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Notation

p data dimensionality

q latent dimensionality

n number of data points

Y design matrix containing our data nxp
X matrix of latent variables nxgq
D matrix of interpoint squared distances nxn
K similarities/covariance /kernel nxn
H centering matrix nxn
B centred similarity /kernel/covariance matrix nxn
L Laplacian matrix nxn

Row vector from matrix A given by a;. column vector a ; and
element given by 4; ;.
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High Dimensional Data



Mixtures of Gaussians
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Figure: Two dimensional data sets.
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Mixtures of Gaussians

Figure: Complex structure not a problem for mixtures of Gaussians.
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Thinking in High Dimensions

» Two dimensional plots of Gaussians can be misleading.
» Our low dimensional intuitions can fail dramatically.
» Two major issues:
1. In high dimensions all the data moves to a “shell’. There is
nothing near the mean!
2. Distances between points become constant.
3. These affects apply to many densities.
>

Let’s consider a Gaussian “egg”.
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The Gaussian Egg

» See also Exercise 1.4 in (?)

Volumes: KRV 29.4%

Figure: One dimensional Gaussian density.
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The Gaussian Egg

» See also Exercise 1.4 in (?)

Volumes: [BERSA 33.2%

Figure: Two dimensional Gaussian density.
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The Gaussian Egg

» See also Exercise 1.4 in (?)

Volumes: 56.1% 34.7%

Figure: Three dimensional Gaussian density.
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Mathematics

What is the density of probability mass?
Yik ~ N(O, 02)

2 2.2
= Y~ o

Square of sample from Gaussian is scaled chi-squared density
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Mathematics

What is the density of probability mass?
Yik ~ N(O, 02)

1 1
2
=~ 6(357)

Chi squared density is a variant of the gamma density with
shape parameter a4 = 3, rate parameter b = ﬁ,

G (x|a, b) = Lx?=1e7bx,
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Mathematics

What is the density of probability mass?
Yik ~ N(O, 62)

2 1
2 2
= Y1tV ~ Q(E' ﬁ)

Addition of gamma random variables with the same rate is
gamma with sum of shape parameters (y; ;s are independent)
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Mathematics

What is the density of probability mass?

Addition of gamma random variables with the same rate is
gamma with sum of shape parameters (y; xs are independent)
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Mathematics

What is the density of probability mass?
ly pp
Z 2 @lE =
pkzz;yi'k Q(Z'Zaz)

p
1
- <_ Z y§k> =o?
p k=1

Scaling of gamma density scales the rate parameter
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Where is the Mass?

» Squared distances are gamma distributed.

1 4 166425024

dimension

Figure: Plot of probability mass versus dimension. Plot shows the
volume of density inside 0.95 of a standard deviation (yellow),
between 0.95 and 1.05 standard deviations (green), over 1.05 and
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Looking at Gaussian Samples
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Interpoint Distances

» The other effect in high dimensions is all points become
equidistant.

» Can show this for Gaussians with a similar proof to the
above,

Yik ~ N(O, Oi) ]/j,k ~ N(O, Oi)
ik = Yix ~ N (0,207)

1 1
(yi,k - yj,k)z ~G [5’ Q)

2 _ 2

For spherical Gaussian, o, = o
P
2 p 1
2 (=)~ g(2 402)

k

=1
1i ) ~6(5 L)
p —~ yzk ]/]k 2’ 452
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Central Limit Theorem and Non-Gaussian Case

» We can compute the density of squared distance
analytically for spherical, independent Gaussian data.
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Central Limit Theorem and Non-Gaussian Case

» We can compute the density of squared distance
analytically for spherical, independent Gaussian data.

» More generally, for independent data, the central limit
theorem applies.
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Central Limit Theorem and Non-Gaussian Case

» We can compute the density of squared distance
analytically for spherical, independent Gaussian data.

» More generally, for independent data, the central limit
theorem applies.

» The mean squared distance in high dimensional space is
the mean of the variances.
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R

Central Limit Theorem and Non-Gaussian Case

» We can compute the density of squared distance
analytically for spherical, independent Gaussian data.

» More generally, for independent data, the central limit
theorem applies.

» The mean squared distance in high dimensional space is
the mean of the variances.
» The variance about the mean scales as p~'.
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Summary

» In high dimensions if individual dimensions are
independent the distributions behave counter intuitively.

» All data sits at one standard deviation from the mean.

» The densities of squared distances can be analytically
calculated for the Gaussian case.

» For non-Gaussian independent systems we can invoke the
central limit theorem.

» Next we will consider example data sets and see how their
interpoint distances are distributed.
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Sanity Check
Data sampled from independent Gaussian distribution

» If dimensions are independent, we expect low variance,
Gaussian behavior for the distribution of squared
distances.

Distance distribution for a Gaussian with p = 1000, n = 1000

SO P, N Wk O
T
|

0 1 2 3 4 5 6
squared distance
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Sanity Check
Same data generation, but fewer data points.

» If dimensions are independent, we expect low variance,
Gaussian behaviour for the distribution of squared
distances.

Distance distribution for a Gaussian with p = 1000, n = 100

SO P, N Wk O
T
|

0 1 2 3 4 5 6
squared distance
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QOil Data

» Simulated
measurements from

e Homogeneous
an oil pipeline
(Bishop and James,
1993).
» Pipleline contains
oil, water and gas.
Stratified

» Three phases of flow
in pipeline—
homogeneous,
stratified and
annular.

Annular
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QOil Data

>

Simulated
measurements from
an oil pipeline
(Bishop and James,
1993).

Pipleline contains
oil, water and gas.

Three phases of flow
in pipeline—
homogeneous,
stratified and
annular.

Gamma
densitometry
sensors arranged in
a configuration
around pipeline.
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QOil Data

» 12 simulated measurements of oil flow in a pipe.
» Nature of flow is dependent on relative proportion of oil,
water and gas.

COOOO0oO
TR CIANN S TN

01 2 3 4 5 6
squared distance

Figure: Interpoint squared distance distribution for oil data with
p = 12 (variance of squared distances is 1.98 vs predicted 0.667).
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Stick Man Data

n = 55 frames of motion
capture.

v

» xyz locations of 34 points on
the body.

» p =102 dimensional data.
» “Run 1” available from
http://accad.osu.edu/

research/mocap/mocap_
data.htm.

 / /  JAatacete/tew/talke/at+tickmandatra tew
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Stick Man

» Motion capture data inter point distance histogram.

01 2 3 4 5 6
squared distance

Figure: Interpoint squared distance distribution for stick man data
with p = 102 (variance of squared distances is 1.09 vs predicted
0.0784).
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Microarray Data

» Gene expression
measurements reflecting the
cell cycle in yeast (?).

Yeast

» p = 6,178 Genes measured for
n = 77 experiments

» Data available from http:
//genome-www.stanford. Cell
edu/cellcycle/data/
rawdata/individual.
htm.

Cycle
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Microarray Data

» Spellman yeast cell cycle.

12

S N B O @©
T
|

01 2 3 4 5 6
squared distance

Figure: Interpoint squared distance distribution for Spellman
microarray data with p = 6178 (variance of squared distances is 0.694
vs predicted 0.00129).
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Grid Corpus Vowels

» Grid corpus data modeled for
synthesis by Jon Barker.

» 33 context dependent vowel
phones from 34 (mixed
male/female) subjects.

» Means and variances of
synthesis HMM for subjects
@).
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Grid Corpus Vowels

» Grid Corpus: http:
//www.dcs.shef.ac.uk/spandh/gridcorpus/.

» For each context dependent phone: 5 state HMM, one
Gaussian component per state. 25 MFCC channels, with
deltas and accelerations.

25
20 + s
15 - s
10 - s
5 L |

0 | L | | |

0 1 2 3 4 5 6

squared distance

Figure: Interpoint squared distance distribution for Grid corpus
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Where does practice depart from our theory?

» The situation for real data does not reflect what we expect.

» Real data exhibits greater variances on interpoint
distances.

» Somehow the real data seems to have a smaller effective
dimension.

» Let’s look at another p = 1000.
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1000-D Gaussian

Distance distribution for a different Gaussian with p = 1000

0 I et |
0o 1 2 3 4 5 6

squared distance
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1000-D Gaussian

Distance distribution for a different Gaussian with p = 1000

0 I et |
0o 1 2 3 4 5 6

squared distance

1. Gaussian has a specific low rank covariance matrix
C=WWT +¢’L
2. Take 0% = le — 2 and sample W € R1002 from N (0, 1).
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1000-D Gaussian

Distance distribution for a different Gaussian with p = 1000

0.5

0.4
0.3
0.2
0.1

0
o 1 2 3 4 5 6

squared distance

1. Gaussian has a specific low rank covariance matrix
C= WWT + 021
2. Take 02 = 1le — 2 and sample W € R100x2 from N (0, 1).
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Notation

p data dimensionality

q latent dimensionality

n number of data points

Y design matrix containing our data nxp
X matrix of latent variables nxgq
D matrix of interpoint squared distances nxn
K similarities/covariance /kernel nxn
H centering matrix nxn
B centred similarity /kernel/covariance matrix nxn
L Laplacian matrix nxn

Row vector from matrix A given by a;. column vector a ; and
element given by 4; ;.
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Outline

Motivating Example



Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

» 3648 Dimensions

» 64 rows by 57
columns
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Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

» 3648 Dimensions

> 64 rows by 57 .’ I__-:-;:-'ﬂ"”-\..‘q .r\-__-|.:
columns i vl

» Space contains more 5::'_"-':',_;. 'I‘_,'.‘"-_-:':__r:_ .

than just this digit. A f:-_:.-E.-.‘E:'._ TR

T A

LT TR

PRV

A
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Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

» 3648 Dimensions

> 64 rows by 57 AT e S M
columns %_-_!%E_%ﬁﬁ E;_'i-‘

» Space contains more - "=-_E|"'E‘-:.. f-‘
than just this digit. o ) ﬂ_}'-"-_'r.'.-' o

» Even if we sample I:".l._- -.'-"-": ':'.-.:_i_::-'.:-iﬁ{:
every nanosecond J._:;".:-::- 5-:' o '_'.'_’_'-
from now until the r J_-.:z"- S -
end of the universe, ST _.;-:'E_#_ gl

you won't see the
original six!

/S A imred/tex/talke/civexwampl e

IR


../../../dimred/tex/talks/sixexample

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

» 3648 Dimensions

> 64 rows by 57 S IR TR
columns Wk o st T

. S . aly ‘:_I_j_::_.' Np-cad
pace contains more e
than just this digit. gt 10 e E

» Even if we sample o __{"3"_ -'| i
every nanosecond W

from now until the
end of the universe,
you won't see the
original six!
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Simple Model of Digit

Rotate a "Prototype’

/S JAdimred/tex/talke/civwvexwxampl e

l¢


../../../dimred/tex/talks/sixexample

Simple Model of Digit

Rotate a "Prototype’

/S JAdimred/tex/talke/civwvexwxampl e

l¢


../../../dimred/tex/talks/sixexample

Simple Model of Digit

Rotate a "Prototype’
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Simple Model of Digit

Rotate a "Prototype’
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Simple Model of Digit

Rotate a "Prototype’
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Simple Model of Digit

Rotate a "Prototype’
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Simple Model of Digit

Rotate a "Prototype’
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Simple Model of Digit

Rotate a "Prototype’
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Simple Model of Digit

Rotate a "Prototype’
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MATLAB Demo

Y

demDigitsManifold ([1 2],

 Jdimred/tex/talke/civexampl e

"all’)

2()
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MATLAB Demo

demDigitsManifold([1 2], ’'all’)

PCno?2
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Y

MATLAB Demo

demDigitsManifold([1 2], ’‘sixnine’)

0.1

0.05 -

PCno?2
&D
[

 Jdimred/tex/talke/civexampl e

2()
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Low Dimensional Manifolds

Pure Rotation is too Simple

» In practice the data may undergo several distortions.
» e.g. digits undergo ‘thinning’, translation and rotation.
» For data with ‘structure”:

» we expect fewer distortions than dimensions;
» we therefore expect the data to live on a lower dimensional
manifold.

» Conclusion: deal with high dimensional data by looking
for lower dimensional non-linear embedding.
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Data Representation

R

v

Classical statistical approach: represent via proximities. (?)

v

Proximity data: similarities or dissimilarities.

v

Example of a dissimilarity matrix: a squared distance matrix.

di,j = ||Yi,: - Yj,:||2 = (Yi,: - Yj,:)T (Yi,: - y]‘,:)

v

For a data set can display as a matrix.
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Interpoint Distances for Rotated Sixes

0 90 180 270 360
0 N

90
180

270

360

Figure: Interpoint distances for the rotated digits data.
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Multidimensional Scaling

» Find a configuration of points, X, such that each
2
01 = [pxi; = x|

closely matches the corresponding d; ; in the distance
matrix.

» Need an objective function for matching A = (6i, j). _to

L]
D= (di,]-)l_,j.

4 ) JAimred/tex/talke/cmdeRuDY et anceMat ch i nar 24
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Feature Selection

» An entrywise L1 norm on difference between squared

distances .
E0O =2 ) lij =0,

i=1 j=1
» Reduce dimension by selecting features from data set.

» Select for X, in turn, the column from Y that most reduces
this error until we have the desired 4.

» To minimise E (Y) we compose X by extracting the columns
of Y which have the largest variance.

» Derive Algorithm
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Feature Selection: Motivation
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Reconstruction from Latent Space

Distances reconstructed with two dimensions. MAE: 0.215.
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Reconstruction from Latent Space

0 90 180 270 360

T

180
270 -
360

Distances reconstructed with ten dimensions. MAE: 0.214.
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Reconstruction from Latent Space

0 90 180 270 360

90
180
270 F
360 |

Distances reconstructed with one hundred dimensions. MAE:
0.203.
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Reconstruction from Latent Space

0 90 180 270 360

N

0

90

180

270

360

Distances reconstructed with 1000 dimensions. MAE: 0.109.
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Feature Selection

R

Figure: demRotationDist. Feature selection via distance
preservation.
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Feature Selection

R

Figure: demRotationDist. Feature selection via distance
preservation.
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Feature Selection

R

Figure: demRotationDist. Feature selection via distance
preservation.
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Feature Extraction

R

Figure: demRotationDist. Rotation preserves interpoint distances.
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Feature Extraction

R

Figure: demRotationDist. Rotation preserves interpoint distances.
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Feature Extraction

R

Figure: demRotationDist. Rotation preserves interpoint distances.
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Feature Extraction

R

Figure: demRotationDist. Rotation preserves interpoint distances.

/ JAdAimred/tex/talke/cmdeRuDy et anceMarechinag

20


../../../dimred/tex/talks/cmdsByDistanceMatching

Feature Extraction

R

Figure: demRotationDist. Rotation preserves interpoint distances.
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Feature Extraction

R

Figure: demRotationDist. Rotation preserves interpoint distances.
Residuals are much reduced.
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Feature Extraction

R

Figure: demRotationDist. Rotation preserves interpoint distances.
Residuals are much reduced.
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Which Rotation?

R

\4

We need the rotation that will minimise residual error.

v

We already an algorithm for discarding
features/directions.

v

Retain features/directions with maximum variance.

\4

Error is then given by the sum of residual variances.

p

E(X):% Z a2.

k=g+1

v

Rotations of data matrix do not effect this analysis.

v

/ JAimred/tex/talke/cmdeRuyDy et anceMatrchinag
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Rotation Reconstruction from Latent Space

0 90 180 270 360
-

180
270
360

Distances reconstructed with two dimensions. MAE:
3.30 x 107°.
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Rotation Reconstruction from Latent Space

0 90 180 270 360

N

0

90
180
270
360

Distances reconstructed with ten dimensions. MAE:
1.52 x 107°.
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Rotation Reconstruction from Latent Space

0 90 180 270 360
0 ‘
90

180

270

360 \

Distances reconstructed with one hundred dimensions. MAE:
3.85 x 107°.
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Rotation Reconstruction from Latent Space

0 90 180 270 360
0 ‘
90

180

270

360 k

Distances reconstructed with 360 dimensions. MAE: 0000.

4 JAimred/tex/talke/cmdeRuDY e anceMatr ch na 41


../../../dimred/tex/talks/cmdsByDistanceMatching

Reminder: Principal Component Analysis

v

How do we find these directions?
» Find directions in data with maximal variance.
» That’s what PCA does!

v

PCA: rotate data to extract these directions.

v

PCA: work on the sample covariance matrix S = n71YTY.

» Prove PCA

4 ) JAimred/tex/talke/cmdeRuDY et anceMatr ch na 49
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Principal Coordinates Analysis

» The rotation which finds directions of maximum variance
is the eigenvectors of the covariance matrix.

» The variance in each direction is given by the eigenvalues.

» Problem: working directly with the sample covariance, S,
may be impossible.

» For example: perhaps we are given distances between data
points, but not absolute locations.

» No access to absolute positions: cannot compute original
sample covariance.

» Principal Coordinates
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Equivalent Eigenvalue Problems

» Principal Coordinate Analysis operates on YYT.

» Two eigenvalue problems are equivalent. One solves for
the rotation, the other solves for the location of the rotated
points.

» When p < n it s easier to solve for the rotation, R,. But
when p > n we solve for the embedding (principal
coordinate analysis).

» In MDS we may not know Y, cannot compute YTY from
distance matrix.

» Can we compute YYT instead?
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Note: Centering and Squared Distances

\4

Consider matrix form of squared distance,

D = diag (YY")1" - 2YY" + 1diag (YY) .

v

A Centering matrix has the form

H=I1-n"111": H1=0

v

This implies:

1 fo
_EHDH =HYY'H=YY".

v

i.e. centered square distance matrix is closely related to
centred similarity /kernel.
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The Covariance Interpretation

» n71YTY is the data covariance.
» YYT is a centred inner product matrix.

» Also has an interpretation as a covariance matrix (Gaussian

processes).
» It expresses correlation and anti correlation between data

points.
» Standard covariance expresses correlation and anti

correlation between data dimensions.
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Distance to Similarity: Gaussian Covariances

» Translate between covariance and distance.

» Consider a vector sampled from a zero mean Gaussian
distribution,
z~ N (0,K).

» Expected square distance between two elements of this

vector is )
di,]‘ = <(Zi - Z]') >

— (2 2
b= () (3) -2 (e
under a zero mean Gaussian with covariance given by K
this is
d,‘,]' = ki,i + k]',]' - Zki,]‘.
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Standard Transformation

» This transformation is known as the standard transformation
between a similarity and a distance (Mardia et al., 1979, pg 402).

> If the covariance is of the form K = YYT thenk;; = §7y;.
and

dij =Yy +Yyi =2y = v = vill

» For other squared distance matrices this gives us an
approach to covert to a similarity matrix or kernel matrix
so we can perform classical MDS.
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Example: Road Distances with Classical MDS

» Classical example: redraw a map from road distances (see
e.g. Mardia et al., 1979).

» Here we use distances across Europe.

» Between each city we have road distance.

» Enter these in a distance matrix.

» Convert to a similarity matrix using the covariance
interpretation.

» Perform eigendecomposition.

» See http://inverseprobability.com/dimred/ for
the data we used.
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Distance Matrix

Convert distances to similarities using “covariance
interpretation”.

0 12 24 36 48 0 12 24 36 48

Left: road distances between European cities.Right: Equivalent
similarity.
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Example: Road Distances with Classical MDS
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Beware Negative Eigenvalues

5e+07
4e+07 _
3e+07 s
2e+07 |
le+07 s

-1e+07 \ \ \ \ \
0 10 20 30 40 50 60

Figure: Eigenvalues of the similarity matrix are negative in this case.
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European Cities Distance Matrices

Left: Original Distance matrix. Right: Reconstructed distance

matrix.

33
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Other Distance Similarity Measures

» Can use similarity/distance of your choice.
» Beware though!

» The similarity must be positive semi definite for the
distance to be Euclidean.
» For more details see Mardia et al. (1979, Theorem 14.2.2).



Nonlinear Dimensionality Reduction

» How do we get a nonlinear algorithm?
» One idea:

1. Use linear algorithm (CMDS or Principal Coordinate
Analysis).

2. Make distance matrix nonlinearly related to original data.
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Nonlinear Dimensionality Reduction

» Let’s nonlinearly map data to a new space, and compute
distances there.

» Do this using basis functions

fi=fyi) =) wioilyi)
i=1

]

dij = (2 —z))
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Exponentiated Quadratic Basis Functions

» Consider these basis functions:

1
bi(yj:) = exp (—5—2 Iy - Nz’”i)

» take
¢ij = Pjyi:)

giving basis vector, ¢;., and design matrix

P = [¢1,: cee ¢n,:]T e R,
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Matrix Notation

R

» In matrix notation we have
fyis) =w'¢i. = fi.
» Which parameters w?
» Let’s generate random functions: introduce a probability
density for p(w).
>

Compute expected squared distance. Squared distance is:

(fi ~ £ = (@] w - ¢T.w)?
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Expected Square Distance

» We can rewrite this as

(fi— fi)* = (i — D)) TWwW ' (i, — &;,).

Take expectation under p(w)

(= FP) = (@i = 90T (wwT)

» If second moment of p(w) is I,

<wa >p w = I

then
((fi= £i?) = (¢1: — ;) (d1: — b;).

> If (W),w) = 0 then covariance cov (w) = L.
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Basis Functions

Figure: A small set of exponentiated quadratic basis functions with
centers at —1, 0, and 1. The lengthscale of the basis functions is given
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Expected Squared Distances

0.5 T I T
L — £.)2
i G- £)
0 - fi ]
> 05 - .
<
1L |
-15 | | | | |
3 2 -1 0 1 2 3

Figure: Distance between two points in the function f(y). A 3
dimensional vector, w, is sampled from a Gaussian with zero mean
and unit covariance. This vector is used to weight the different basis
functions producing the random function shown.
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Expected Squared Distances

A

0.8

0.6 - N

04 +

fw)

Figure: Distance between two points in the function f(y). A 3
dimensional vector, w, is sampled from a Gaussian with zero mean
and unit covariance. This vector is used to weight the different basis
functions producing the random function shown.
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Expected Squared Distances

1
05 |- ]
0L |
S
= 05 - i
) \ (fi— fi)?
1L - |
fi
-15 | | | | |
3 2 1 0 1 2 3

Figure: Distance between two points in the function f(y). A 3
dimensional vector, w, is sampled from a Gaussian with zero mean
and unit covariance. This vector is used to weight the different basis
functions producing the random function shown.
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Expected Squared Distances

02 f VR .

04 |- f; -
-0.6 —
08 |- -

fw)

-1.2 - -
-14 \ \ \ | |

Figure: Distance between two points in the function f(y). A 3
dimensional vector, w, is sampled from a Gaussian with zero mean
and unit covariance. This vector is used to weight the different basis
functions producing the random function shown.
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Number and Location of Basis

0.6 - N

04 + N

Figure: The exponentiated quadratic basis functions with centers at
-1,0, and 1. As we move away from the centers of the basis functions
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Problems for Data from Outside Basis

f JA- 5 Ji

> 05 L 4
el
1 b |
-]_5 | | | | | | |

Figure: Distance between two points in the function f(y). Now the
locations are far apart in y. However, since they are both in regions
where the response from the basis set is small, the distance between
the points after mapping through the function, f(y), is small.
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Problems for Data from Outside Basis

Y

0.7
0.6 |- |
05 |- |
04 + |
03 |
02 + |
0.1 + |

-0.1 \N\ I

f(y)

Figure: Distance between two points in the function f(y). Now the
locations are far apart in y. However, since they are both in regions
where the response from the basis set is small, the distance between
the points after mapping through the function, f(y), is small.
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Problems for Data from Outside Basis

Y

f(y)
S

Figure: Distance between two points in the function f(y). Now the
locations are far apart in y. However, since they are both in regions
where the response from the basis set is small, the distance between
the points after mapping through the function, f(y), is small.
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Problems for Data from Outside Basis

02 -
04 -
-0.6 -
-0.8 -

f(y)

-1.2 - s
-14 \ \ \ \ \ | |

Figure: Distance between two points in the function f(y). Now the
locations are far apart in y. However, since they are both in regions
where the response from the basis set is small, the distance between
the points after mapping through the function, f(y), is small.
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Extending the Basis

v

Distances are small despite data being far apart.

v

Side effect of bad basis function placement.

» For exponentiated quadratic basis function elegant
solution: place basis all across the y space.

This leads to a kernel method.

v
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An Infinite Basis

» We have functions of the form
—a—kAu)?
) = Z 0 exp( w)

if we set the location parameter of each ¢x(y) to
Uk = a+ kAp.

» Distances in feature space are dependent on the inner
product between basis vectors.
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Infinite Basis Functions

» Decrease Ay to increase m.
» The inner product between the basis functions becomes

_W—Vf}

, o
K= WP[ T
Tt
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Kernelization

R

» This procedure for moving from inner products,
d(y) T p(y'), to covariance functions, k(y, '), is sometimes
known as kernelization (Scholkopf and Smola, 2001).

» k(y,v’) has the properties of a Mercer kernel.

» This same property allows k(y, y’) to be used as a covariance
function: a function that can generate a covariance matrix.

» The mapping from data to distance is now a Gaussian
process (O’'Hagan, 1978; Williams; Rasmussen and Williams, 2006).
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Random Functions with Infinite Basis

We can sample random functions as before.

1
05 -
S 0L
el
05
_1 | | | | | | |
4 3 2 1 0 1 2 3 4

Figure: Distance between two points in the function f(y). The

locations are again far apart in y but now we are using an infinite
/7 JAimred/trex/talkeMonl inearD ittt ancecsRa% i aF1inct i one a AR


../../../dimred/tex/talks/nonlinearDistancesBasisFunctions

Random Functions with Infinite Basis

We can sample random functions as before.

0.5

f(y)
S
(6)]
[
E\

Figure: Distance between two points in the function f(y). The

locations are again far apart in y but now we are using an infinite
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Random Functions with Infinite Basis

We can sample random functions as before.

0.5
0+ |
- fi
> <05 |- s
<
(fir fi?
1 b |
fi
-15 ! ! ! ! ! ! !
-4 -3 -2 -1 0 1 2 3 4

Figure: Distance between two points in the function f(y). The

locations are again far apart in y but now we are using an infinite
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Random Functions with Infinite Basis

We can sample random functions as before.

0.8 ‘
0.6
04 +
0.2

f(y)
[

-0.2 -
-04 -
-0.6 - -
-0.8 \ \ \ \ | | |

Figure: Distance between two points in the function f(y). The

locations are again far apart in y but now we are using an infinite
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Similarity and Distance Matrices

0 90 180 270 360
0

90
180

270

360

Figure: Similarity matrix for exponentiated quadratic kernel on
rotated sixes.
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Similarity and Distance Matrices

0 90 180 270 360

0 0.4
0.35

90 0.3
0.25

180 0.2
0.15

270 0.1
0.05

360 0

Figure: Implied distance matrix for kernel on rotated sixes. Note that
most of the distances are set to V2 ~ 1.41.
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Similarity and Distance Matrices

0

90

180

270

360

0

360
\

90 180 270
> v
- - -

0.025

0.02

0.015

0.01

0.005

Figure: Implied latent distances for kernel using only g = 8
dimensions for latent space.
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Kernel PCA on Rotated Sixes
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Kernel PCA on Rotated Sixes
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Kernel PCA on Rotated Sixes
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Kernel PCA on Rotated Sixes
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Kernel PCA on Rotated Sixes
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Kernel PCA on Rotated Sixes
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Kernel PCA: A Class of Similarities for Vector Data

» All Mercer kernels are positive semi definite.

» Example, exponentiated quadratic (also known as squared
exponential, RBF or Gaussian)

- (_ lys: - Yj,:llz)
ij = exp 72 .

This leads to a kernel eigenvalue problem.
» This is known as Kernel PCA (Schélkopf et al., 1998).
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Implied Distance Matrix

» What is the equivalent distance /d; ;?

A /di,]‘ = ki,i + k]',]' - Zk,‘,]‘

» If point separation is large, k;; — 0. k;; = 1 and k;; = 1.

» Kernel with RBF kernel projects along axes PCA can
produce poor results.

» Uses many dimensions to keep dissimilar objects a
constant amount apart.
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Outline

Spectral Dimensionality Reduction



Spectral Dimensionality Reduction in Machine
Learning

» Spectral approach to dimensionality reduction.

1. Convert data to a matrix of dimension 7 X n.
2. Visualize data with eigenvectors of matrix.

» Examples:

> isomap (Tenenbaum et al., 2000),

locally linear embeddings (LLE, Roweis and Saul, 2000),

» Laplacian eigenmaps (LE, Belkin and Niyogi, 2003) and

» maximum variance unfolding (MVU, Weinberger et al., 2004).
» Also kernel PCA (Scholkopf et al., 1998; Ham et al., 2004).

v
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Classical Multidimensional Scaling Perspective

» Classical multidimensional scaling (CMDS)
1. Compute an 1 X n squared distance matrix, D.
2. Form the centered “similarity matrix” HKH = —%HDH.
3. Visualize through g principal eigenvectors (as latent matrix
X).
» This algorithm matches squared distances computed in X
to those computed in Y through an L1 error.
» Our Argument:

» Main innovation in ML work: how to compute the squared
distance matrix D.
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Isomap

» MDS finds geometric configuration preserving distances.
» MDS applied to distance along manifold.
» Geodesic Distance = Manifold Distance.

» Cannot compute geodesic distance without knowing
manifold.

» Idea: compute distance via shortest path between
point-pairs (Tenenbaum et al., 2000).

» Very similar to the road example: data points are cities,
graph is roads.

/S Jdimred/tex/talke/ieaman 74


../../../dimred/tex/talks/isomap

Isomap

» Isomap: define neighbors and compute distances between
neighbors.

» Geodesic distance approximated by shortest path through
adjacency matrix.

Figure: A: true geodesic distance. B: Approximate distance on graph.
C: comparison of true and approximate distances. (Image from
Tenenbaum et al., 2000).

/ / JAimred/tex/talke/ieaman 77


../../../dimred/tex/talks/isomap

Isomap Neighborhood

» Compute nearest k neighbors for each point.

» Construct a graph linking data points through neighbors.

Figure: Distance on graph is a proxy for geodesic distance.
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Isomap Neighborhood

» Compute nearest k neighbors for each point.

» Construct a graph linking data points through neighbors.

Figure: Distance on graph is a proxy for geodesic distance.
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Isomap Neighborhood

» Compute nearest k neighbors for each point.

» Construct a graph linking data points through neighbors.

Figure: Distance on graph is a proxy for geodesic distance.
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Isomap Neighborhood

» Compute nearest k neighbors for each point.

» Construct a graph linking data points through neighbors.

Figure: Distance on graph is a proxy for geodesic distance.
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Isomap Neighborhood

» Compute nearest k neighbors for each point.

» Construct a graph linking data points through neighbors.

Figure: Distance on graph is a proxy for geodesic distance.

/S Jdimred/tex/talke/ieaman

7


../../../dimred/tex/talks/isomap

Isomap Neighborhood

» Compute nearest k neighbors for each point.

» Construct a graph linking data points through neighbors.

Figure: Distance on graph is a proxy for geodesic distance.
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Data Neighborhood

» Need to determine correct number of neighbors.

» Manifold distortions mean neighbors in latent space may
not be neighbors in data space.

o
[ J
[ ]
[ ]
[ ]
[ ]
[ J
[ ]
[ ]

Figure: Quality of approximation depends on quality of graph.
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Data Neighborhood

» Need to determine correct number of neighbors.

» Manifold distortions mean neighbors in latent space may
not be neighbors in data space.

Figure: Quality of approximation depends on quality of graph.
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Data Neighborhood

» Need to determine correct number of neighbors.

» Manifold distortions mean neighbors in latent space may
not be neighbors in data space.

Figure: Quality of approximation depends on quality of graph.
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Data Neighborhood

» Need to determine correct number of neighbors.

» Manifold distortions mean neighbors in latent space may
not be neighbors in data space.

Figure: Quality of approximation depends on quality of graph.
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Data Neighborhood

» Need to determine correct number of neighbors.

» Manifold distortions mean neighbors in latent space may
not be neighbors in data space.

Figure: Quality of approximation depends on quality of graph.
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Data Neighborhood

» Need to determine correct number of neighbors.

» Manifold distortions mean neighbors in latent space may
not be neighbors in data space.

Figure: Quality of approximation depends on quality of graph.
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Data Neighborhood

» Need to determine correct number of neighbors.

» Manifold distortions mean neighbors in latent space may
not be neighbors in data space.

Figure: Quality of approximation depends on quality of graph.
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Data Neighborhood

» Need to determine correct number of neighbors.

» Manifold distortions mean neighbors in latent space may
not be neighbors in data space.

Figure: Quality of approximation depends on quality of graph.
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Data Neighborhood

» Need to determine correct number of neighbors.

» Manifold distortions mean neighbors in latent space may
not be neighbors in data space.

Figure: Quality of approximation depends on quality of graph.
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Data Neighborhood

» Need to determine correct number of neighbors.

» Manifold distortions mean neighbors in latent space may
not be neighbors in data space.

Figure: Quality of approximation depends on quality of graph.
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Data Neighborhood

» Need to determine correct number of neighbors.

» Manifold distortions mean neighbors in latent space may
not be neighbors in data space.

Figure: Quality of approximation depends on quality of graph.
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Data Neighborhood

» Need to determine correct number of neighbors.

» Manifold distortions mean neighbors in latent space may
not be neighbors in data space.

Figure: Quality of approximation depends on quality of graph.
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Data Neighborhood

» Need to determine correct number of neighbors.

» Manifold distortions mean neighbors in latent space may
not be neighbors in data space.

Figure: Quality of approximation depends on quality of graph.
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Isomap Algorithm

v

Build a neighborhood graph between data points.

v

Set each edge in graph to a value given by interpoint
distance (not squared!).

\4

Build a matrix of interpoint distances based on shortest
distances in this graph.

Perform CMDS on this graph.

v

/S Jdimred/tex/talke/ieaman
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Isomap on Stick Man

» Two components of stick man data.

Figure: Stick man data embedded using two dimensions of isomap.
demStickIsomapl.

/S JAimred/tex/talke/ieoman

Q1


../../../dimred/tex/talks/isomap

Isomap on Qil Data

» Two components of oil data.

Figure: Oil data embedded using two dimensions of isomap (graph is
disconnected). demOilIsomapl.
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Isomap on Microarray Data

» Two components of Gene Expression data.
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Figure: Gene expression data embedded using two dimensions of
isomap. demSpellmanIsomapl.
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Isomap on Grid Vowels

» Two components of grid vowels data.
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Figure: Grid vowels embedded using two dimensions of isomap.
demGrid_.vowelsIsomapl.
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Isomap: Summary

MDS on Shortest Path Approximation of Geodesic Distance

+ Gives good embeddings.
- Can require solution of a very large eigenvalue problem.

- Eigenvalues can be negative (Geodesic distances aren’t
Euclidean).
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Laplacian Eigenmaps I

v

Spectral algorithm introduced by Belkin and Niyogi (2003)

\4

First define neighborhood in the data space.

v

Define a sparse adjacency matrix, A € R"™" i, jth element,
a;,j is non-zero if the ith and jth data points are neighbors.

» A ‘good’ one dimensional embedding is one where the latent
points, X minimize

E(X) = }1 i i a; j(xi — xj)%,

i=1 j=1

v

2
5 as

Which we write as 6;; = ||xi,; = X;j

.

1 n n
E(X) = 1 Zf Zf a;,j0i ;.
i=1 j=

/S A imred/tex/talke/1anlacianFidenmanas
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Laplacian Eigenmaps II

» Neighboring are non-zero entries adjacency matrix and
their inter-point distance in latent space is minimized.

» In matrix form .
E(X) = Ztr (AA).

» Rewrite by introducing the Laplacian.
> The degree matrix, D, is diagonal with entries, d;; = }.; A;;
» The Laplacian is written

L=D-A
» Error function written in terms of X

E(X) = %tr (LXXT)

» Objective insensitive to translations.

» Objective minimized by placing all points on top of one
another.
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Laplacian Eigenmaps III

» Constrain
x,TZ.DX;,i =1.

» Objective minimized by the generalized eigenvalue
problem,
Lui = AiDui,
» Smallest eigenvalue is zero and is associated with the
constant eigenvector, it is discarded.

» Next g smallest eigenvalues are retained for the
embedding.
X.i = Wiy for i= 1[]
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Parameterization in Laplacian Eigenmaps

» A either

1. set to constant values ( the “simple-minded approach”
Belkin and Niyogi)
2. or according to distance between two data points,

) [ Hyr»:—y];:lli]
ai,j—exp —_— |,

202

by analogy between discrete graph Laplacian and the
Laplace Beltrami operator (Belkin and Niyogi, 2003).
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Laplacian Eigenmaps on Stick Man

» Two components of stick man data.

Figure: Stick man data embedded using two dimensions of Laplacian
eigenmaps. demStickLel.
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Y

Laplacian Eigenmaps on Oil Data

» Two components of oil data.

—2r
.
-3t
%
4l % 1
2 - 0 1

Figure: Oil data embedded using two dimensions of Laplacian
eigenmaps (45 neighbors). demOilLel.
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Laplacian Eigenmaps on Microarray Data

» Two components of Gene Expression data.
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Figure: Gene expression data embedded using two dimensions of
Laplacian eigenmaps. demSpellmanLel.
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Laplacian Eigenmaps on Grid Vowels

» Two components of grid vowels data.
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Figure: Grid vowels embedded using two dimensions of Laplacian
eigenmaps. demGrid_vowelsLel.
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Laplacian Eigenmaps: Summary

Eigenvalue problem on Graph Laplacian

+ Very fast to compute

- Can give poor embeddings for few data points.
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Locally Linear Embedding I

» Approximate Non-linear Manifold by small linear patches.

» Assumes distance between data points is small relative to
curvature.

» First define a local neighborhood for each data point.

» Find a set of linear regression weights for each data point
to be reconstructed by its neighbors.

» For the ith data point, y;. and reconstruction weights, w. ;,
least squares regression objective is,

2

1
E(w.;) = > (i~ Z yiwiill (1)
JENG) ,

v

Sum over the weights, w. ; is restricted to neighbors,

{y”}jeN(ol')'
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Locally Linear Embedding II

» Objective is invariant to rotation and rescaling of the data.
» The objective is not invariant to translation.

» Use modified objective,

2

1. N
Ew,) =5 i+ m= ), Jpwji—m ), wid
JEN() JENG) 2
and constrain }_ je ) wji = 1.

» Terms involving p cancel and we recover the original
objective.

» Constraint w1 = 1 ensures the objective is translation
invariant.
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Determining the Embedding in LLE I

» For truly low dimensional data, local linear relationships
between neighbors should hold for a low dimensional data
set we call X.

» To find this dataset minimize the LLE objective.

1 n
E(XX) = 5 ; m;XXTm:,i + const

= %tr (MMTXX) + const

1 n
=5 Z x! MM"x; . + const.
i=1

» Objective function trivially minimized by setting X = 0, so
we constrain X'X = L.

/S S A imred/tex/+alke/11e
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Determining the Embedding in LLE II

» This leads to an eigenvalue problem
MMTui = Aiui.

Where smallest g + 1 eigenvalues are retained.

» Smallest eigenvector is the constant eigenvector and is
associated with an eigenvalue of zero.

» Next g eigenvectors are retained to make up the low
dimensional representation

X.i = Wi+ for i= 1q

» This process is extremely similar to Laplacian eigenmaps,
despite different motivations.

» In LLE case the constraint on the latent embeddings is not
scaled by the degree matrix.
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LLE on Stick Man

» Two components of stick man data.

Figure: Stick man data embedded using two dimensions of LLE.
demStickLlel.
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LLE on Oil Data

» Two components of oil data.

_3 | m

—‘i -0.5 0 0.5 1 1.5 2

Figure: Oil data embedded using two dimensions of LLE (45
neighbors). dem0OilLlel.
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LLE on Microarray Data

» Two components of Gene Expression data.
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Figure: Gene expression data embedded using two dimensions of
LLE. demSpellmanLlel.
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LLE on Grid Vowels

» Two components of grid vowels data.
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Figure: Grid vowels embedded using two dimensions of LLE.
demGrid_vowelsLlel.
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Locally Linear Embedding: Summary

Model Data with Locally Linear Patches

+ Faster than isomap, slower than LE.

- Can still give poor embeddings for few data points.
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Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction

» In maximum variance unfolding (MVU Weinberger et al., 2004):
learn a “kernel matrix” that will allow for dimensionality
reduction.
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Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction

» In maximum variance unfolding (MVU Weinberger et al., 2004):
learn a “kernel matrix” that will allow for dimensionality
reduction.

» Preserve only local proximity relationships in the data.
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Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction

» In maximum variance unfolding (MVU Weinberger et al., 2004):
learn a “kernel matrix” that will allow for dimensionality
reduction.

» Preserve only local proximity relationships in the data.

» Take a set of neighbors.
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Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction

» In maximum variance unfolding (MVU Weinberger et al., 2004):
learn a “kernel matrix” that will allow for dimensionality
reduction.

» Preserve only local proximity relationships in the data.

» Take a set of neighbors.
» Construct a kernel matrix where only distances between
neighbors match data distances.
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Maximum Variance Unfolding

» Optimize elements of K by maximizing! tr (K).

» Subject to squared distance constraints between neighbors

dl‘,]‘ = ki,i - Zkl’,j + k]‘/]‘

S/ A imred/tex/talke/mui 105
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MVU on Stick Man

» Two components of stick man data.

Figure: Stick man data embedded using two dimensions of isomap.
demStickMvul.
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MVU on Oil Data

» Graph doesn’t fully connect until 30 neighbors are used.

» Resulting semi-definite program is too big for SeDuMi on
my machine (32GB memory, but it swaps in MATLAB).

» There is approximate version of the algorithm, not applied
in this case.
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MVU on Grid Vowels

» Two components of grid vowels data.
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Figure: Grid vowels embedded using two dimensions of isomap.
demGrid_vowelsMvul.

S/ A imred/tex/talke/mui 10K


../../../dimred/tex/talks/mvu

Maximum Variance Unfolding: Summary

Chain Neighboring Data together and Maximum Data
Variance

+ High quality embeddings with no negative eigenvalues.

- Slower than isomap, LLE and LE.
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Outline

A Unifying Probabilistic Perspective



Maximum Entropy Unfolding

New Contribution

» Maximize entropy instead of variance (Jaynes, 1986): MEU
(Lawrence, 2011, 2010).
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Maximum Entropy Unfolding

New Contribution

» Maximize entropy instead of variance (Jaynes, 1986): MEU
(Lawrence, 2011, 2010).

» Entropy and variance are closely related.

S/ JAimred/tex/talke/men

111


../../../dimred/tex/talks/meu

Maximum Entropy Unfolding

New Contribution

» Maximize entropy instead of variance (Jaynes, 1986): MEU
(Lawrence, 2011, 2010).

» Entropy and variance are closely related.

» Maximum entropy leads to a probabilistic model.
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Maximum Entropy Unfolding

New Contribution

» Maximize entropy instead of variance (Jaynes, 1986): MEU
(Lawrence, 2011, 2010).

» Entropy and variance are closely related.
» Maximum entropy leads to a probabilistic model.

» Each spectral approach approximates MEU in some way:.
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Maximum Entropy Unfolding

» Find distribution with maximum entropy subject to
constraints on moments.

» MEU constraints are on expected distances between
neighbors.

dij = (ylyie) = 2{ylyie) + (v7vie)
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Maximum Entropy Unfolding

» Find distribution with maximum entropy subject to
constraints on moments.

» MEU constraints are on expected distances between
neighbors.

di,]' = ki,i - Zki,]' + kj,j

which can be written in terms of the covariance.
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Maximum Entropy

» Maximum entropy distribution.

1 1
p(Y) < exp (—Etr (]/YYT)) exp (_E Z Aijd; j
i jeN()
N (i) is neighborhood, {A; j}, Lagrange multipliers.
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Maximum Entropy

» Maximum entropy distribution.
p(Y) o« exp (—ltr ()/YYT) - 1’cr (AD))
2 4

N (i) is neighborhood, {A; j}, Lagrange multipliers.
Lagrange multipliers in sparse matrix A.
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Maximum Entropy

» Maximum entropy distribution.

Lot .
p(Y) = W exp (—Etr ((L +yDYY ))

)2
N (i) is neighborhood, {A; j}, Lagrange multipliers.
Introduce Laplacian: €jj = =A;j, €i; = Xjepng Aijy L1 = 0.
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Details: Moving to the Laplacian

» D has a zero diagonal.
» tr (LD) is unaffected by diagonal of L.
» Constrain L1 = 0 giving

—tr (AD) = tr (LD)
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Details: Moving to the Laplacian

» D has a zero diagonal.
» tr (LD) is unaffected by diagonal of L.
» Constrain L1 = 0 giving

—tr (AD) = tr (LD)
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Details: Moving to the Laplacian

» D has a zero diagonal.
» tr (LD) is unaffected by diagonal of L.
» Constrain L1 = 0 giving

—tr (AD) = tr (leiag (YYT) —2LYY" + diag (YY) 1TL)
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Details: Moving to the Laplacian

» D has a zero diagonal.
» tr (LD) is unaffected by diagonal of L.
» Constrain L1 = 0 giving

—tr (AD) = tr (W —2LYYT + W)
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Details: Moving to the Laplacian

» D has a zero diagonal.
» tr (LD) is unaffected by diagonal of L.
» Constrain L1 = 0 giving

—tr (AD) = —2tr (LYY ).
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Gaussian Random Field

» The maximum entropy probability distribution is a
Gaussian random field

p

pv) =[]

1 _
——ep(5y Ky, ),
i1 IK? @)

» Covariance matrix is

K=(L+yl)™?

» Where L is the Laplacian matrix associated with the
neighborhood graph.

» Off diagonal elements of the Laplacian are Lagrange
multipliers from moment constraints.

» On diagonal elements given by negative sum of
off-diagonal (L1 = 0).
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Data Feature Independence

» The GREF specifying independence across data features.
» Most applications of Gaussian models are applied
independently across data points.
» Notable exceptions include Zhu et al. (2003); Lawrence (2004, 2005);
Kemp and Tenenbaum (2008).
» Maximum likelihood in this model is equivalent
maximizing entropy under distance constraints.
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Blessing of Dimensionality

-]l

j=1 K| (27)}
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Blessing of Dimensionality

|4
1 .
p(Y) = H neXp(—EyLK 1Y:,]')/

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)
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Blessing of Dimensionality

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)
» As we increase data points parameters become better
determined.
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Blessing of Dimensionality

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)
» As we increase data points parameters become better
determined.
» Not in this model.
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Blessing of Dimensionality

p

=

1
B P( Y Y )
1 K[> 2n)? 2

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)
» As we increase data points parameters become better
determined.
» Not in this model.
» As we increase data features parameters become better
determined.
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Blessing of Dimensionality

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)
» As we increase data points parameters become better
determined.
» Not in this model.
» As we increase data features parameters become better
determined.

» This turns the large p small n problem on its head.
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Blessing of Dimensionality

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)
» As we increase data points parameters become better
determined.
» Not in this model.
» As we increase data features parameters become better
determined.

» This turns the large p small n problem on its head.

» There is a “Blessing of Dimensionality” in this model.
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Blessing of Dimensionality

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003, pg
126)
» As we increase data points parameters become better
determined.
» Not in this model.
» As we increase data features parameters become better
determined.

» This turns the large p small n problem on its head.
» There is a “Blessing of Dimensionality” in this model.
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Inverse Covariance

» From the “covariance interpretation” we think of the
similarity matrix as a covariance matrix.
» Each element of the covariance is a function of two data
points.
» For LE, LLE and MVU the stiffness matrix is like an inverse
covariance.

» This is a conditional independence assumption.
» Describes how points are connected.
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Conditional Independence

» A covariance matrix specifies correlation between two
variables. If elements are zero those variables are truly
independent.

» In a marginal Gaussian those correlations don’t change.

» The inverse covariance (precision, or information matrix)
specifies conditional independencies.

» If elements are zero those variables are conditionally
independent.
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Mattress Model

» Points are connected by springs.

Figure: Physical interpretation of spectral models.
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Mattress Model

» Points are connected by springs.

Figure: Physical interpretation of spectral models.
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Spring Energy

» Points are connected by springs.
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Spring Energy

» Each spring has its own spring constant.
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Spring Energy

» Place each point at its latent location.
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Spring Energy

R

» Potential energy in each string is given by.

E1p = K12(X1,: — X2,) T (X1, — X2,

X2,:
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Spring Energy

R

» Which can be expressed as a latent distance.

_ 2
Ei2 = %1207,

X2,:
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Spring Energy

R

» Energy associated with each point given by sum.

X2,:

E1(X) = X %107 ;
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Spring Energy

» Energy associated with system is sum over points.

X2,:

E1(X) = X %107 ;

Es(X) = X; Ks,j(%j
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Physical Analogy

> System total energy given by E(X, K) = Y.L, Y7, x;, jéfj

2

St
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Physical Analogy

> System total energy given by E(X, K) = Y.L, Y7, x;, jéfj

» Include a force to repel points from the origin

n

non
— Ty, L .82
o /m‘mmd/rpx/rawkg/marrmgq)gég() - Y, X, Xi,: + y‘ y“ KZ/J(Si,i
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Energy Minimization

» Minimization with respect to X gives the following
eigenvalue problem

LU = UT'A2

where L is the stiffness matrix (which is also a Laplacian
matrix) from the graph.

n
bij = Z(Ki,j + 1K)
=
lij == (Kkji + Ki,)

and
X = UART

and eigenvectors associated with the smallest eigenvalues
are retained.?
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Where Do the Spring Constants Come From?

» Algorithms assume only neighbors in data space are
connected by springs (sparse connectivity).
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Where Do the Spring Constants Come From?

» Algorithms assume only neighbors in data space are
connected by springs (sparse connectivity).

» Different algorithms suggest different values for the
springs.
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Where Do the Spring Constants Come From?

» Algorithms assume only neighbors in data space are
connected by springs (sparse connectivity).
» Different algorithms suggest different values for the
springs.
» Laplacian Eigenmaps prescribe constant spring constants,

or values from an RBF on the distances (Belkin and Niyogi,
2003).
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Where Do the Spring Constants Come From?

» Algorithms assume only neighbors in data space are
connected by springs (sparse connectivity).

» Different algorithms suggest different values for the
springs.

» Laplacian Eigenmaps prescribe constant spring constants,
or values from an RBF on the distances (Belkin and Niyogi,
2003).

» Locally Linear Embedding considers spring constants that
lead to optimal linear reconstruction of data points (Roweis
and Saul, 2000).
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Where Do the Spring Constants Come From?

» Algorithms assume only neighbors in data space are
connected by springs (sparse connectivity).

» Different algorithms suggest different values for the
springs.

» Laplacian Eigenmaps prescribe constant spring constants,
or values from an RBF on the distances (Belkin and Niyogi,
2003).

» Locally Linear Embedding considers spring constants that
lead to optimal linear reconstruction of data points (Roweis
and Saul, 2000).

» Maximum Variance Unfolding prescribes spring constants
that constrain interpoint latent distances to equal those in
the data (Weinberger et al., 2004).
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Where Do the Spring Constants Come From?

» Algorithms assume only neighbors in data space are
connected by springs (sparse connectivity).

» Different algorithms suggest different values for the
springs.

» Laplacian Eigenmaps prescribe constant spring constants,
or values from an RBF on the distances (Belkin and Niyogi,
2003).

» Locally Linear Embedding considers spring constants that
lead to optimal linear reconstruction of data points (Roweis
and Saul, 2000).

» Maximum Variance Unfolding prescribes spring constants
that constrain interpoint latent distances to equal those in
the data (Weinberger et al., 2004).

» Maximum Entropy Unfolding fits by maximum likelihood
(Lawrence, 2011).
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Relationship to Laplacian Eigenmaps

» Laplacian eigenmaps (Belkin and Niyogi, 2003): graph Laplacian
is specified across the data points.
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Relationship to Laplacian Eigenmaps

» Laplacian eigenmaps (Belkin and Niyogi, 2003): graph Laplacian
is specified across the data points.

» Laplacian has exactly the same form as our matrix L.
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Relationship to Laplacian Eigenmaps

» Laplacian eigenmaps (Belkin and Niyogi, 2003): graph Laplacian
is specified across the data points.

» Laplacian has exactly the same form as our matrix L.

» Parameters of the Laplacian are set either as constant or
according to the distance between two points.
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Relationship to Laplacian Eigenmaps

» Laplacian eigenmaps (Belkin and Niyogi, 2003): graph Laplacian
is specified across the data points.

» Laplacian has exactly the same form as our matrix L.

» Parameters of the Laplacian are set either as constant or
according to the distance between two points.

» Smallest eigenvectors of this Laplacian are then used for
visualizing the data.
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Smallest Eigenvalues of Laplacian

» Eigendecomposition of the covariance is

K = UAUT
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Smallest Eigenvalues of Laplacian

» Eigendecomposition of the covariance is

K = UAUT

» Eigendecomposition of the Laplacian is

L=U(A"—y1)U"
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Smallest Eigenvalues of Laplacian

» Eigendecomposition of the covariance is

K = UAUT

» Eigendecomposition of the Laplacian is

L=U(A"—y1)U"

» Principal eigenvalues of K are smallest eigenvalues of L.

> (smallest eigenvalue of L is zero, but this is removed by the
centering operation on K, or discarded in LE)
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Laplacian Figenmaps

Y

» Set parameters of Laplacian.
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Laplacian Figenmaps

Y

» Set parameters of Laplacian.
» Perform CMDS on the implied matrix K.
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Laplacian Figenmaps

Y

» Set parameters of Laplacian.
» Perform CMDS on the implied matrix K.

1. No constraints are imposed in Laplacian eigenmaps so
distances will not be preserved.
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Laplacian Figenmaps

Y

» Set parameters of Laplacian.
» Perform CMDS on the implied matrix K.

1. No constraints are imposed in Laplacian eigenmaps so
distances will not be preserved.

2. LE gains significant computational advantage by not
representing the covariance matrix explicitly.
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Laplacian Figenmaps

» Set parameters of Laplacian.
» Perform CMDS on the implied matrix K.

1. No constraints are imposed in Laplacian eigenmaps so
distances will not be preserved.

2. LE gains significant computational advantage by not
representing the covariance matrix explicitly.

3. No matrix inverses required, eigenvalue problem sparse.
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Locally Linear Embedding

» The Laplacian should be constrained positive definite.
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Locally Linear Embedding

» The Laplacian should be constrained positive definite.

» This constraint can be imposed by factorizing it as

L=MM"
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Locally Linear Embedding

» The Laplacian should be constrained positive definite.
» This constraint can be imposed by factorizing it as

L=MM"

» To ensure it is a Laplacian, we need to constrain M™1=0
giving L1 = 0.
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Locally Linear Embedding

» The Laplacian should be constrained positive definite.
» This constraint can be imposed by factorizing it as

L=MM"

» To ensure it is a Laplacian, we need to constrain M™1=0
giving L1 = 0.

> ie. mi,j = - Z]EN(Z) m]',i
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Locally Linear Embedding

» The Laplacian should be constrained positive definite.
» This constraint can be imposed by factorizing it as

L=MM"

» To ensure it is a Laplacian, we need to constrain M'1 = 0
giving L1 = 0.
> le mi,j = - Z]EN(Z) m]',i
» Setm;; = 0if j ¢ N (i).
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Locally Linear Embedding

» Locally linear embeddings (Roweis and Saul, 2000) are then a
specific case of MEU where
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Locally Linear Embedding

» Locally linear embeddings (Roweis and Saul, 2000) are then a
specific case of MEU where

1. The diagonal sums, m;;, are further constrained to unity.
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Locally Linear Embedding

» Locally linear embeddings (Roweis and Saul, 2000) are then a
specific case of MEU where

1. The diagonal sums, m;;, are further constrained to unity.
2. Model parameters found by maximizing pseudolikelihood of
the data.
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Point One

R

» For unit diagonals we have M =1 - W.
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Point One

R

» For unit diagonals we have M =1 - W.
» Here the off diagonal sparsity pattern of W matches M.
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Point One

» For unit diagonals we have M =1 - W.
» Here the off diagonal sparsity pattern of W matches M.

» Thus
I-wW)'1=0.
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Point One

v

For unit diagonals we have M =1 - W.

v

Thus

v

I-wW)'1=0.

v

LLE proscribes that the smallest eigenvectors of
I-W)I-W)'=MM' =L

(like Laplacian Eigenmaps).
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Point One

v

For unit diagonals we have M =1 - W.

v

Thus

v

I-wW)'1=0.

v

LLE proscribes that the smallest eigenvectors of
I-W)I-W)'=MM' =L

(like Laplacian Eigenmaps).
» Equivalent to CMDS on the GRF described by L.
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Second Point

» Pseudolikelihood approximation (see e.g. Koller and Friedman,
2009, pg 970): product of the conditional densities:

p(Y) = H p(yi:Y\0),

i=1

Y\; represents data other than the ith point.
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Second Point

» Pseudolikelihood approximation (see e.g. Koller and Friedman,
2009, pg 970): product of the conditional densities:

n
p(Y) = H p(yi:Y\i),
i=1
Y\; represents data other than the ith point.

» True likelihood is proportional to this but requires
renormalization.
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Second Point

» Pseudolikelihood approximation (see e.g. Koller and Friedman,
2009, pg 970): product of the conditional densities:

n
p(Y) = H p(yi:Y\i),
i=1
Y\; represents data other than the ith point.

» True likelihood is proportional to this but requires
renormalization.

» In pseudolikelihood normalization is ignored.
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Conditionals

» Factors in the GRF are the conditionals,
2

m?.\2 m2, Wi
g g Jit
p(Yi,:ly\i):(_z;lJ exp _—2” Yi: — 2 Vi
jeNG) ”
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Conditionals

R

» Factors in the GRF are the conditionals,

2 \2 2 Wi 2
i
p(Yi,:ly\i):(z_;_(lJ exp _% Yi: — Z Vi
jenNG |l

» Maximizing each conditional is equivalent to optimizing
LLE objective.
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Conditionals

» Factors in the GRF are the conditionals,
/4 2

m?.\2 m2, Wi
g g Jit
P(Yi,:ly\i):(_z;lJ exp _—2” Yi: — 2 ;Y
jeNG) ”

» Maximizing each conditional is equivalent to optimizing
LLE objective.

» Constraint that LLE weights sum to one arises naturally
because w]-,i/mi,i and mi; = ZjEN(i) w]-,i.
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Conditionals

R

» Factors in the GRF are the conditionals,
/4 2

m?.\2 m2, Wi
g g Jit
p(Yi,:ly\i):(_z;lJ exp _—2” Yi: — 2 Vi
jeNG) ”

» Maximizing each conditional is equivalent to optimizing
LLE objective.

» Constraint that LLE weights sum to one arises naturally
because w]-,i/mi,i and mi; = ZjEN(i) w]-,i.

» In LLE a further constraint is imposed m;; = 1.
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LLE Approximates MEU

» LLE is an approximation to maximum likelihood.
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LLE Approximates MEU

» LLE is an approximation to maximum likelihood.

» Laplacian has factorized form.
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LLE Approximates MEU

» LLE is an approximation to maximum likelihood.

» Laplacian has factorized form.

» Pseudolikelihood also allows for relatively quick
parameter estimation.
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LLE Approximates MEU

» LLE is an approximation to maximum likelihood.
» Laplacian has factorized form.

» Pseudolikelihood also allows for relatively quick
parameter estimation.
» ignoring the partition function removes the need to invert
to recover the covariance matrix.
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R

LLE Approximates MEU

» LLE is an approximation to maximum likelihood.
» Laplacian has factorized form.

» Pseudolikelihood also allows for relatively quick
parameter estimation.

» ignoring the partition function removes the need to invert
to recover the covariance matrix.
» LLE can be applied to larger data sets than MEU or MVU.

Note: The sparsity pattern in the Laplacian for LLE will not
match that used in the Laplacian for the other algorithms due
to the factorized representation.
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LLE and PCA

» LLE is motivated by considering local linear embeddings
of the data.
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LLE and PCA

» LLE is motivated by considering local linear embeddings
of the data.

» Interestingly, as we increase the neighborhood size to
K =n -1 we do not recover PCA.
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LLE and PCA

» LLE is motivated by considering local linear embeddings
of the data.

» Interestingly, as we increase the neighborhood size to
K =n -1 we do not recover PCA.

» But PCA is the “optimal” linear embedding!!
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LLE and PCA

» LLE is motivated by considering local linear embeddings
of the data.

» Interestingly, as we increase the neighborhood size to
K =n -1 we do not recover PCA.

» But PCA is the “optimal” linear embedding!!

» LLE is optimizing a pseudolikelihood: in contrast the MEU
algorithm, which LLE approximates, does recover PCA
when K =n - 1.
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Acyclic Locally Linear Embedding

» The pseudolikelihood is an approximation.
» Unless neighborhood in M is forced acyclic.

» Then M is a Cholesky factor and pseudolikelihood
approximation is exact.

» Normalizer of Gaussian model is

|MMT| %_ mjzli ;
21 “|2n

» This gives a very fast approach to fitting MEU.
» We call this acyclic LLE.

» It does include PCA as special case.
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Isomap and MEU

» Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.
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Isomap and MEU

» Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.

» Fill in other distances by maximizing the total
variance/entropy.
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Isomap and MEU

» Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.

» Fill in other distances by maximizing the total
variance/entropy.

» Interneighbor distances in this graph are preserved just
like in isomap.
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Isomap and MEU

» Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.

» Fill in other distances by maximizing the total
variance/entropy.
» Interneighbor distances in this graph are preserved just
like in isomap.
1. For isomap the implied covariance can have negative
eigenvalues (see Weinberger et al., 2004).
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Isomap and MEU

» Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.

» Fill in other distances by maximizing the total
variance/entropy.
» Interneighbor distances in this graph are preserved just
like in isomap.
1. For isomap the implied covariance can have negative
eigenvalues (see Weinberger et al., 2004).
2. Isomap is slower than LLE and LE: requires a dense
eigenvalue problem and a shortest path algorithm.
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Simple Experiments

» Consider two real data sets.
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Simple Experiments

» Consider two real data sets.

» We apply each of the spectral methods we have reviewed.

/A imred/tex/talke/menFwvamn]l ec

127


../../../dimred/tex/talks/meuExamples

Simple Experiments

» Consider two real data sets.
» We apply each of the spectral methods we have reviewed.
» Apply the MEU framework.

/A imred/tex/talke/menFwvamn]l ec

127


../../../dimred/tex/talks/meuExamples

Simple Experiments

Consider two real data sets.

\4

\4

We apply each of the spectral methods we have reviewed.
Apply the MEU framework.

Follow the suggestion of Harmeling (Harmeling, 2007) and use
the GPLVM likelihood (Lawrence, 2005) for embedding quality.

v

v
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Simple Experiments

Consider two real data sets.

\4

\4

We apply each of the spectral methods we have reviewed.
Apply the MEU framework.

Follow the suggestion of Harmeling (Harmeling, 2007) and use
the GPLVM likelihood (Lawrence, 2005) for embedding quality.

The higher the likelihood the better the embedding.

First we consider Stick Man Data from before.

v

v

v

v
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Laplacian Figenmaps and LLE

3 1
2 L _
0 - _
1 L _
0+ = -1 7]
1k . oL |
-2 \ \ \
-1 0 1 2 2 -1 0 1 2 3
(a) Laplacian Eigenmaps (b) Locally Linear Embedding

Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.
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Isomap and MVU

2 2 I B B B
1+ 1 L
0+ - 0
1 -
1 kb |
| | ) [ T R R B
-2 -1 0 1 2 3-2-10123
(a) Isomap (b) MVU

Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.
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MEU

Y

(a) MEU

Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.
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Motion Capture: Model Scores

MEU
MVU
isomap
LLE

LE

0 2000 4000

Figure: Model score for the different spectral approaches.
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Robot Navigation Example

» Second data set: series of recordings from a robot as it
traces a square path in a building.
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Robot Navigation Example

» Second data set: series of recordings from a robot as it
traces a square path in a building.

» It records the strength of WiFi signals (see Ferris et al., 2007, for an
application).
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Robot Navigation Example

» Second data set: series of recordings from a robot as it
traces a square path in a building.

» It records the strength of WiFi signals (see Ferris et al., 2007, for an
application).

» Robot only in two dimensions, the inherent dimensionality
of the data should be two.
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Robot Navigation Example

» Second data set: series of recordings from a robot as it
traces a square path in a building.

» It records the strength of WiFi signals (see Ferris et al., 2007, for an
application).

» Robot only in two dimensions, the inherent dimensionality
of the data should be two.

» Robot completes a single circuit after entry: it is expected
to exhibit “loop closure”.
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Robot Navigation Example

R

» Second data set: series of recordings from a robot as it
traces a square path in a building.

» It records the strength of WiFi signals (see Ferris et al., 2007, for an
application).

» Robot only in two dimensions, the inherent dimensionality
of the data should be two.

» Robot completes a single circuit after entry: it is expected
to exhibit “loop closure”.

» Data consists of 215 frames of measurement of WiFi signal
strength of 30 access points.
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Laplacian Figenmaps and LLE

2 1
1+ B 0 - -
0+ = -1 - -
1 k- _ 2L i
2 b _ 3L i
-3 \ \ \ \ \ \
3 2 -1 0 1 2 0 1
(a) Laplacian Eigenmaps (b) Locally Linear Embedding

Figure: Models show loop closure but smooth the trace to different
degrees.
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Isomap and MVU

2 T T T
3 L |
1 - B 2 - -
1 L |
0 - - 0+ B
1 b |
1 b | 2 |
3 L |
i) | | | | L
3 2 -1 0 1 2 -3210123
(a) Isomap (b) MVU

Figure: Models show loop closure but smooth the trace to different
degrees.
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MEU

(a) MEU

Figure: Models show loop closure but smooth the trace to different
degrees.
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Robot Navigation: Model Scores

MEU
MVU
isomap -
LLE

LE |-

-6000 -1000 4000

Figure: Model score for the different spectral approaches.
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Linear Dimensionality Reduction

Linear Latent Variable Model

» Represent data, Y, with a lower dimensional set of latent
variables X.

» Assume a linear relationship of the form
Yi. = Wxi,: + €.,

where

€ ~ N (0,0°1).
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Linear Latent Variable Model

Probabilistic PCA

» Define linear-Gaussian
relationship between W
latent variables and
data.

< 702

n
pOYIX, W) = [T (yi:Wxi., 01)
i=1
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Probabilistic PCA

» Define linear-Gaussian
relationship between W
latent variables and
data.
» Standard Latent +«—?
variable approach:

n
pOYIX, W) = [T (yi:Wxi., 01)
i=1
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Linear Latent Variable Model

Probabilistic PCA
» Define linear-Gaussian
relationship between
latent variables and
data.
» Standard Latent
variable approach:

» Define Gaussian prior
over latent space, X.

/S Janlum/texw/talke/vhnea tew

n
pOIXW) = [T (3 Wi, 01)
i=1

p00 =N (x:l0,1)

i=1
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A

Linear Latent Variable Model

Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and
data.

» Standard Latent
variable approach:

» Define Gaussian prior
over latent space, X.

> Integrate out latent
variables.

- Janlvum/texw/talke/vrnea tew

p(YIX, W) = H N (yi:Wx;,, 1)

i=1

pX) = [T~ (xil0,0)
i=1

p(YIW) = ﬁ N (yi:0, WWT + 621)
i=1
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Computation of the Marginal Likelihood

Yi: = Wxi,: +€. X~ N(Or I) ; €™ N(OI 021)

/S Janlum/tev/talke/vhnea tew
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Computation of the Marginal Likelihood

Yi: = wxi,: +€. X~ N(Or I) ; €™ N(O/ UZI)

Wx;. ~ N (0,WWT),
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Computation of the Marginal Likelihood

Yi: = wxi,: +€. X~ N(Or I) ; €™ N(O/ UZI)

Wx;. ~ N (0,WWT),

Wx;. + €.~ N (0, WWT + GZI)
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Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (?)

|
G

=

p(YIW) = | [ N (yi:do, WWT + 071
i=1
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Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (?)

p(YW) = [ [N (:10,0), C=WWT +cI
i=1

/S Janlum/tevw/talke/vhnea tew

151


../../../gplvm/tex/talks/ppca.tex

Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (?)

p(YW) = [ [N (:10,0), C=WWT +cI
i=1

1
logp (YIW) = —g log |C| - Etr (C_lYTY) + const.

/S Japnlum/tex/talke/vhnea tew
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Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (?)

p(YW) = [ [N (:10,0), C=WWT +cI
i=1

1
logp (YIW) = —g log |C| - Etr (C_lYTY) + const.

If U, are first g principal eigenvectors of 1YY and the
corresponding eigenvalues are A,
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Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (?)

p(YW) = [ [N (:10,0), C=WWT +cI
i=1

1
logp (YIW) = —g log |C| - Etr (C_lYTY) + const.

If U, are first g principal eigenvectors of 1YY and the
corresponding eigenvalues are A,

N=

2
W=U[LRT, L=(A;-0%)
where R is an arbitrary rotation matrix.

/S Janlum/texw/talke/vhnea tew
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Linear Latent Variable Model 111

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between X
latent variables and
data.

< —52

n
p(YX W) = [ [V (yi:Wxi., 1)
i=1
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Linear Latent Variable Model 111

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between X
latent variables and
data.

» Novel Latent variable -2
approach:

n
p(YX W) = [ [V (yi:Wxi., 1)
i=1
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Linear Latent Variable Model 111

Dual Probabilistic PCA
» Define linear-Gaussian X
relationship between
latent variables and
data. < a2

» Novel Latent variable
approach:

. . . n
» Define Gaussian prior P (YIX, W) = H Ny W, 01)
over parameters, W. i1

pW) = [ [ ~(wilo,1)

—

Il
—-

I:
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Linear Latent Variable Model 111

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and
data.

» Novel Latent variable
approach:

» Define Gaussian prior
over parameters, W.

» Integrate out
parameters.

/S Japnlum/tex/talke/vhen tew

< —52

n
pOIXW) = [T (3 Wi, 01)
i=1

4
pW) =[N (wilo7)

i=1

14
p o) = [ [ AV (3,10, XX +01)
=1
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Computation of the Marginal Likelihood

V. =Xwjtej, wi~N@©OI), €.~N(001)
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Computation of the Marginal Likelihood

V. =Xwjtej, wi~N@©OI), €.~N(001)

Xw.; ~ N (0,XX"),
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Computation of the Marginal Likelihood

V. =Xwjtej, wi~N@©OI), €.~N(001)

Xw.; ~ N (0,XX"),

Xw.;+ei~N (0, XX + (721)
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004,
2005)

1‘
-

p
pOYX) = [ AV (3410, XX + 01)
j=1
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Linear Latent Variable Model IV
Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p
p) = [[N(y.10.K), K=XXT+0
=1
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Linear Latent Variable Model IV
PPCA Max. Likelihood Soln (?)

p
p) = [[N(y.10.K), K=XXT+0
=1

logp (YIX) = —g log K| — %tr (K‘lYYT) + const.
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Linear Latent Variable Model IV
PPCA Max. Likelihood Soln

p
p) = [[N(y.10.K), K=XXT+0
=1

logp (YIX) = —= log K| — —tr (K™'YYT) + const.

It U are first g principal eigenvectors of p~lYYT and the
corresponding eigenvalues are A,
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Linear Latent Variable Model IV
PPCA Max. Likelihood Soln

p
p) = [[N(y.10.K), K=XXT+0
=1

logp (YIX) = —= log K| — —tr (K™'YYT) + const.

It U are first g principal eigenvectors of p~lYYT and the
corresponding eigenvalues are A,

X=UJLR", L=(A,- 021)%

where R is an arbitrary rotation matrix.
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Linear Latent Variable Model IV

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p
p(YIX) = H N(y:j10,K), K=XXT+0
j=1

logp (YIX) = —-% log K| - —tr( _1YYT) + const.

If U are first g principal eigenvectors of p~lYYT and the
corresponding eigenvalues are A,

X=ULR", L=(A,- azl)%

where R is an arbitrary rotation matrix.
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Linear Latent Variable Model IV

PPCA Max. Likelihood Soln (?)

p(YW) = [[ N (y:10,C), C=WWT +%
i=1

logp (YIW) = —g log|C| - %tr (C_lYTY) + const.

If U, are first g principal eigenvectors of n7'Y"Y and the
corresponding eigenvalues are A,

W=ULR", L=(A,- 021)%

where R is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent

» Solution for Probabilistic PCA (solves for the mapping)

Y'YU,=U,A, W=ULR"

» Solution for Dual Probabilistic PCA (solves for the latent
positions)
YYTU,'] = U‘;Aq X= U,;LRT

» Equivalence is from
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and
data.

» Novel Latent variable
approach:

» Define Gaussian prior
over parameteters, W.

> Integrate out
parameters.

S Janlum/tev/talke/nonl inearl.atent tew

«—52

pYIX, W) = H N (vi: Wi, 1)

i=1

r
pW) =[]~ (wilo1)

i=1

p
pOX) = [TV (v.10,XX7 +021)
j=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

» Inspection of the
marginal likelihood
shows ...

p(YIX) =

T

4
N (y,710,XXT + 0?1}
=1

S Janlvum/tex/talke/non]l inearlatent tew 15K


../../../gplvm/tex/talks/nonlinearLatent.tex

Non-Linear Latent Variable Model

Dual Probabilistic PCA

» Inspection of the
marginal likelihood X
shows ...
» The covariance matrix

is a covariance < o2
function.

p
p ) = [ [N (310, K)
=1

K =XX" + %I
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

» Inspection of the X
marginal likelihood
shows ...

» The covariance matrix 02
is a covariance
function.

p
» We recognise it as the p(YIX) = H N(y;,]-|0, K)
‘linear kernel’. =1

K =XX" + %I

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

» Inspection of the
marginal likelihood
shows ...

» The covariance matrix
is a covariance
function.

» We recognise it as the
‘linear kernel’.

» We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

S Janlum/tev/talke/nonl inearl.atent tew

P
P = [N (y00.K)
j=1

K =?

Replace linear kernel with non-linear

kernel for non-linear model.

15K
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Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

» The EQ covariance has the form k; j = k (xi,:, xj,:) , Where

N
(Xz,:,X],:)—OéeXp T op |

» No longer possible to optimise wrt X via an eigenvalue
problem.

» Instead find gradients with respect to X, a, £ and 02 and
optimise using conjugate gradients.
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based around maximum entropy.



Discussion

» New perspective on dimensionality reduction algorithms
based around maximum entropy.

» GRFs and CMDS Unify Spectral Approaches in ML.
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in existing spectral dimensionality algorithms.
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Our Perspective

» Each step is somewhat orthogonal.

» Neighborhood relations need not come from nearest
neighbors: can use structure learning.

» Main difference between approaches is how similarity
matrix entries are determined.

» Final step attempts to visualize the similarity using
eigenvectors. This is just one possible approach.

» There is an entire field of graph visualization proposing
different approaches to visualizing such graphs.
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Advantages of Existing Approaches

» Conflating the three steps allows faster complete
algorithms.

» E.g. mixing 2nd & 3rd allows speed ups by never
computing the similarity matrix.

» We still can understand the algorithm from the unifying
perspective while exploiting the computational
advantages offered by this neat shortcut.



Summary: Spectral Approaches

Good
» Unique optimum.
But

» Non trivial for dealing with missing data.
» Difficult to extend (e.g. temporal data) in a principled way.



Partha and Sam
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