MLAI

Contents:

  • Installation Guide
  • Quick Start Guide
  • Tutorials
  • API Reference
  • Contributing to MLAI
  • Project Tenets

Project Information:

  • Code Improvement Proposals (CIPs)
  • Project Backlog
MLAI
  • MLAI: Machine Learning and Adaptive Intelligence Teaching Library
  • View page source

MLAI: Machine Learning and Adaptive Intelligence Teaching Library

Welcome to the MLAI documentation! This package provides simple models, tutorials, and plotting routines designed for teaching and lecturing on machine learning fundamentals.

Contents:

  • Installation Guide
    • Prerequisites
    • Installation with Poetry
    • Installation with pip
    • Optional Dependencies
    • Verifying Installation
    • Next Steps
  • Quick Start Guide
    • Basic Usage
    • Tutorials
    • Plotting Utilities
    • Key Concepts
    • Next Steps
  • Tutorials
    • Linear Regression Tutorial
    • Logistic Regression Tutorial
    • Perceptron Algorithm Tutorial
    • Basis Functions Tutorial
    • Gaussian Process Tutorial
    • Deep Gaussian Process Tutorial
    • Mountain Car Reinforcement Learning
    • Getting Started
    • Tutorial Structure
  • API Reference
    • MLAI Core Module
    • Plotting Module
    • Gaussian Process Tutorial Module
    • Deep Gaussian Process Tutorial Module
    • Mountain Car Module
    • Module Overview
    • Code Style
  • Contributing to MLAI
    • Project Philosophy
    • Getting Started
    • Development Workflow
    • Coding Standards
    • Testing
    • Documentation
    • Submitting Changes
    • Code of Conduct
    • Questions?
  • Project Tenets
    • Core Principles
    • Applying the Tenets
    • For Contributors

Project Information:

  • Code Improvement Proposals (CIPs)
  • Project Backlog

Indices and tables

  • Index

  • Module Index

  • Search Page

Next

© Copyright 2018-2025, Neil D. Lawrence.

Built with Sphinx using a theme provided by Read the Docs.