all patients
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GP School at Makerere
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