Fitting Covariance and Multioutput Gaussian
Processes

Neil D. Lawrence

GPMC
6th February 2017

Outline

Constructing Covariance

GP Limitations

Kalman Filter

Outline

Constructing Covariance

Constructing Covariance Functions

» Sum of two covariances is also a covariance function.

k(x,x") = ki(x,x") + ka(x,x")

Constructing Covariance Functions

» Product of two covariances is also a covariance function.

k(x,x") = ky(x, x")ka(x, x")

Multiply by Deterministic Function

\4

If f(x) is a Gaussian process.

\4

g(x) is a deterministic function.

h(x) = f(x)g(x)
Then

\4

v

kn(x,x") = g()k(x,x")g(x)

where kj, is covariance for h(-) and ky is covariance for f(-).

Covariance Functions

MLP Covariance Function

k(x,x") = aasin

wx'x +b)

VoxTx+b+1Vux’Tx +b+1

» Based on infinite neural
network model.

w =40
b=4

Covariance Functions

Linear Covariance Function

k(x,x") = ax"x’

» Bayesian linear
regression.

a=1

F

-

Covariance Functions

Linear Covariance Function

k(x,x') = ax"x’

3 ~
2 L
» Bayesian linear 1k
regression. 0 F
a=1 1E
2L

-3 | | | |

Gaussian Process Interpolation

3,
2,
1 .
= o0l
<
1L
2L x
-3 \ \ \ |
2 1 0 1 2

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-2 -1 0 1 2
X

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-2 -1 0 1 2
X

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-2 -1 0 1 2
X

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Noise

» Gaussian noise model,
p(ilf) = N (vilfi, 0%)

where ¢2 is the variance of the noise.

» Equivalent to a covariance function of the form
k(X,‘, X]') = 6,‘/]‘(72

where 6; is the Kronecker delta function.

» Additive nature of Gaussians means we can simply add
this term to existing covariance matrices.

Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

y(x)

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

y(x)

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

3 _
2 L
1 x
= 0
=
1
2
3 \ \ \ |
2 1 0 1 2

X

Figure: Examples include WiFi localization, C14 callibration curve.

General Noise Models

Graph of a GP
> Relates input variables,
X, to vector, y, through £ -

given kernel parameters e

(o]

0.
» Plate notation indicates
independence of y;lf;.

> Ingeneralp(yi|ﬁ) is i=1...n
non-Gaussian. - g

» We approximate with

Gaussian Figure: The Gaussian process
pilfi) » N (mil fz,,Bl_l) depicted graphically.

Gaussian Noise

2 p(£Xx,y)

0 ! ! ! !
-3 -2 -1 0 1 2 3 4

Figure: Inclusion of a data point with Gaussian noise.

Gaussian Noise

2 - p (X, x.,y)

p(y. = 0.6lf.)
1L i
0 | | |

3 2 - 0 1 2 3 4

Figure: Inclusion of a data point with Gaussian noise.

Gaussian Noise

2 p(LXx,y) A
p(y. = 0.6lf.)

1 B p(ﬂ|X/x>f-/YIyx-) N

0 | | |

3 2 - 0 1 2 3 4

Figure: Inclusion of a data point with Gaussian noise.

Expectation Propagation

Local Moment Matching

» Easiest to consider a single previously unseen data point,
Vs, Xa.

» Before seeing data point, prediction of f. is a GP, q (f.ly, X).

» Update prediction using Bayes’ Rule,

p (y:lf) p (fly, X, x.)
p(y, y«X, x.)

p (LY, v X, x0) =

This posterior is not a Gaussian process if p (y.|f.) is
non-Gaussian.

Classification Noise Model

Probit Noise Model
L bi= 1 yi=1
=
2 05 - s
QU
0 |

Figure: The probit model (classification). The plot shows p (il f;) for
different values of y;. For y; = 1 we have

pilf) = o (f) = [* N (0,1)dz.

Expectation Propagation II

Match Moments

» Idea behind EP — approximate with a Gaussian process at
this stage by matching moments.

» This is equivalent to minimizing the following KL
divergence where g (f.ly, v, X, x.) is constrained to be a GP.

q(fly, yX,x) = argmin .\ VKL (p (fly, v X x) llg (£ly, y-, X, x.))

» This is equivalent to setting

(fs >q(flyyeXx) = (f >P(ﬁ ly,y-Xx.)

<f*2>q(f*|y,y*,x,x*) - <-ﬂ2>p(f*|y,y*,x,x*)

Expectation Propagation III

Equivalent Gaussian

» This is achieved by replacing p (v.|f.) with a Gaussian

distribution
p (v:lfo) p (fuly, X, %)
*I 7 Y=s X/ X:) =
p(fly y) Dy, 7Xox0)
becomes
N (melfo, Bt) p (£ly, X x.)
q(fily, y=, X, %) =

p(y, y-IX, x.)

Classification

3 F T T T
p (X%, y)

0 ! ! !
-3 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model.

Classification

3F ! ‘ : -
p (fIX x.,y)
p(y-=1f)

2 L _

1 |

0 | | |

-3 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model.

Classification

3F ‘ ‘ ‘ -
p (f:X, x.,y)
p(y-=1f)

2 p(flXoxoy,ye) 4

1+

0 | | |

-3 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model.

Classification

3F ‘ ‘ ‘ =
p (fX, ., y)
p(y. =1If.)

2 | p (f:IX, %, y, y) §
g (fIX, x.,y)

1 |

0 | |

-3 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model.

Ordinal Noise Model

Ordered Categories
L Vi= -1 hi=1
g
2 05 -
QU
0

fi

Figure: The ordered categorical noise model (ordinal regression). The

plot shows p (vilf;) for different values of y;. Here we have assumed
three categories.

Laplace Approximation

» Equivalent Gaussian is found by making a local 2nd order
Taylor approximation at the mode.

» Laplace was the first to suggest this!, so it’s known as the
Laplace approximation.

Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 TK—l
N (ylo,K) = —exp —yz—y
(2m)2[K]|2

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 0)

Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 TK—1
N (ylo,K) = ——exp —yz—y
(2m)2|K][2

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 0)

Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 TK—l
lOgN (YlO, K) :—E lOg |K|—¥

- glog2n

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 0)

Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 TK—l
E(0) = 5 log|K| + yz—y

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 0)

Eigendecomposition of Covariance

A useful decomposition for understanding the objective
function.

K = RA*R”

Diagonal of A represents distance
along axes.
R gives a rotation of these axes.

Capacity control: log K]

A

A2

A

Capacity control: log K]

A

A2

Ay

A

Capacity control: log K]

A

A2

Ay

A

Capacity control: log K]

A

A2

Al = AA,

Ay

A

K|
ity control: log |
Capaci

A

Ay

Al = AA,

K|
ity control: log |
Capaci

A

Ay

Al = AA,

Capacity control: log K|

A0 0
A= 0 A 0
0 0 A

Al = AA,

Capacity control: log K|

A0 0
A= 0 A O
0 0 A

|A| = A1A2A3

K|
ity control: log |
Capaci

A

Ay

Al = AA,

Capacity control: log K]

RA =

Wyl Wop A2

IRA| = A1,

A

T

-1
Data Fit: ylg—y

Y2

-2

T

-1
Data Fit: ylg—y

Y2

-2

-4 2

-6

1

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

20

15

y(x)

107! 10° 10
x length scale, £
TK-1

1
E(6) = 5 log|K| + ¥

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

20

15

y(x)

107! 10° 10
x length scale, £
TK-1

1
E(6) = 5 log|K| + ¥

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

20

15

y(x)

107! 10° 10
x length scale, £
TK-1

1
E(6) = 5 log|K| + ¥

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

oL 20
15

1 10

2 0 /\’\/ 5
= 0
1 5

2 F \ \ \ -10

2 1 0 1 2 1070 10° 10
x length scale, £

T-1

1 K
E(6) = 5 log|K| + yoy

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

D) 20
15
1 10
E 0 /)_\ 5
- 0

-1 5 :
-2 \ \ \ | -10

2 0 1 2 107! 10° 10!
x length scale, £

T-1

1 K
E(6) = 5 log|K| + yoy

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

)L 20
15
1 x 10
= 5

-1 - —

-5 N

~~

2 E ! ! ! ! -10
-2 -1 0 1 2 107! 10° 10!
x length scale, £
y'Kly

E0) = %loglKl +

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

' 20
15
1 - 10 /
2 oF 5 /
= ¥ 0 - Vi
1 = -y
2 b \ \ \ | -10 \N
2 0 1 2 107! 10° 10!
x length scale, £
TK-1

1 K
E(6) = 5 log|K| + yoy

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

oL 20

15 x
1 — 10 4
2 oL 5 [
= * 0 - //

1 = \,./
2 E \ \ \ \ -10 \\N

-2 -1 0 1 2 1071 10° 10!
x length scale, £
y'Kly

E0) = %loglKl +

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

) 20

B /
15 X
1 - 10 4
M / /
E ot 5 “
= * 0 - //
1 = _/
R
2 E ! ! ! ! -10
-2 -1 0 1 2 1071 10° 10!
x length scale, £
y'Kly

E0) = %loglKl +

Gene Expression Example

» Given given expression levels in the form of a time series
from Della Gatta et al. (2008).

» Want to detect if a gene is expressed or not, fit a GP to each
gene (Kalaitzis and Lawrence, 2011).

Kalaitzis and Lawrence BMC Bioinformatics 2011, 12:180
http://www.biomedcentral.com/1471-2105/12/180

BMC
Bioinformatics

ESEARCH ARTICLE Open Access

A Simple Approach to Ranking Differentially
Expressed Gene Expression Time Courses through
Gaussian Process Regression

Alfredo A Kalaitzis” and Neil D Lawrence”

Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms
of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which
genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is
drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal
nature of the data based on a Gaussian process.

Results: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene
expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of
time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings
produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for
the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing
that the proposed approach considerably outperforms the current state of the art.

http://www.biomedcentral.com/1471-2105/12/180

log,, SNR

1152 25 3 35
log,, length scale

Contour plot of Gaussian process likelihood.

1

4 n

= _ 0.5

< g 0F

8 = 3

9 -0.5

-1 | | | | |

115225 3 35 0 5010015@0@5mB00
log,, length scale x

Optima: length scale of 1.2221 and log,, SNR of 1.9654 log likelihood

is -0.22317.

log,, SNR

1

05
— X
E 00 M
=
-0.5 -
X
-1 | | | | |
115225 3 35 0 5010015@0@5mB00
log,, length scale x

Optima: length scale of 1.5162 and log,, SNR of 0.21306 log

likelihood is -0.23604.

0.8
y b
’ X X
Z g 0F XK
5 =02
¥ YR
:8g X 11
115225 3 35 0 5010015@0@5mB00
log,, length scale x

Optima: length scale of 2.9886 and log,, SNR of -4.506 log likelihood

is -2.1056.

Outline

GP Limitations

Limitations of Gaussian Processes

» Inference is O(n®) due to matrix inverse (in practice use
Cholesky).

» Gaussian processes don’t deal well with discontinuities
(financial crises, phosphorylation, collisions, edges in
images).

» Widely used exponentiated quadratic covariance (RBF) can
be too smooth in practice (but there are many
alternatives!!).

Outline

Kalman Filter

Simple Markov Chain

v

Assume 1-d latent state, a vector over time, x = [x7 ... x7].

v

Markov property,

Xi =Xi-1 + €,
€i ~N(0,a)
= x; ~N (xi-1,a)

v

Initial state,
xo ~ N (0, ap)

v

If xg ~ N (0, @) we have a Markov chain for the latent states.

\4

Markov chain it is specified by an initial distribution
(Gaussian) and a transition distribution (Gaussian).

Gauss Markov Chain

X0 =0, €j~N(0,1)

xo =0.000, € =-224
x1 =0.000-224 =-224

Gauss Markov Chain

X0 =0, €j~N(0,1)

x1=-224, € =0457
Xy = =224+ 0.457 = -1.78

Gauss Markov Chain

X0 =0, €j~N(0,1)

xo=-178, €3=0.178
x3=-178+0.178 = -1.6

Gauss Markov Chain

X0 =0, €j~N(0,1)

x3=-16, €4=-0.292
x4 =-16-0292 =-1.89

Gauss Markov Chain

X0 =0, €j~N(0,1)

x3 =-189, €5=-0.501
x5 = —1.89 — 0.501 = -2.39

Gauss Markov Chain

X0 =0, €j~N(0,1)

x5 =-239, € =132
X =—2.39+ 132 =-1.08

Gauss Markov Chain

X0 =0, €j~N(0,1)

xe = —1.08, €7 =0.989
x7 = —1.08 + 0.989 = —-0.0881

Gauss Markov Chain

X0 =0, €j~N(0,1)

x7 =—0.0881, €3 =-0.842
xg = —0.0881 — 0.842 = —0.93

Gauss Markov Chain

X0 =0, €j~N(0,1)

xg =—-0093, €9 =-041
x9 = —0.93 -0.410 = -1.34

Multivariate Gaussian Properties: Reminder

If
z~ N(y, C)

and
x=Wz+b

then
x~ N (W +b,WCW)

Multivariate Gaussian Properties: Reminder

Simplified: If
z~N (0, 021)
and
x =Wz

then
x~N (0, a2wa)

Matrix Representation of Latent Variables

X2
X3
X4
X5

O Sy =Y

[HIE S G Sy N)

X1

—_ = = Ol o
== O OO

= O O Ol o

€1
€2
€3
€4
€5

Matrix Representation of Latent Variables

X1
X3
X4
X5

—_ = = = o

—_ = = Ol o

el Ne) N
(@]

Xo» = €1+ 6

€1
€2
€3
€4
€5

Matrix Representation of Latent Variables

X1
X2

X4

X5

[EEGEY runy U)
- R =lo o

X3 = €1 +€r+ €3

€1
€2
€3
€4
€5

Matrix Representation of Latent Variables

X1
X2
X3

X5

[l
=== = o
=== o o
=l=mlo © O

(@]

X

X4 =€1+€E+ €3+ €4

€1
€2
€3
€4
€5

Matrix Representation of Latent Variables

X1 €1

X3 €2
X3 - €3

X4

|

€4

== = = =

_ = = = O

el ==}

== o O O

o O O O
X

X5 = €1 +€)+ €3+ €4+ €5

Matrix Representation of Latent Variables

Multivariate Process

» Since x is linearly related to € we know x is a also Gaussian
process.

» Simply invoke our properties of multivariate Gaussian
densities.

Latent Process

X=L1€

Latent Process

X=L1€

e ~ N (0,al)

Latent Process

X:L1€

e ~N(0,al)

Latent Process

X:L1€

e ~N(0,al)

x ~ N (0, aLsL])

Covariance for Latent Process II

v

Make the variance dependent on time interval.

» Assume variance grows linearly with time.

v

Justification: sum of two Gaussian distributed random
variables is distributed as Gaussian with sum of variances.

\4

If variable’s movement is additive over time (as described)
variance scales linearly with time.

Covariance for Latent Process II

» Given
e~N(0,al) = e ~ N (0,aL,L]).

Then
e~ N(0,Atal) = e ~ N (0, AtaLyL]).

where At is the time interval between observations.

Covariance for Latent Process II

e~ N(0,arl), x~N(0,aAfL;L])

Covariance for Latent Process II

e~ N(0,arl), x~N(0,aAfL;L])

K = aAfL L]

Covariance for Latent Process II

e~ N(0,arl), x~N(0,aAfL;L])

K = aAfL L]

ki,]' = O(Aﬂ:—il;,]'

where 1. is a vector from the kth row of Ly: the first k elements
are one, the next T — k are zero.

Covariance for Latent Process II

e~ N(0,arl), x~N(0,aAfL;L])

K = aAfL L]

ki,]' = O(Aﬂ:—il;,]'

where 1. is a vector from the kth row of Ly: the first k elements
are one, the next T — k are zero.

kij = aAt min(, j)
define Ati = t; so

ki,]' = O(mil’l(ti, t]) = k(ti, t])

Covariance Functions

Where did this covariance matrix come from?

Markov Process

k(t,t') = amin(t, t')

» Covariance matrix is
built using the inputs to
the function ¢.

Covariance Functions

Where did this covariance matrix come from?

Markov Process

k(t,t') = amin(t, t')

» Covariance matrix is
built using the inputs to
the function ¢.

Covariance Functions

Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

» Precision matrix is
sparse: only neighbours
in matrix are non-zero.

» This reflects conditional
independencies in data.

» In this case Markov
structure.

Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

, lIx = xII3
k(x,x") = aexp “p

» Covariance matrix is
built using the inputs to
the function x.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel. ilg

Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic

Visualization of inverse covariance (precision).

» Precision matrix is not o
sparse.

» Each point is dependent
on all the others.

» In this case
non-Markovian.

Covariance Functions

Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

» Precision matrix is
sparse: only neighbours
in matrix are non-zero.

» This reflects conditional
independencies in data.

» In this case Markov
structure.

Simple Kalman Filter I

» We have state vector X = [x1 ... xq] € R™4 and if each state
evolves independently we have

q
o0 = [[ptx.)
i=1
p(x.;) = N (x,i]0,K).

» We want to obtain outputs through:

Yi: = Wxi,:

Stacking and Kronecker Products I

» Represent with a ‘stacked” system:
p(x) = N (x|0,I® K)

where the stacking is placing each column of X one on top
of another as
X:1

X:2
X =

X.q

Kronecker Product

aK bK
cK dK

rrrrrrrrrrrrrrrr

Stacking and Kronecker Products I

» Represent with a ‘stacked” system:
p(x) = N (x|0,I® K)

where the stacking is placing each column of X one on top
of another as
X:1

X:2
X =

X.q

Column Stacking

LN

For this stacking the marginal distribution over time is given by
the block diagonals.

For this stacking the marginal distribution over time is given by
the block diagonals.

For this stacking the marginal distribution over time is given by
the block diagonals.

For this stacking the marginal distribution over time is given by
the block diagonals.

For this stacking the marginal distribution over time is given by
the block diagonals.

Two Ways of Stacking

Can also stack each row of X to form column vector:
X1,:
X2,
X =

XT,:

p(x) = N (x|0,K®1I)

Row Stacking

.®E:

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

Observed Process

The observations are related to the latent points by a linear
mapping matrix,
Yyi: = wxi,: + €,

€~ N(O, 021)

Mapping from Latent Process to Observed

W 0 0 X1,: WXL;
0 WO X X2, — WX2,:
0 0 W X3, WX3I;

Output Covariance

This leads to a covariance of the form
IOW)KDIWT) + Io?
Using (A ® B)(C ® D) = AC® BD This leads to
K@ WW' +10°

or
y~N(0,WW™ @K +10?)

Kernels for Vector Valued Outputs: A Review

Foundations and Trends® in
Machine Learning

Vol. 4, No. 3 (2011) 195-266 n.w

© 2012 M. A. Alvarez, L. Rosasco and N. D. Lawrence
DOI: 10.1561,/2200000036 the essence of knowledge

Kernels for Vector-Valued
Functions: A Review
By Mauricio A. Alvarez,
Lorenzo Rosasco and Neil D. Lawrence

Kronecker Structure GPs

» This Kronecker structure leads to several published
models.
(KO X))aar = k(x, X')kr(d, d’),
where k has x and kr has n as inputs.
» Can think of multiple output covariance functions as
covariances with augmented input.

» Alongside x we also input the d associated with the output
of interest.

Separable Covariance Functions

» Taking B = WWT we have a matrix expression across
outputs.
K(x,x") = k(x,x")B,
where B is a p X p symmetric and positive semi-definite
matrix.
» B is called the coregionalization matrix.

» We call this class of covariance functions separable due to
their product structure.

Sum of Separable Covariance Functions

» In the same spirit a more general class of kernels is given by

9
K(x,x') = Z ki(x,x")B;.

=1

» This can also be written as

q
K(X,X) = Z B; ®k;(X,X),
j=1

» This is like several Kalman filter-type models added
together, but each one with a different set of latent
functions.

» We call this class of kernels sum of separable kernels (SoS
kernels).

Geostatistics

» Use of GPs in Geostatistics is called kriging.

» These multi-output GPs pioneered in geostatistics:
prediction over vector-valued output data is known as
cokriging.

» The model in geostatistics is known as the linear model of
coregionalization (LMC, Journel and Huijbregts (1978);
Goovaerts (1997)).

» Most machine learning multitask models can be placed in
the context of the LMC model.

Weighted sum of Latent Functions

» In the linear model of coregionalization (LMC) outputs are
expressed as linear combinations of independent random
functions.

» In the LMC, each component f; is expressed as a linear sum

q
fa(x) = Z We, jU ().
=1

where the latent functions are independent and have
covariance functions k;(x, x’).

» The processes { fj(x)}?z1 are independent for g # j'.

Kalman Filter Special Case

» The Kalman filter is an example of the LMC where
ui(x) = xi(t).
» Le. we've moved form time input to a more general input
space.
» In matrix notation:
1. Kalman filter
F =WX

2. LMC
F=WU

where the rows of these matrices F, X, U each contain g
samples from their corresponding functions at a different
time (Kalman filter) or spatial location (LMC).

Intrinsic Coregionalization Model

» If one covariance used for latent functions (like in Kalman
filter).

» This is called the intrinsic coregionalization model (ICM,
Goovaerts (1997)).

» The kernel matrix corresponding to a dataset X takes the
form
K(X, X) = B®k(X, X).

Autokrigeability

» If outputs are noise-free, maximum likelihood is
equivalent to independent fits of B and k(x, x") (Helterbrand
and Cressie, 1994).

» In geostatistics this is known as autokrigeability
(Wackernagel, 2003).

» In multitask learning its the cancellation of intertask
transfer (Bonilla et al., 2008).

Intrinsic Coregionalization Model

K(X,X) = ww' ® k(X, X).

Intrinsic Coregionalization Model

KX, X) = ww" ®k(X, X).

Intrinsic Coregionalization Model

KX, X) = ww" ®k(X, X).

Intrinsic Coregionalization Model

KX, X) = ww" ®k(X, X).

Intrinsic Coregionalization Model

KX, X) = ww" ®k(X, X).

| eru—
—
—
Q1 =
Q1
eed
T T
%

Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).

1 05
B‘[o.s 1.5]

Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).

]

1 05
B‘[o.s 1.5]

Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).

§

1 05
B‘[o.s 1.5]

Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).

1 05
B‘[o.s 1.5]

%

Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).

1 05 -
B‘[o.s 1.5]

|

LMC Samples

K(X,X) = B; @ k1 (X, X) + Br ® ko (X, X)

(1.4 0.5
Bi=05 12
fl =1

(1 0.5
B2=105 13]

52 =02

LMC Samples

K(X,X) = B; @ k1 (X, X) + Br ® ko (X, X)

(1.4 0.5
Bi=05 12
fl =1

(1 0.5
B2=105 13]

52 =02

:

LMC Samples

K(X,X) = B; @ k1 (X, X) + Br ® ko (X, X)

(1.4 0.5
Bi=05 12
fl =1

(1 0.5
B2=105 13]

52 =02

%

LMC Samples

K(X,X) = B; @ k1 (X, X) + Br ® ko (X, X)

(1.4 0.5
Bi=05 12
fl =1

(1 0.5
B2=105 13]

52 =02

;

LMC Samples

K(X,X) = B; @ k1 (X, X) + Br ® ko (X, X)

(1.4 0.5
Bi=05 12
fl =1

(1 0.5
B2=105 13]

52 =02

LMC in Machine Learning and Statistics

» Used in machine learning for GPs for multivariate
regression and in statistics for computer emulation of
expensive multivariate computer codes.

» Imposes the correlation of the outputs explicitly through
the set of coregionalization matrices.
» Setting B = I, assumes outputs are conditionally

independent given the parameters 0. (Minka and Picard,
1997; Lawrence and Platt, 2004; Yu et al., 2005).

» More recent approaches for multiple output modeling are
different versions of the linear model of coregionalization.

Semiparametric Latent Factor Model

» Coregionalization matrices are rank 1 Teh et al. (2005).
rewrite equation (??) as

K(X, X) =

i
/ W’]WT] ® k](X, X).

j=1

» Like the Kalman filter, but each latent function has a
different covariance.

» Authors suggest using an exponentiated quadratic
characteristic length-scale for each input dimension.

Semiparametric Latent Factor Model Samples

KX, X) = W;,1WI—1 ® ki1(X, X) + W;,zwjz ® ka(X, X)

_[o.5]
W1 = _ 1 |
— — 1 |
2= 05

Semiparametric Latent Factor Model Samples

KX, X) = W;,1W:T1 ® ki1(X, X) + wzrzwj2 ® ka(X, X)

_[o.5]
- 1 .
— — 1 |
0.5

§

Semiparametric Latent Factor Model Samples

KX, X) = W;,1W:T1 ® ki1(X, X) + wzrzwj2 ® ka(X, X)

_[o.5]
- 1 .
— — 1 |
0.5

§

Semiparametric Latent Factor Model Samples

KX, X) = W;,1W:T1 ® ki1(X, X) + wzrzwj2 ® ka(X, X)

_[o.5]
- 1 .
— — 1 |
0.5

}

Semiparametric Latent Factor Model Samples

KX, X) = W;,1W:T1 ® ki1(X, X) + wzrzwj2 ® ka(X, X)

_[o.5]
- 1 .
— — 1 |
0.5

Gaussian processes for Multi-task, Multi-output and
Multi-class

» Bonilla et al. (2008) suggest ICM for multitask learning.

» Use a PPCA form for B: similar to our Kalman filter
example.

» Refer to the autokrigeability effect as the cancellation of
inter-task transfer.

» Also discuss the similarities between the multi-task GP and
the ICM, and its relationship to the SLEM and the LMC.

Multitask Classification

» Mostly restricted to the case where the outputs are
conditionally independent given the hyperparameters ¢
(Minka and Picard, 1997; Williams and Barber, 1998; Lawrence
and Platt, 2004; Seeger and Jordan, 2004; Yu et al., 2005;
Rasmussen and Williams, 2006).

» Intrinsic coregionalization model has been used in the
multiclass scenario. Skolidis and Sanguinetti (2011) use the
intrinsic coregionalization model for classification, by
introducing a probit noise model as the likelihood.

» Posterior distribution is no longer analytically tractable:
approximate inference is required.

Computer Emulation

» A statistical model used as a surrogate for a
computationally expensive computer model.

» Higdon et al. (2008) use the linear model of
coregionalization to model images representing the
evolution of the implosion of steel cylinders.

» In Conti and O’'Hagan (2009) use the ICM to model a
vegetation model: called the Sheffield Dynamic Global
Vegetation Model (Woodward et al., 1998).

References 1

E. V. Bonilla, K. M. Chai, and C. K. I. Williams. Multi-task Gaussian process prediction. In J. C. Platt, D. Koller,
Y. Singer, and S. Rowetis, editors, Advances in Neural Information Processing Systems, volume 20, Cambridge, MA,
2008. MIT Press.

S. Conti and A. O’Hagan. Bayesian emulation of complex multi-output and dynamic computer models. Journal of
Statistical Planning and Inference, 140(3):640-651, 2009. [DOI].

G. Della Gatta, M. Bansal, A. Ambesi-Impiombato, D. Antonini, C. Missero, and D. di Bernardo. Direct targets of the
trp63 transcription factor revealed by a combination of gene expression profiling and reverse engineering.
Genome Research, 18(6):939-948, Jun 2008. [URL]. [DOI].

P. Goovaerts. Geostatistics For Natural Resources Evaluation. Oxford University Press, 1997. [Google Books] .

J. D. Helterbrand and N. A. C. Cressie. Universal cokriging under intrinsic coregionalization. Mathematical Geology,
26(2):205-226, 1994.

D. M. Higdon, J. Gattiker, B. Williams, and M. Rightley. Computer model calibration using high dimensional output.
Journal of the American Statistical Association, 103(482):570-583, 2008.

A. G. Journel and C. J. Huijbregts. Mining Geostatistics. Academic Press, London, 1978. [Google Books] .

A. A. Kalaitzis and N. D. Lawrence. A simple approach to ranking differentially expressed gene expression time
courses through Gaussian process regression. BMC Bioinformatics, 12(180), 2011. [DOI].

N. D. Lawrence and J. C. Platt. Learning to learn with the informative vector machine. In R. Greiner and
D. Schuurmans, editors, Proceedings of the International Conference in Machine Learning, volume 21, pages 512-519.
Omnipress, 2004. [PDF].

T. P. Minka and R. W. Picard. Learning how to learn is learning with point sets. Available on-line., 1997. [URL].
Revised 1999, available at http: //www.stat.cmu.edu/~{}minka/.

J. Oakley and A. O’'Hagan. Bayesian inference for the uncertainty distribution of computer model outputs.
Biometrika, 89(4):769-784, 2002.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, 2006.
[Google Books] .

M. Seeger and M. 1. Jordan. Sparse Gaussian Process Classification With Multiple Classes. Technical Report 661,
Department of Statistics, University of California at Berkeley,

http://dx.doi.org/doi:10.1016/j.jspi.2009.08.006
http://dx.doi.org/10.1101/gr.073601.107
http://dx.doi.org/10.1101/gr.073601.107
http://books.google.com/books?as_isbn=0-19-511538-4
http://books.google.com/books?as_isbn=0-12391-050-1
http://dx.doi.org/10.1186/1471-2105-12-180
ftp://ftp.dcs.shef.ac.uk/home/neil/mtivm.pdf
http://research.microsoft.com/en-us/um/people/minka/papers/point-sets.html
http://www.stat.cmu.edu/~{ }minka/
http://books.google.com/books?as_isbn=0-262-18253-X

References II

G. Skolidis and G. Sanguinetti. Bayesian multitask classification with Gaussian process priors. IEEE Transactions on
Neural Networks, 22(12):2011 - 2021, 2011.

Y. W. Teh, M. Seeger, and M. L. Jordan. Semiparametric latent factor models. In R. G. Cowell and Z. Ghahramani,
editors, Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pages 333-340,
Barbados, 6-8 January 2005. Society for Artificial Intelligence and Statistics.

H. Wackernagel. Multivariate Geostatistics: An Introduction With Applications. Springer-Verlag, 3rd edition, 2003.
[Google Books] .

C. K. Williams and D. Barber. Bayesian Classification with Gaussian processes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(12):1342-1351, 1998.

1. Woodward, M. R. Lomas, and R. A. Betts. Vegetation-climate feedbacks in a greenhouse world. Philosophical
Transactions: Biological Sciences, 353(1365):29-39, 1998.

K. Yu, V. Tresp, and A. Schwaighofer. Learning Gaussian processes from multiple tasks. In Proceedings of the 22nd
International Conference on Machine Learning (ICML 2005), pages 1012-1019, 2005.

http://books.google.com/books?as_isbn=3-540-44142-5

	Constructing Covariance
	GP Interpolation
	GP Regression
	GP Non-Gaussian
	Parameter Optimization

	GP Limitations
	Kalman Filter

	anm0:
	anm1:
	anm2:

