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Massively Missing Data



Massive Missing Data

» If missing at random it can be marginalized.

» As data sets become very large (39 million in EMIS) data
becomes extremely sparse.

» Imputation becomes impractical.



Imputation

» Expectation Maximization (EM) is gold standard
imputation algorithm.
» Exact EM optimizes the log likelihood.

» Approximate EM optimizes a lower bound on log
likelihood.

» e.g. variational approximations (VIBES, Infer.net).

» Convergence is guaranteed to a local maxima in log
likelihood.



Expectation Maximization

Require: An initial guess for missing data
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Expectation Maximization

Require: An initial guess for missing data
repeat

Update model parameters (M-step)



Expectation Maximization

Require: An initial guess for missing data
repeat
Update model parameters

Update guess of missing data (M-step)

(E-step)



Expectation Maximization

Require: An initial guess for missing data
repeat
Update model parameters
Update guess of missing data
until convergence

(M-step)
(E-step)



Imputation is Impractical

\4

In very sparse data imputation is impractical.

v

EMIS: 39 million patients, thousands of tests.

v

For most people, most tests are missing.

v

M-step becomes confused by poor imputation.



Direct Marginalization is the Answer

» Perhaps we need joint distribution of two test outcomes,

P(ylx ]/2)

» Obtained through marginalizing over all missing data,

P(]/ll ]/2) = fp(]/lz yZI ]/3, ey yp)dy3/ .. dyp

» Where y3, ..., Yy, contains:

1. all tests not applied to this patient
2. all tests not yet invented!!



Magical Marginalization in Gaussians

Multi-variate Gaussians

» Given 10 dimensional multivariate Gaussian, y ~ N (0, C).
» Generate a single correlated sample 'y = [y1,y2 ... y10]-.

» How do we find the marginal distribution of y1, y»?



Gaussian Marginalization Property

2
R
X
< oL
3‘1 XXX
B xx
2 ! ! ! \ \
0 2 4 6 8 10

(a) A 10 dimensional sample

1

rm
E &

S = N W

(b) colormap showing covariance be-

tween dimensions.

Figure : A sample from a 10 dimensional correlated Gaussian

distribution.



Gaussian Marginalization Property

2
R
bt
< oL
3‘1 XXX
B xx
2 ! ! ! \ \
0 2 4 6 8 10

(a) A 10 dimensional sample

1

rm
E &

S = N W

(b) colormap showing covariance be-

tween dimensions.

Figure : A sample from a 10 dimensional correlated Gaussian

distribution.



Gaussian Marginalization Property

2
R
bt
< oL
3‘1 XXX
B xx
2 ! ! ! \ \
0 2 4 6 8 10

(a) A 10 dimensional sample

1

F N
E &

Figure : A sample from a 10 dimensional correlated Gaussian

distribution.

S = N W

(b) colormap showing covariance be-
tween dimensions.



Gaussian Marginalization Property

2
R
bt
< oL
3‘1 XXX
B xx
2 ! ! ! \ \
0 2 4 6 8 10

(a) A 10 dimensional sample

1

F N
E &

Figure : A sample from a 10 dimensional correlated Gaussian

distribution.

S = N W

-4

(b) colormap showing covariance be-
tween dimensions.



Gaussian Marginalization Property
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Gaussian Marginalization Property
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Gaussian Marginalization Property
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Avoid Imputation: Marginalize Directly

» Our approach: Avoid Imputation, Marginalize Directly.

v

Explored in context of Collaborative Filtering.
Similar challenges:

» many users (patients),
» many items (tests),
» sparse data

v

v

Implicitly marginalizes over all future tests too.

Work with Raquel Urtasun (Lawrence and Urtasun, 2009) and ongoing
work with Max Zwieflele and Nicol6 Fusi.



Marginalization in Bipartite Undirected Graph

latent variables
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Marginalization in Bipartite Undirected Graph

additional layer
of latent variables

latent variables




Marginalization in Bipartite Undirected Graph

additional layer
of latent variables

latent variables

For massive missing data, how many additional latent variables?



Methods that Interrelate Covariates

» Need Class of models that interrelates data, but allows for
variable p.

» Common assumption: high dimensional data lies on low
dimensional manifold.

» Want to retain the marginalization property of Gaussians
but deal with non-Gaussian data!



Example: Prediction of Malaria Incidence in Uganda

» Work with John Quinn and Martin Mubaganzi (Makerere
University, Uganda)

» See http://air.ug/research.html.



Malaria Prediction in Uganda




Malaria Prediction in Uganda

Nagongera / Tororo (Multiple output model)

Sentinel - all patients




Malaria Prediction in Uganda
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GP School at Makerere




Early Warning Systems
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Early Warning Systems
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Deep Models

Data space
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Deep Models

Latent layer 4

Latent layer 3

Latent layer 2

Latent layer 1

Data space



Deep Models

@ Abstract features

More com-
bination

Combination

e of low level
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a Low level
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Deep Gaussian Processes

Damianou and Lawrence (2013)

» Deep architectures allow abstraction of features (Bengio, 2009;
Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).

» We use variational approach to stack GP models.



Deep Health
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Summary

» Intention is to deploy probabilistic machine learning for
assimilating a wide range of data types in personalized
health:

» Social networking, text (clinical notes), survival times,
medical imaging, phenotype, genotype, mobile phone
records, music tastes, Tesco club card

» Requires population scale models with millions of features.

» May be necessary for early detection of dementia or other
diseases with high noise to signal.

» Major issues in privacy and interfacing with the patient.

» But: the revolution is coming. We need to steer it.
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