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The Gaussian Density

» Perhaps the most common probability density.

o 1 -
p(y“lla)_ Wexp 202
= N (yl, %)

» The Gaussian density.



Gaussian Density

p(hly, o?)
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h, height/m

The Gaussian PDF with u = 1.7 and variance 6> = 0.0225. Mean
shown as red line. It could represent the heights of a
population of students.



Gaussian Density

1 (y — w)?
b enl 452

o2 is the variance of the density and u is
the mean.



Two Important Gaussian Properties

Sum of Gaussians

» Sum of Gaussian variables is also Gaussian.

vi~ N (i, 0?)



Two Important Gaussian Properties

Sum of Gaussians
» Sum of Gaussian variables is also Gaussian.

i~ N (i, )

And the sum is distributed as

i]/i NN{iHh " 012]
i=1 i=1

i=1



Two Important Gaussian Properties

Sum of Gaussians

» Sum of Gaussian variables is also Gaussian.
yi~N (IJi/ 01-2)
And the sum is distributed as
n n n
YL Lo
i=1 i=1 i=1

(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)
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Two Important Gaussian Properties

Scaling a Gaussian

» Scaling a Gaussian leads to a Gaussian.



Two Important Gaussian Properties

Scaling a Gaussian

» Scaling a Gaussian leads to a Gaussian.

y~N(u0?)



Two Important Gaussian Properties

Scaling a Gaussian
» Scaling a Gaussian leads to a Gaussian.
y~N(p0?)
And the scaled density is distributed as

wy ~ N(wy, wzoz)



Linear Function

2 L data points ~ x
best fit line

\ \ \ \ |
50 60 70 80 90 100

A linear regression between x and y.



Regression Examples

\4

Predict a real value, y; given some inputs x;.

\4

Predict quality of meat given spectral measurements
(Tecator data).

Radiocarbon dating, the C14 calibration curve: predict age
given quantity of C14 isotope.

v

v

Predict quality of different Go or Backgammon moves
given expert rated training data.
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i y=mx+c







y = mx +c
pointl: x=1,y=3
3=m+c
point2: x =3,y =1
1=3m+c
point3: x =2,y =25
25=2m+c






SUR LES PROBABILITES. 3

riens. L'opinion contraire est une illusion de Pesprit
qui, perdant de yue les raisons fugitives du choix de la
volonté dans les choses indifférentes, se persnade qu'elle
sest déterminde d'elleméme et sans motifs.

Nous devons donc envisager I'état présent de I'uni-
vers, comme Ueflet de son état antévienr, et comme la
cause de celui gui va suivre. Une intelligence qui, pour
un instant donné, connaitrait toutes les forees dont la
natuve est animée, ot la sitnation respective des dtres
«qui la composent, si d'aillenrs elle était assex vaste pour
soumettre ces donndes & Panalyse, embrasserait dans la
méme formule les mouvemens des plus grands corps de
I'nnivers et ceux du plus léger atome : rien ne serait
incertain pour elle, ct Iavenir comme le passé, serait
preésent & ses yeux. L'esprit humain oflre, dans In per-
fection quil a su donmer & I'Astronomie, une faible
esquisse de cette intelligence, Ses découvertes en Méca-
nigue et en Geométrie, jointes i celle de la pesanteur
universelle, l'ont mis & portée de comprendre dans les
mémes expressions nnn]yliqur‘_ﬁ‘ les dtats passés ot futnrs
du systéme du monde. En appliqnnhtl 2 méme méthode
& quelques autres objets de ses conn:uxsancu il est par
vetiu & i des lois géndrales, les phé ne
observés, el & prévoir ceux que des clrconstnnuus don-
nées doivent faire éclore. Tous ces eiforts dans la ve-
he de la vérité , tendent i le rapprocher sans cesse
utelligence que nous venons de conceveir, mais
dont il restera toujours infiniment éloigné. Getle ten-
dance propre i Pespice humaine, est ce qui la rend
supérielire aus Animaux ; et ses progrés en ce genre.,

distinguent les nations et les sitcles, et font Jenr veri-
talde glulre
Rappelons-nons x||| "autrefois, et i une époque qui



4 A PHILOSOPHICAL ESSAY ON PROBABILITIES.

other, we say that its choice is an effect without a cause.
It is then, says Leibnitz, the blind chance of the
Epicureans. The contrary opinion is an illusion of the
mind, which, losing sight of the evasive reasons of the
choice of the will in indifferent things, belicves that
choice is determiined of itself and without metives.

We ought then to regard the present state of the
universe as the effect of its anterior state and as the
cause of the one which is to follow. Given for one
instant an intelligence which could comprehend all the
forces by which nature is animated and the respective
situation of the beings who compose it—an intelligence
sufficiently vast to submit these data to analysis—it
would embrace in the same formula the mevements of
the greatest bodies of the universe and those of the
lightest atom; for it, nothing would be uncertain and
the future, as the past, would be present to its cyes.
The human mind offers, in the perfection which it has
been able to give to astronomy, a feeble idea of this in-
telligence. Its discoveries in mechanics and geometry,
added to that of universal gravity, have enabled it to
comprehend in the same analytical expressions the
past and future states of the system of the world.
Applying the same method to some other objects of its
knowledge, it has succeeded in referring to general laws
observed phenomena and in foreseeing those which
given circumstances ought to produce. All these efforts
in the search for truth tend to lead it back continually
to the vast intelligence which we have just mentioned,
but from which it will always remain infinitely removed.
‘This tendency, peculiar to the human race, is that
which renders it superior to animals; and their progress






y=mx+c+e

pointl: x=1,y=3
3=m+c+ €

point2: x =3,y =1
1=3m+c+e

point3: x =2,y =25

25=2m+c+e€3



Underdetermined System

What about two unknowns and
one observation?

Y1 =mxy1 +¢

O R, N W k= O




Underdetermined System

Can compute m given c.

1—¢C
m=J1"°¢
X

O R, N W k= O




Underdetermined System

Can compute m given c.

c=175=m =125

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-0777 = m =378

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-401=m=7.01

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-0718 = m =372

O R, N W k= O




Underdetermined System

Can compute m given c.

c=245=m =0.545

O R, N W k= O




Underdetermined System

Can compute m given c.

¢ =-0.657 = m = 3.66

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-313=m=6.13

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-147 = m =447

O R, N W k= O




Underdetermined System

Can compute m given c.
Assume

c~ N(Ol4)l

we find a distribution of solu-
tions.




Probability for Under- and Overdetermined

» To deal with overdetermined introduced probability
distribution for ‘variable’, €;.

» For underdetermined system introduced probability
distribution for “‘parameter’, c.

» This is known as a Bayesian treatment.



Multivariate Prior Distributions

v

For general Bayesian inference need multivariate priors.

v

E.g. for multivariate linear regression:

Yyi = Z WX, + €;
i

(where we’ve dropped ¢ for convenience), we need a prior
over w.

\4

This motivates a multivariate Gaussian density.

\4

We will use the multivariate Gaussian to put a prior directly
on the function (a Gaussian process).
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Vi=W'X, +6€

(where we’ve dropped ¢ for convenience), we need a prior
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on the function (a Gaussian process).



Prior Distribution

» Bayesian inference requires a prior on the parameters.
» The prior represents your belief before you see the data of
the likely value of the parameters.

» For linear regression, consider a Gaussian prior on the
intercept:
c~N(O,a1)



Posterior Distribution

» Posterior distribution is found by combining the prior with
the likelihood.

» Posterior distribution is your belief after you see the data of
the likely value of the parameters.

» The posterior is found through Bayes” Rule

p(ylo)p(c)

plcly) = oY)



Bayes Update

2 p(c) = N (clD, a1)

Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Bayes Update

2 p(c) = N (cIp, a1)

p(ylm,c,x,0%) = N (ylmx +c, 02)

Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Bayes Update

2 p(©) = N (clp, ar)
p(ylm,c,x,0%) = N (ylmx +c, 02)
1 plcly, m,x,¢%) =
N (s, 07+ o))
0 ‘ | |
-3 -2 -1 2 3 4

Figure: A Gaussian prior combines with a Gaussian likelihood for a

Gaussian posterior.



Stages to Derivation of the Posterior

» Multiply likelihood by prior
» they are “exponentiated quadratics”, the answer is always
also an exponentiated quadratic because
exp(a?) exp(b?) = exp(a® + b?).
» Complete the square to get the resulting density in the
form of a Gaussian.

» Recognise the mean and (co)variance of the Gaussian. This
is the estimate of the posterior.



Multivariate Regression Likelihood

» Noise corrupted data point

Yy = WTXZ',; +€;



Multivariate Regression Likelihood

» Noise corrupted data point

Vi=W'X;; +6€

» Multivariate regression likelihood:

1 1 ¢« 2
p(ylX,w) = ———exp|-=— Yi— WX,
@roty? | 207 £ (v ‘)



Multivariate Regression Likelihood

» Noise corrupted data point

Yi= WX, + €

» Multivariate regression likelihood:

n

i=1

1 1
pylX, w) = o2y P [—@ 2 (i

» Now use a multivariate Gaussian prior:

1
p(w) = exp (——wTw
(27wz)g 2a



Two Dimensional Gaussian

» Consider height, h/m and weight, w/kg.

» Could sample height from a distribution:
p(h) ~ N (1.7,0.0225)
» And similarly weight:

p(w) ~ N (75, 36)



Height and Weight Models

p(h)
p(w)

h/m w/kg

Gaussian distributions for height and weight.



Sampling Two Dimensional Variables

Marginal Distributions

Joint Distribution
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Sampling Two Dimensional Variables
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Sampling Two Dimensional Variables
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Independence Assumption

» This assumes height and weight are independent.

p(h, w) = p(h)p(w)

> In reality they are dependent (body mass index) = ;5.



Sampling Two Dimensional Variables
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Independent Gaussians

p(w, h) = p(w)p(h)



Independent Gaussians

p(w, h) = S S exp (—1 [(w ~ )’ + (h — p2)? )]
)= 2
2710% A\ /2710% 2 o} o

1 2



Independent Gaussians




Independent Gaussians

. - exp (—%(y -w)'D Ny - H))

p(y) = T
[2rtD|2



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) = : T exp (—%(y -w'D Ny - #))
[2tD|2



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

1 1
p(y) = - exp (—E(RTy -R"p)"D'RTy-RT y))
|2tD|2



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

1 1
p(y) = —— exp(~5(y— ) RD'R"(y - )
|21tD|2

this gives a covariance matrix:

C!1=RDIR”



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

py) = —— exp (-5~ W"C iy - )
|21t C|2

this gives a covariance matrix:

C=RDR'



Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

vi ~ N (i, 07)
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Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.
vi~ N (ui07)

iyi~N[iHh ” ‘712]
i=1

i=1 i=1

2. Scaling a Gaussian leads to a Gaussian.
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vi~ N (ui07)

iyi NN[in’f ” ‘712]
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Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.
vi~ N (ui07)

iyi NN[in’f ” ‘712]
i=1 i=1 i=1

2. Scaling a Gaussian leads to a Gaussian.

y~N (g, 0%)

wy ~ N(wy, wzoz)



Multivariate Consequence

> If
x~N(y,Z)



Multivariate Consequence

> If

» And



Multivariate Consequence

> If
x~N(y,Z)

» And
y = Wx

» Then
y~ N (W, WEWT)



Sampling a Function

Multi-variate Gaussians

» We will consider a Gaussian with a particular structure of
covariance matrix.

» Generate a single sample from this 25 dimensional
Gaussian distribution, f = [f1, f2. .. f2s5].

» We will plot these points against their index.



Gaussian Distribution Sample
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(a) A 25 dimensior}al correlated ran-  (b) colormap ishowing correlations
dom variable (values ploted against between dimensions.
index)

Figure: A sample from a 25 dimensional Gaussian distribution.



Gaussian Distribution Sample
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Gaussian Distribution Sample
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Figure: A sample from a 25 dimensional Gaussian distribution.



Gaussian Distribution Sample
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Gaussian Distribution Sample
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Gaussian Distribution Sample
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Figure: A sample from a 25 dimensional Gaussian distribution.



J 4

Prediction of f, from f;

1 L
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f

» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).
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joint distribution, p(fi, f2).
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).
» We observe that
» Conditional density: p(fa| f1 -0.313).




J 4

Prediction of f, from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).

» We observe that
» Conditional density: p(fa| f1 -0.313).




Prediction with Correlated Gaussians

» Prediction of f, from fi requires conditional density.

» Conditional density is also Gaussian.

K,
p(falfi) = N [le f1,k22 kll]

where covariance of joint density is given by

kip ki
K= b
[kZ,l kz,z]



J 4

Prediction of f5 from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f5).
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Prediction of f5 from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f5).

» We observe that
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Prediction of f5 from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f5).

» We observe that
» Conditional density: p(fs| f1 -0.313).
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Prediction of f5 from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f5).
» We observe that
» Conditional density: p(fs| f1 -0.313).




Prediction with Correlated Gaussians

» Prediction of f. from f requires multivariate conditional
density.

» Multivariate conditional density is also Gaussian.

P(EIE) = N (LK, KL, K. — KK 1K

» Here covariance of joint density is given by

[ Kee Kig
K= [Kf * Ka(-,*]



Prediction with Correlated Gaussians

» Prediction of f. from f requires multivariate conditional
density.

» Multivariate conditional density is also Gaussian.

p(Elf) = N (£, E)
p =K K i f
L =K., - K KK,

» Here covariance of joint density is given by

[ Kee Kig
K= [Kf % Ka(-,*]



Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

, lIx = xII3
k(x,x") = aexp “p

» Covariance matrix is
built using the inputs to
the function x.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel. ilg




Covariance Functions

Where did this covariance matrix come from?

k(xi,xj) = aexp (—%)

x1 =-3.0,x; =-3.0
k11 =1.00 % exp (_w)

2x2.00%

x1 = =3.0, x = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Outline

Covariance from Basis Functions



Basis Function Form

Radial basis functions commonly have the form

2
i =
x;) = exp|—————|.
1 —

» Basis function 2 05 L

maps dataintoa <

“feature space” in

which a linear sum 0 ! L

is a non linear
function.

| —
8 6 4 -2 0 2 4 6 8
X

Figure: A set of radial basis functions with width
¢ = 2 and location parameters p = [-4 0 4]".



Basis Function Representations

» Represent a function by a linear sum over a basis,

fOa5w) = ) wie(x;,), (1)
k=1

» Here: m basis functions and ¢(-) is kth basis function and
w=[w,..., wn]".

» For standard linear model: ¢x(x;.) = x;j.



Random Functions

Functions derived
using:

flx) = Z wrPr(x),
P}

where elements of w
are independently
sampled from a
Gaussian density,

Wy ~ N(0,0().

f()

[
864202 4 6 8

X
Figure: Functions sampled using the basis set from
figure 3. Each line is a separate sample, generated
by a weighted sum of the basis set. The weights, w
are sampled from a Gaussian density with variance
a=1
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Direct Construction of Covariance Matrix

Use matrix notation to write function,

f(xi;w) = Z WPy (x;)
P}

computed at training data gives a vector
f = Ow.
w ~ N(0,al)

w and f are only related by an inner product.
D@ € R™YP is a design matrix

@ is fixed and non-stochastic for a given training set.



Direct Construction of Covariance Matrix

Use matrix notation to write function,
m
flxiw) = ) wid (x)
k=1

computed at training data gives a vector
f = Ow.
w ~ N (0,al)

w and f are only related by an inner product.
D € R™YP is a design matrix
@ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.
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Expectations

» We have
(f) = D (w).
» Prior mean of w was zero giving
(f) = 0.

» Prior covariance of f is
K= (f7) —(H(H)"
<ffT> =® <WWT> DT,

giving
K=a®d".

We use (-) to denote expectations under prior distributions.
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Covariance between Two Points

» The prior covariance between two points x; and x; is

k (Xi, Xj) = ad. (xi)T (0} (xj> ’

or in sum notation

k xl/x] Z(Pk (xi) Pk X])

» For the radial basis used this gives

i xi = il + xj - el
xl, x] aZe e )
=1




Covariance Functions

RBF Basis Functions

k(x,X) = agp(x) " p(x)

B
Pr(x) = exp B

-1
p=\0
1 il




Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

» Consider uniform spacing over a region:

k(xi, xj) = adi(x)" Pr(x))
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Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

» Consider uniform spacing over a region:

. (x; — ) (xj = )
xz,x] aZe ( 2{5’( )exp[ ]2—52")

=1



Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

» Consider uniform spacing over a region:

. (o —w)? (= )
k() “Z;e [ 20 2



Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

Restrict analysis to 1-D input, x.

» Consider uniform spacing over a region:

n X; +x]2.—2‘uk(xi+xj)+2yl%
xl, x] az; ex Yz ,




Uniform Basis Functions

» Set each center location to

yk:a+Ap«(k—1).



Uniform Basis Functions

» Set each center location to

yk:a+Ap«(k—1).

» Specify the basis functions in terms of their indices,
m x? + x?
o 1 ]
k(xi,x]-) =a Ay;exp( Y
2(L1+Ay-(k—1))(9q+xj)+2(a+Ay-(k—1))2
- 202 '




Uniform Basis Functions

» Set each center location to

yk:a+Ay-(k—1).

» Specify the basis functions in terms of their indices,

U X%+ x2
o 1 ]
k(xi,x]-) = Ay;exp( Y
2(L1+Ay-(k—1))(9q+xj)+2(a+Ay-(k—1))2
B 202 '

» Here we’ve scaled variance of process by Ap.
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Infinite Basis Functions

» Take
pr=aand y =bsob=a+ Au-(m-1)

» This implies
b—a=Au(m-1)

and therefore

» Take limit as Ay — 0som — oo

+

2 4o e =+ 1)
k(xi’xj):alfbexp(—Xin;ij 2(# 2(x1+x2]2 2(x1+x]) )dy,

where we have used a + k- Ay — p.



Result

» Performing the integration leads to

42

2
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Result

» Performing the integration leads to

42

1 erf[(b—%(Xi”f))J_erf{(“—%(xi”f))]]/

X3 ; 7

2
k(xixj) = a mexp [—M]

» Now take limitasa — —ocoand b — oo

)

k(xi,xj) = aexp [ "z

where a = a’ Vrf?.



Infinite Feature Space

» An RBF model with infinite basis functions is a Gaussian
process.



Infinite Feature Space

» An RBF model with infinite basis functions is a Gaussian
process.

» The covariance function is given by the exponentiated
quadratic covariance function.

(xi - x]-)2

k(xi,xj) =aexp|-— 1



Infinite Feature Space

» An RBF model with infinite basis functions is a Gaussian
process.

» The covariance function is the exponentiated quadratic.

» Note: The functional form for the covariance function and
basis functions are similar.

» this is a special case,
» in general they are very different

Similar results can obtained for multi-dimensional input
models Williams (1998); Neal (1996).



Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

, lIx = xII3
k(x,x") = aexp “p

» Covariance matrix is
built using the inputs to
the function x.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel. ilg




Covariance Functions

RBF Basis Functions

k(x,X) = agp(x) " p(x)

B
Pr(x) = exp B

-1
p=\0
1 il
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