Probabilistic Dimensionality Reduction

Neil D. Lawrence
University of Sheffield

Facebook, London
14th April 2016

Outline

Probabilistic Linear Dimensionality Reduction

Non Linear Probabilistic Dimensionality Reduction

Examples

Conclusions

Notation

q - dimension of latent/embedded space p - dimension of data space n- number of data points

$$
\begin{gathered}
\text { data, } \mathbf{Y}=\left[\mathbf{y}_{1,:}, \ldots, \mathbf{y}_{n,:}\right]^{\top}=\left[\mathbf{y}_{:, 1}, \ldots, \mathbf{y}_{:, p}\right] \in \mathfrak{R}^{n \times p} \\
\text { centred data, } \hat{\mathbf{Y}}=\left[\hat{\mathbf{y}}_{1,:,}, \ldots, \hat{\mathbf{y}}_{n,:}\right]^{\top}=\left[\hat{\mathbf{y}}_{:, 1}, \ldots, \hat{\mathbf{y}}_{:, p}\right] \in \mathfrak{R}^{n \times p}, \\
\hat{\mathbf{y}}_{i,:}=\mathbf{y}_{i,:}-\boldsymbol{\mu} \\
\text { latent variables, } \mathbf{X}=\left[\mathbf{x}_{1, i,}, \ldots, \mathbf{x}_{n,}\right]^{\top}=\left[\mathbf{x}_{:, 1}, \ldots, \mathbf{x}_{:, q}\right] \in \mathfrak{R}^{n \times q} \\
\text { mapping matrix, } \mathbf{W} \in \mathfrak{R}^{p \times q}
\end{gathered}
$$

$\mathbf{a}_{i, \text { : }}$ is a vector from the i th row of a given matrix \mathbf{A} $\mathbf{a}_{:, j}$ is a vector from the j th row of a given matrix \mathbf{A}

Reading Notation

\mathbf{X} and \mathbf{Y} are design matrices

- Data covariance given by $\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$

$$
\operatorname{cov}(\mathbf{Y})=\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{y}}_{i,:} \hat{\mathbf{y}}_{i,:}^{\top}=\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}=\mathbf{S} .
$$

- Inner product matrix given by $\mathbf{Y} \mathbf{Y}^{\top}$

$$
\mathbf{K}=\left(k_{i, j}\right)_{i, j}, \quad k_{i, j}=\mathbf{y}_{i,:}^{\top} \mathbf{y}_{j,:}
$$

Linear Dimensionality Reduction

- Find a lower dimensional plane embedded in a higher dimensional space.
- The plane is described by the matrix $\mathbf{W} \in \mathfrak{R}^{p \times q}$.

$$
\mathbf{y}=\xrightarrow{\mathbf{W x}}+\mu
$$

x_{1}

Figure: Mapping a two dimensional plane to a higher dimensional space in a linear way. Data are generated by corrupting points on the plane with noise.

Linear Dimensionality Reduction

Linear Latent Variable Model

- Represent data, \mathbf{Y}, with a lower dimensional set of latent variables \mathbf{X}.
- Assume a linear relationship of the form

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i,: \prime}
$$

where

$$
\boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Standard Latent

variable approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, j} \mid \mathbf{W} \mathbf{x}_{i, i}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

- Standard Latent variable approach:
- Define Gaussian prior over latent space, \mathbf{X}.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, \mid} \mid \mathbf{W} \boldsymbol{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

$$
p(\mathbf{X})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i,:} \mid \mathbf{0}, \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and
 data.
- Standard Latent variable approach:
- Define Gaussian prior over latent space, \mathbf{X}.
- Integrate out latent variables.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, \mid} \mid \mathbf{W} \mathbf{x}_{i, i}, \sigma^{2} \mathbf{I}\right) \\
p(\mathbf{X}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i,:} \mid \mathbf{0}, \mathbf{I}\right)
\end{aligned}
$$

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:}, \mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Computation of the Marginal Likelihood

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i, i} \quad \mathbf{x}_{i,:} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \epsilon_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

Computation of the Marginal Likelihood

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i, i} \quad \mathbf{x}_{i,:} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \epsilon_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

$$
\mathbf{W} \mathbf{x}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{W}^{\top}\right),
$$

Computation of the Marginal Likelihood

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i, i}, \quad \mathbf{x}_{i,:} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \epsilon_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

$$
\mathbf{W} \mathbf{x}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{W}^{\top}\right),
$$

$$
\mathbf{W} \mathbf{x}_{i,:}+\epsilon_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{W W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \mathbf{Y}^{\top} \mathbf{Y}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \mathbf{Y}^{\top} \mathbf{Y}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{W}=\mathbf{U}_{q} \mathbf{L R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Linear Latent Variable Model

Factor Analysis

- Linear-Gaussian relationship between latent variables and data,

$\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}+\boldsymbol{\eta}_{i,:}$.
- Now each $\eta_{i, j} \sim \mathcal{N}\left(0, \sigma_{j}^{2}\right)$ has a separate variance.

1. Optimize likelihood wrt W.

$$
p(\mathbf{X})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i, j} \mid \mathbf{0}, \mathbf{I}\right)
$$

Linear Latent Variable Model

Factor Analysis

- Linear-Gaussian relationship between latent variables and data,

$\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}+\boldsymbol{\eta}_{i,:}$.
- Now each $\eta_{i, j} \sim \mathcal{N}\left(0, \sigma_{j}^{2}\right)$
$p(\hat{\mathbf{Y}} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\hat{\mathbf{y}}_{i, i} \mid \mathbf{0}, \mathbf{W W}^{\top}+\mathbf{D}\right)$ has a separate variance.

1. Optimize likelihood wrt W.
where \mathbf{D} is diagonal with elements given by σ_{j}^{2}.

Factor Analysis Optimization

- Optimization is more difficult: no longer an eigenvalue problem.

Linear Latent Variable Model

Independent Component

 Analysis- Linear-Gaussian relationship between latent variables and data,

$\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}+\boldsymbol{\eta}_{i,:}$.
- Now latent variables are independent and non-Gaussian:

$$
x_{i,:} \sim \prod_{j=1}^{q} p\left(x_{i, j}\right)
$$

1. Optimize likelihood

$$
p(\mathbf{X})=\prod_{i=1}^{n} \prod_{j=1}^{p} p\left(x_{i, j}\right)
$$

Independent Component Analysis Samples

- Rotational symmetry of Gaussian is removed.

Figure: Independent variables which are Gaussian.

Independent Component Analysis Samples

- Rotational symmetry of Gaussian is removed.

Figure: Independent variables which are super-Gaussian.

Independent Component Analysis Samples

- Rotational symmetry of Gaussian is removed.

Figure: Independent variables which are sub-Gaussian.

Outline

Probabilistic Linear Dimensionality Reduction

Non Linear Probabilistic Dimensionality Reduction

Examples

Conclusions

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe,
 you won't see the original six!

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe,
 you won't see the original six!

Simple Model of Digit

Rotate a 'Prototype'

MATLAB Demo
demDigitsManifold([1 2], 'all')

MATLAB Demo

demDigitsManifold([1 2], 'all')

MATLAB Demo

demDigitsManifold([1 2], 'sixnine')

Low Dimensional Manifolds

Pure Rotation is too Simple

- In practice the data may undergo several distortions.
- e.g. digits undergo 'thinning', translation and rotation.
- For data with 'structure':
- we expect fewer distortions than dimensions;
- we therefore expect the data to live on a lower dimensional manifold.
- Conclusion: deal with high dimensional data by looking for lower dimensional non-linear embedding.

Linear Dimensionality Reduction

Linear Latent Variable Model

- Represent data, \mathbf{Y}, with a lower dimensional set of latent variables \mathbf{X}.
- Assume a linear relationship of the form

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i,: \prime}
$$

where

$$
\boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Standard Latent

variable approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, j} \mid \mathbf{W} \mathbf{x}_{i, i}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

- Standard Latent variable approach:
- Define Gaussian prior over latent space, \mathbf{X}.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, \mid} \mid \mathbf{W} \boldsymbol{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

$$
p(\mathbf{X})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i,:} \mid \mathbf{0}, \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and
 data.
- Standard Latent variable approach:
- Define Gaussian prior over latent space, \mathbf{X}.
- Integrate out latent variables.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, \mid} \mid \mathbf{W} \mathbf{x}_{i, i}, \sigma^{2} \mathbf{I}\right) \\
p(\mathbf{X}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i,:} \mid \mathbf{0}, \mathbf{I}\right)
\end{aligned}
$$

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:}, \mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Computation of the Marginal Likelihood

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i, i} \quad \mathbf{x}_{i,:} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \epsilon_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

Computation of the Marginal Likelihood

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i, i} \quad \mathbf{x}_{i,:} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \epsilon_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

$$
\mathbf{W} \mathbf{x}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{W}^{\top}\right),
$$

Computation of the Marginal Likelihood

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i, i}, \quad \mathbf{x}_{i,:} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \epsilon_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

$$
\mathbf{W} \mathbf{x}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{W}^{\top}\right),
$$

$$
\mathbf{W} \mathbf{x}_{i,:}+\epsilon_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{W W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \mathbf{Y}^{\top} \mathbf{Y}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \mathbf{Y}^{\top} \mathbf{Y}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{W}=\mathbf{U}_{q} \mathbf{L R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Linear Latent Variable Model III

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, \mid} \mid \mathbf{W} \mathbf{x}_{i, .}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Novel Latent variable approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, \mid} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

- Novel Latent variable approach:
- Define Gaussian prior over parameters, W.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, j} \mid \mathbf{W} \mathbf{x}_{i, j}, \sigma^{2} \mathbf{I}\right) \\
p(\mathbf{W}) & =\prod_{i=1}^{p} \mathcal{N}\left(\mathbf{w}_{i, \mid} \mid \mathbf{0}, \mathbf{I}\right)
\end{aligned}
$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and
 data.
- Novel Latent variable approach:
- Define Gaussian prior over parameters, W.
- Integrate out parameters.

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, \mid} \mid \mathbf{W} \mathbf{x}_{i_{i},}, \sigma^{2} \mathbf{I}\right) \\
p(\mathbf{W})=\prod_{i=1}^{p} \mathcal{N}\left(\mathbf{w}_{i, i} \mid \mathbf{0}, \mathbf{I}\right) \\
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{: j, j} \mid \mathbf{0}, \mathbf{X} \mathbf{X}^{\top}+\sigma^{2} \mathbf{I}\right)
\end{gathered}
$$

Computation of the Marginal Likelihood

$$
\mathbf{y}_{:, j}=\mathbf{X w}_{:, j}+\epsilon_{i, j}, \quad \mathbf{w}_{:, j} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \epsilon_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

Computation of the Marginal Likelihood

$$
\begin{gathered}
\mathbf{y}_{:, j}=\mathbf{X w}_{:, j}+\epsilon_{i, j}, \quad \mathbf{w}_{:, j} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \epsilon_{i, ;} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right) \\
\mathbf{X w}_{:, j} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{X X} \mathbf{X}^{\top}\right),
\end{gathered}
$$

Computation of the Marginal Likelihood

$$
\begin{aligned}
\mathbf{y}_{:, j}=\mathbf{X}_{:, j}+\epsilon_{: j, j}, \quad \mathbf{w}_{:, j} & \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \epsilon_{i, i} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right) \\
\mathbf{X}_{:}:, j & \sim \mathcal{N}\left(\mathbf{0}, \mathbf{X} \mathbf{X}^{\top}\right), \\
\mathbf{X w}_{:, j}+\epsilon_{:, j} & \sim \mathcal{N}\left(\mathbf{0}, \mathbf{X} \mathbf{X}^{\top}+\sigma^{2} \mathbf{I}\right)
\end{aligned}
$$

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004, 2005)

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{X} \mathbf{X}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model IV

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right), \quad \mathbf{K}=\mathbf{X X}^{\top}+\sigma^{2} \mathbf{I}
$$

Linear Latent Variable Model IV

PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{: ; j} \mid \mathbf{0}, \mathbf{K}\right), \quad \mathbf{K}=\mathbf{X X}^{\top}+\sigma^{2} \mathbf{I}
$$

$$
\log p(\mathbf{Y} \mid \mathbf{X})=-\frac{p}{2} \log |\mathbf{K}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\top}\right)+\text { const. }
$$

Linear Latent Variable Model IV

PPCA Max. Likelihood Soln

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{: j} ; \mathbf{0}, \mathbf{K}\right), \quad \mathbf{K}=\mathbf{X X}^{\top}+\sigma^{2} \mathbf{I}
$$

$$
\log p(\mathbf{Y} \mid \mathbf{X})=-\frac{p}{2} \log |\mathbf{K}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\top}\right)+\text { const. }
$$

If \mathbf{U}_{q}^{\prime} are first q principal eigenvectors of $p^{-1} \mathbf{Y} \mathbf{Y}^{\top}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

Linear Latent Variable Model IV

PPCA Max. Likelihood Soln

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{: j} ; \mathbf{0}, \mathbf{K}\right), \quad \mathbf{K}=\mathbf{X X}^{\top}+\sigma^{2} \mathbf{I}
$$

$$
\log p(\mathbf{Y} \mid \mathbf{X})=-\frac{p}{2} \log |\mathbf{K}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\top}\right)+\text { const. }
$$

If \mathbf{U}_{q}^{\prime} are first q principal eigenvectors of $p^{-1} \mathbf{Y} \mathbf{Y}^{\top}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{X}=\mathbf{U}_{q}^{\prime} \mathbf{L} \mathbf{R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Linear Latent Variable Model IV

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right), \quad \mathbf{K}=\mathbf{X X}^{\top}+\sigma^{2} \mathbf{I}
$$

$$
\log p(\mathbf{Y} \mid \mathbf{X})=-\frac{p}{2} \log |\mathbf{K}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\top}\right)+\text { const. }
$$

If \mathbf{U}_{q}^{\prime} are first q principal eigenvectors of $p^{-1} \mathbf{Y} \mathbf{Y}^{\top}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{X}=\mathbf{U}_{q}^{\prime} \mathbf{L} \mathbf{R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Linear Latent Variable Model IV

PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \mathbf{Y}^{\top} \mathbf{Y}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{W}=\mathbf{U}_{q} \mathbf{L} \mathbf{R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Equivalence of Formulations

The Eigenvalue Problems are equivalent

- Solution for Probabilistic PCA (solves for the mapping)

$$
\mathbf{Y}^{\top} \mathbf{Y} \mathbf{U}_{q}=\mathbf{U}_{q} \mathbf{\Lambda}_{q} \quad \mathbf{W}=\mathbf{U}_{q} \mathbf{L} \mathbf{R}^{\top}
$$

- Solution for Dual Probabilistic PCA (solves for the latent positions)

$$
\mathbf{Y} \mathbf{Y}^{\top} \mathbf{U}_{q}^{\prime}=\mathbf{U}_{q}^{\prime} \boldsymbol{\Lambda}_{q} \quad \mathbf{X}=\mathbf{U}_{q}^{\prime} \mathbf{L R ^ { \top }}
$$

- Equivalence is from

$$
\mathbf{U}_{q}=\mathbf{Y}^{\top} \mathbf{U}_{q}^{\prime} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

Gaussian Processes: Extremely Short Overview

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and
 data.
- Novel Latent variable approach:
- Define Gaussian prior over parameteters, \mathbf{W}.
- Integrate out parameters.

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, /} \mid \mathbf{W} \mathbf{x}_{i, i}, \sigma^{2} \mathbf{I}\right) \\
p(\mathbf{W})=\prod_{i=1}^{p} \mathcal{N}\left(\mathbf{w}_{i, \mid} \mid \mathbf{0}, \mathbf{I}\right) \\
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{: j, j} \mid \mathbf{0}, \mathbf{X} \mathbf{X}^{\top}+\sigma^{2} \mathbf{I}\right)
\end{gathered}
$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{X} \mathbf{X}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
- The covariance matrix is a covariance function.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}) & =\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right) \\
\mathbf{K} & =\mathbf{X X}^{\top}+\sigma^{2} \mathbf{I}
\end{aligned}
$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
- The covariance matrix is a covariance function.
- We recognise it as the 'linear kernel'.

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{: j, j} \mathbf{0}, \mathbf{K}\right)
$$

$$
\boldsymbol{K}=\mathbf{X} \mathbf{x}^{\top}+\sigma^{2} \mathbf{I}
$$

This is a product of Gaussian processes with linear kernels.

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
- The covariance matrix is a covariance function.
- We recognise it as the 'linear kernel'.
- We call this the

Gaussian Process Latent Variable model (GP-LVM).

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right)
$$

$$
\mathbf{K}=\text { ? }
$$

Replace linear kernel with non-linear kernel for non-linear model.

Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

- The EQ covariance has the form $k_{i, j}=k\left(\mathbf{x}_{i, i}, \mathbf{x}_{j, i}\right)$, where

$$
k\left(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}\right)=\alpha \exp \left(-\frac{\left\|\mathbf{x}_{i,:}-\mathbf{x}_{j,:}\right\|_{2}^{2}}{2 \ell^{2}}\right)
$$

- No longer possible to optimise wrt \mathbf{X} via an eigenvalue problem.
- Instead find gradients with respect to $\boldsymbol{X}, \alpha, \ell$ and σ^{2} and optimise using conjugate gradients.

Outline

Probabilistic Linear Dimensionality Reduction
Non Linear Probabilistic Dimensionality Reduction

Examples

Conclusions

Applications

Style Based Inverse Kinematics

- Facilitating animation through modeling human motion (Grochow et al., 2004)

Tracking

- Tracking using human motion models (Urtasun et al., 2005, 2006)

Assisted Animation

- Generalizing drawings for animation (Baxter and Anjyo, 2006)

Shape Models

- Inferring shape (e.g. pose from silhouette). (Ek et al., 2008b,a; Priacuriu and Reid, 2011a,b)

Example: Latent Doodle Space

(Baxter and Anjyo, 2006)

Example: Latent Doodle Space

(Baxter and Anjyo, 2006)

Generalization with much less Data than Dimensions

- Powerful uncertainly handling of GPs leads to surprising properties.
- Non-linear models can be used where there are fewer data points than dimensions without overfitting.

Prior for Supervised Learning

(Urtasun and Darrell, 2007)

- We introduce a prior that is based on the Fisher criteria

$$
p(\mathbf{X}) \propto \exp \left\{-\frac{1}{\sigma_{d}^{2}} \operatorname{tr}\left(\mathbf{S}_{w}^{-1} \mathbf{S}_{b}\right)\right\},
$$

with \mathbf{S}_{b} the between class matrix and \mathbf{S}_{w} the within class matrix

Prior for Supervised Learning

(Urtasun and Darrell, 2007)

- We introduce a prior that is based on the Fisher criteria

$$
p(\mathbf{X}) \propto \exp \left\{-\frac{1}{\sigma_{d}^{2}} \operatorname{tr}\left(\mathbf{S}_{w}^{-1} \mathbf{S}_{b}\right)\right\}
$$

with \mathbf{S}_{b} the between class matrix and \mathbf{S}_{w} the within class matrix

$$
\mathbf{S}_{w}=\sum_{i=1}^{L} \frac{n_{i}}{n}\left(\mathbf{M}_{i}-\mathbf{M}_{0}\right)\left(\mathbf{M}_{i}-\mathbf{M}_{0}\right)^{\top}
$$

where $\mathbf{X}^{(i)}=\left[\mathbf{x}_{1}^{(i)}, \cdots, \mathbf{x}_{n_{i}}^{(i)}\right]$ are the n_{i} training points of class i, \mathbf{M}_{i} is the mean of the elements of class i, and \mathbf{M}_{0} is the mean of all the training points of all classes.

Prior for Supervised Learning

(Urtasun and Darrell, 2007)

- We introduce a prior that is based on the Fisher criteria

$$
p(\mathbf{X}) \propto \exp \left\{-\frac{1}{\sigma_{d}^{2}} \operatorname{tr}\left(\mathbf{S}_{w}^{-1} \mathbf{S}_{b}\right)\right\}
$$

with \mathbf{S}_{b} the between class matrix and \mathbf{S}_{w} the within class matrix

$$
\begin{gathered}
\mathbf{S}_{w}=\sum_{i=1}^{L} \frac{n_{i}}{n}\left(\mathbf{M}_{i}-\mathbf{M}_{0}\right)\left(\mathbf{M}_{i}-\mathbf{M}_{0}\right)^{\top} \\
\mathbf{S}_{b}=\sum_{i=1}^{L} \frac{n_{i}}{n}\left[\frac{1}{n_{i}} \sum_{k=1}^{n_{i}}\left(\mathbf{x}_{k}^{(i)}-\mathbf{M}_{i}\right)\left(\mathbf{x}_{k}^{(i)}-\mathbf{M}_{i}\right)^{\top}\right]
\end{gathered}
$$

where $\mathbf{X}^{(i)}=\left[\mathbf{x}_{1}^{(i)}, \cdots, \mathbf{x}_{n_{i}}^{(i)}\right]$ are the n_{i} training points of class
i M.ic tho moan of tho olomonte of clacc i and Moic tho

Prior for Supervised Learning

(Urtasun and Darrell, 2007)

- We introduce a prior that is based on the Fisher criteria

$$
p(\mathbf{X}) \propto \exp \left\{-\frac{1}{\sigma_{d}^{2}} \operatorname{tr}\left(\mathbf{S}_{w}^{-1} \mathbf{S}_{b}\right)\right\}
$$

with \mathbf{S}_{b} the between class matrix and \mathbf{S}_{w} the within class matrix

GaussianFace

(Lu and Tang, 2014)

- First system to surpass human performance on cropped Learning Faces in Wild Data.

http://tinyurl.com/nkt9a38

- Lots of feature engineering, followed by a Discriminative GP-LVM.

Figure 4: The ROC curve on LFW. Our method achieves the best performance, beating human-level performance.

Figure 5: The two rows present examples of matched anc mismatched pairs respectively from LFW that were incorrectly classified by the GaussianFace model.

Conclusion and Future Work

Continuous Character Control

(Levine et al., 2012)

- Graph diffusion prior for enforcing connectivity between motions.

$$
\log p(\mathbf{X})=w_{c} \sum_{i, j} \log K_{i j}^{d}
$$

with the graph diffusion kernel \mathbf{K}^{d} obtain from

$$
K_{i j}^{d}=\exp (\beta \mathbf{H}) \quad \text { with } \quad \mathbf{H}=-\mathbf{T}^{-1 / 2} \mathbf{L} \mathbf{T}^{-1 / 2}
$$

the graph Laplacian, and \mathbf{T} is a diagonal matrix with $T_{i i}=\sum_{j} w\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$,

$$
L_{i j}= \begin{cases}\sum_{k} w\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right) & \text { if } i=j \\ -w\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & \text { otherwise } .\end{cases}
$$

and $w\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{-p}$ measures similarity.

Character Control: Results

GPLVM for Character Animation

- Learn a GPLVM from a small mocap sequence
- Pose synthesis by solving an optimization problem

$$
\begin{array}{r}
\arg \min \mathbf{x}, \mathbf{y}-\log p(\mathbf{y} \mid \mathbf{x}) \\
\text { such that } C(\mathbf{y})=0
\end{array}
$$

- These handle constraints may come from a user in an interactive session, or from a mocap system.
- Smooth the latent space by adding noise in order to reduce the number of local minima.
- Optimization in an annealed fashion over different anneal version of the latent space.

Application: Replay same motion

Application: Keyframing joint trajectories

(Grochow et al., 2004)

Application: Deal with missing data in mocap

(Grochow et al., 2004)

Application: Style Interpolation

Shape Priors in Level Set Segmentation

- Represent contours with elliptic Fourier descriptors

- Learn a GPLVM on the parameters of those descriptors
- We can now generate close contours from the latent space
- Segmentation is done by non-linear minimization of an image-driven energy which is a function of the latent space

GPLVM on Contours

[V. Prisacariu and I. Reid, ICCV 2011]

Segmentation Results

[V. Prisacariu and I. Reid, ICCV 2011]

5) Style Content Separation and Multi-linear models

Multiple aspects that affect the input signal, interesting to factorize them

Multilinear models

- Style-Content Separation (Tenenbaum and Freeman, 2000)

$$
\mathbf{y}=\sum_{i, j} w_{i, j} a_{i} b_{j}+\epsilon
$$

- Multi-linear analysis (Vasilescu and Terzopoulos, 2002)

$$
\mathbf{y}=\sum_{i, j, k, \cdots} w_{i, j, k, \ldots} a_{i} b_{j} c_{k} \cdots+\epsilon
$$

- Non-linear basis functions (Elgammal and Lee, 2004)

$$
\mathbf{y}=\sum_{i, j} w_{i, j} a_{i} \phi_{j}(b)+\epsilon
$$

Multi (non)-linear models with GPs

- In the GPLVM

$$
\mathbf{y}=\sum_{j} w_{j} \phi_{j}(\mathbf{x})+\epsilon=\mathbf{w}^{\top} \Phi(\mathbf{x})+\epsilon
$$

with

$$
E\left[\mathbf{y}, \mathbf{y}^{\prime}\right]=\Phi(\mathbf{x})^{\top} \Phi(\mathbf{y})+\beta^{-1} \delta=k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\beta^{-1} \delta
$$

- Multifactor Gaussian process

$$
\mathbf{y}=\sum_{i, j, k, \cdots} w_{i j k \ldots} \phi_{i}^{(1)} \phi_{j}^{(1)} \phi_{k}^{(1)} \cdots+\epsilon
$$

with

$$
E\left[\mathbf{y}, \mathbf{y}^{\prime}\right]=\prod_{i} \Phi^{(i)^{\top}} \Phi^{(i)}+\beta^{-1} \delta=\prod_{i} k_{i}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(i)^{\prime}}\right)+\beta^{-1} \delta
$$

- Learning in this model is the same, just the kernel changes.

Training Data

Each training motion is a collection of poses, sharing the same combination of subject (s) and gait (g).

Stylistic factors

$$
\begin{array}{lll}
\text { subject } 1 & \text { subject } 2 & \text { subject } 3
\end{array}
$$

stride

run

walk

Character Animation

(Wang et al., 2007)

Training data, 6 sequences, 314 frames in total

Generating new styles for a subject

Interpolating Gaits

Generating Different Styles

Other Topics

- Dynamical models Details
- Hierarchical models © Details
- Bayesian GP-LVM Details
- Deep GPs - Details

Hierarchical GP-LVM

(Lawrence and Moore, 2007)

Stacking Gaussian Processes

- Regressive dynamics provides a simple hierarchy.
- The input space of the GP is governed by another GP.
- By stacking GPs we can consider more complex hierarchies.
- Ideally we should marginalise latent spaces
- In practice we seek MAP solutions.

Two Correlated Subjects

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a 'high five'.

Within Subject Hierarchy

(Lawrence and Moore, 2007)

Decomposition of Body

Figure: Decomposition of a subject.

Single Subject Run/Walk

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a walk and a run.

Selecting Data Dimensionality

- GP-LVM Provides probabilistic non-linear dimensionality reduction.
- How to select the dimensionality?
- Need to estimate marginal likelihood.
- In standard GP-LVM it increases with increasing q.

Integrate Mapping Function and Latent Variables

Bayesian GP-LVM

- Start with a standard GP-LVM.

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{: j, j} \mathbf{0}, \mathbf{K}\right)
$$

Integrate Mapping Function and Latent Variables

Bayesian GP-LVM

- Start with a standard GP-LVM.
- Apply standard latent variable approach:
- Define Gaussian prior over latent space, \mathbf{X}.

$p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right)$

Integrate Mapping Function and Latent Variables

Bayesian GP-LVM

- Start with a standard GP-LVM.
- Apply standard latent variable approach:

- Define Gaussian prior over latent space, \mathbf{X}.
- Integrate out latent variables.

$$
\begin{aligned}
& p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{: ; j} \mid \mathbf{0}, \mathbf{K}\right) \\
& p(\mathbf{X})=\prod_{j=1}^{q} \mathcal{N}\left(\mathbf{x}_{; ; j} \mathbf{0}, \alpha_{i}^{-2} \mathbf{I}\right)
\end{aligned}
$$

Integrate Mapping Function and Latent Variables

Bayesian GP-LVM

- Start with a standard GP-LVM.
- Apply standard latent variable approach:

- Define Gaussian prior over latent space, \mathbf{X}.
- Integrate out latent variables.

$$
\begin{aligned}
& p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right) \\
& p(\mathbf{X})=\prod_{j=1}^{q} \mathcal{N}\left(\mathbf{x}_{:, j} \mid \mathbf{0}, \alpha_{i}^{-2} \mathbf{I}\right) \\
& p(\mathbf{Y} \mid \boldsymbol{\alpha})=? ?
\end{aligned}
$$

- Unfortunately integration is intractable.

Priors for Latent Space

Titsias and Lawrence (2010)

- Variational marginalization of \mathbf{X} allows us to learn parameters of $p(\mathbf{X})$.
- Standard GP-LVM where \mathbf{X} learnt by MAP, this is not possible (see e.g. Wang et al., 2008).
- First example: learn the dimensionality of latent space.

Graphical Representations of GP-LVM

$$
\begin{gathered}
\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \quad x_{i} \sim \mathcal{N}\left(0, \alpha_{i}\right) \\
y \sim \mathcal{N}\left(\mathbf{x}^{\top} \mathbf{w}, \sigma^{2}\right)
\end{gathered}
$$

Graphical Representations of GP-LVM

Non-linear $f(\mathbf{x})$

- In linear case equivalence because $f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}$

$$
p\left(w_{i}\right) \sim \mathcal{N}\left(\mathbf{0}, \alpha_{i}\right)
$$

- In non linear case, need to scale columns of \mathbf{X} in prior for $f(\mathbf{x})$.
- This implies scaling columns of \mathbf{X} in covariance function

$$
k\left(\mathbf{x}_{i, i}, \mathbf{x}_{j,:}\right)=\exp \left(-\frac{1}{2}\left(\mathbf{x}_{:, i}-\mathbf{x}_{:, j}\right)^{\top} \mathbf{A}\left(\mathbf{x}_{:, i}-\mathbf{x}_{:, j}\right)\right)
$$

\mathbf{A} is diagonal with elements α_{i}^{2}. Now keep prior spherical

$$
p(\mathbf{X})=\prod_{j=1}^{q} \mathcal{N}\left(\mathbf{x}_{:, j} \mid \mathbf{0}, \mathbf{I}\right)
$$

- Covariance functions of this type are known as ARD (see e.g. Neal, 1996; MacKay, 2003; Rasmussen and Williams, 2006).

Automatic dimensionality detection

- Achieved by employing an Automatic Relevance Determination (ARD) covariance function for the prior on the GP mapping
- $f \sim G P\left(\mathbf{0}, k_{f}\right)$ with

$$
k_{f}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sigma^{2} \exp \left(-\frac{1}{2} \sum_{q=1}^{Q} w_{q}\left(x_{i, q}-x_{j, q}\right)^{2}\right)
$$

- Example

Gaussian Process Dynamical Systems

(Damianou et al., 2011)

Gaussian Process over Latent Space

- Assume a GP prior for $p(\mathbf{X})$.
- Input to the process is time, $p(\mathbf{X} \mid t)$.

Interpolation of HD Video

Modeling Multiple 'Views'

- Single space to model correlations between two different data sources, e.g., images \& text, image \& pose.
- Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al., 2008b)

- Effective when the 'views' are correlated.
- But not all information is shared between both 'views'.
- PCA applied to concatenated data vs CCA applied to data.

Shared-Private Factorization

- In real scenarios, the 'views' are neither fully independent, nor fully correlated.
- Shared models
- either allow information relevant to a single view to be mixed in the shared signal,
- or are unable to model such private information.
- Solution: Model shared and private information (Virtanen et al., 2011; Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker, 1958)

- Probabilistic CCA is case when dimensionality of \mathbf{Z} matches $\mathbf{Y}^{(i)}$ (cf Inter Battery Factor Analysis (Tucker, 1958)).

Manifold Relevance Determination

Pox

Damianou et al. (2012)

Shared GP-LVM

Separate ARD parameters for mappings to $\mathbf{Y}^{(1)}$ and $\mathbf{Y}^{(2)}$.

Example: Yale faces

- Dataset Y: 3 persons under all illumination conditions
- Dataset Z: As above for 3 different persons
- Align datapoints \mathbf{x}_{n} and \mathbf{z}_{n} only based on the lighting direction

Results

- Latent space X initialised with 14 dimensions
-Weights define a segmentation of X
-Video / demo...

Potential applications..?

Manifold Relevance Determination

Deep Neural Network

Deep Neural Network

Outline

Probabilistic Linear Dimensionality Reduction
Non Linear Probabilistic Dimensionality Reduction
Examples

Conclusions

Summary

- We've advocated Dimenstionality Reduction as a good way of modeling in high dimensions.
- Spectral techniques lead to convex algorithms.
- Probabilistic techniques map the "correct way" around.
- This leads to problems with local minima.
- Have shown ability of probabilistic techniques to deal with high dimensional data.

Summary

- We've advocated Dimenstionality Reduction as a good way of probabilistic modelling in high dimensions.
- Probabilistic techniques map the "correct way" around.
- This leads to problems with local minima.
- Probabilistic dimensionality reduction is useful in practice.
- There are still many open problems to be overcome.

References I

W. V. Baxter and K.-I. Anjyo. Latent doodle space. In EUROGRAPHICS, volume 25, pages 477-485, Vienna, Austria, September 4-8 2006.
A. Damianou, C. H. Ek, M. K. Titsias, and N. D. Lawrence. Manifold relevance determination. In J. Langford and J. Pineau, editors, Proceedings of the International Conference in Machine Learning, volume 29, San Francisco, CA, 2012. Morgan Kauffman. [PDF].
A. Damianou, M. K. Titsias, and N. D. Lawrence. Variational Gaussian process dynamical systems. In P. Bartlett, F. Peirrera, C. Williams, and J. Lafferty, editors, Advances in Neural Information Processing Systems, volume 24, Cambridge, MA, 2011. MIT Press. [PDF].
C. H. Ek, J. Rihan, P. Torr, G. Rogez, and N. D. Lawrence. Ambiguity modeling in latent spaces. In A. Popescu-Belis and R. Stiefelhagen, editors, Machine Learning for Multimodal Interaction (MLMI 2008), LNCS, pages 62-73. Springer-Verlag, 28-30 June 2008a. [PDF].
C. H. Ek, P. H. Torr, and N. D. Lawrence. Gaussian process latent variable models for human pose estimation. In A. Popescu-Belis, S. Renals, and H. Bourlard, editors, Machine Learning for Multimodal Interaction (MLMI 2007), volume 4892 of LNCS, pages 132-143, Brno, Czech Republic, 2008b. Springer-Verlag. [PDF].
A. Elgammal and C. S. Lee. Inferring 3d body pose from silhouettes using activity manifold learning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004.
Z. Ghahramani, editor. Proceedings of the International Conference in Machine Learning, volume 24, 2007. Omnipress. [Google Books] .
K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovic. Style-based inverse kinematics. In ACM Transactions on Graphics (SIGGRAPH 2004), pages 522-531, 2004.
A. Klami and S. Kaski. Local dependent components analysis. In Ghahramani (2007). [Google Books] .
A. Klami and S. Kaski. Probabilistic approach to detecting dependencies between data sets. Neurocomputing, 72: 39-46, 2008.
N. D. Lawrence. Gaussian process models for visualisation of high dimensional data. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems, volume 16, pages 329-336, Cambridge, MA, 2004. MIT Press.

References II

N. D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research, 6:1783-1816, 112005.
N. D. Lawrence and A. J. Moore. Hierarchical Gaussian process latent variable models. In Ghahramani (2007), pages 481-488. [Google Books] . [PDF].
G. Leen and C. Fyfe. A Gaussian process latent variable model formulation of canonical correlation analysis. Bruges (Belgium), 26-28 April 20062006.
S. Levine, J. M. Wang, A. Haraux, Z. Popović, and V. Koltun. Continuous character control with low-dimensional embeddings. ACM Transactions on Graphics (SIGGRAPH 2012), 31(4), 2012.
C. Lu and X. Tang. Surpassing human-level face verification performance on LFW with GaussianFace. Technical report,
D. J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge, U.K., 2003. [Google Books] .
R. Navaratnam, A. Fitzgibbon, and R. Cipolla. The joint manifold model for semi-supervised multi-valued regression. In IEEE International Conference on Computer Vision (ICCV). IEEE Computer Society Press, 2007.
R. M. Neal. Bayesian Learning for Neural Networks. Springer, 1996. Lecture Notes in Statistics 118.
V. Priacuriu and I. D. Reid. Nonlinear shape manifolds as shape priors in level set segmentation and tracking. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2011a.
V. Priacuriu and I. D. Reid. Shared shape spaces. In IEEE International Conference on Computer Vision (ICCV), 2011b.
C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, 2006. [Google Books] .
A. P. Shon, K. Grochow, A. Hertzmann, and R. P. N. Rao. Learning shared latent structure for image synthesis and robotic imitation. In Weiss et al. (2006).
J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear models. Neural Computation, 12: 1247-1283, 2000.
M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society, B, 6(3):611-622, 1999. [PDF]. [DOI].

References III

M. K. Titsias and N. D. Lawrence. Bayesian Gaussian process latent variable model. In Y. W. Teh and D. M. Titterington, editors, Proceedings of the Thirteenth International Workshop on Artificial Intelligence and Statistics, volume 9, pages 844-851, Chia Laguna Resort, Sardinia, Italy, 13-16 May 2010. JMLR W\&CP 9. [PDF].
L. R. Tucker. An inter-battery method of factor analysis. Psychometrika, 23(2):111-136, 1958.
R. Urtasun and T. Darrell. Discriminative Gaussian process latent variable model for classification. In Ghahramani (2007). [Google Books] .
R. Urtasun, D. J. Fleet, and P. Fua. 3D people tracking with Gaussian process dynamical models. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 238-245, New York, U.S.A., 17-22 Jun. 2006. IEEE Computer Society Press.
R. Urtasun, D. J. Fleet, A. Hertzmann, and P. Fua. Priors for people tracking from small training sets. In IEEE International Conference on Computer Vision (ICCV), pages 403-410, Bejing, China, 17-21 Oct. 2005. IEEE Computer Society Press.
M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles: Tensorfaces. In European Conference on Computer Vision, pages 447-460, 2002.
S. Virtanen, A. Klami, and S. Kaski. Bayesian CCA via group sparsity. In L. Getoor and T. Scheffer, editors, Proceedings of the International Conference in Machine Learning, volume 28, 2011.
J. M. Wang, D. J. Fleet, and A. Hertzmann. Multifactor gaussian process models for style-content separation. In Ghahramani (2007), pages 975-982. [Google Books] .
J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynamical models for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2):283-298, 2008. ISSN 0162-8828. [DOI].
Y. Weiss, B. Schölkopf, and J. C. Platt, editors. Advances in Neural Information Processing Systems, volume 18, Cambridge, MA, 2006. MIT Press.

