Quick Start Guide ================ This guide will help you get started with MLAI quickly. We'll cover the basic concepts and show you how to run your first examples. Basic Usage ---------- MLAI provides simple, educational implementations of machine learning algorithms. Here's a basic example: .. code-block:: python import mlai import numpy as np import matplotlib.pyplot as plt # Generate some sample data X = np.linspace(0, 10, 100).reshape(-1, 1) y = np.sin(X).flatten() + 0.1 * np.random.randn(100) # Create and fit a simple model model = mlai.GaussianProcess(X, y) model.fit() # Make predictions X_test = np.linspace(0, 10, 200).reshape(-1, 1) y_pred, y_var = model.predict(X_test) # Plot results plt.figure(figsize=(10, 6)) plt.scatter(X, y, alpha=0.5, label='Data') plt.plot(X_test, y_pred, 'r-', label='Prediction') plt.fill_between(X_test.flatten(), y_pred - 2*np.sqrt(y_var), y_pred + 2*np.sqrt(y_var), alpha=0.3, label='95% Confidence') plt.legend() plt.show() Tutorials --------- MLAI includes several tutorials to help you learn machine learning concepts: - **Gaussian Process Tutorial** (:doc:`tutorials/gp_tutorial`): Learn about Gaussian Processes - **Deep GP Tutorial** (:doc:`tutorials/deepgp_tutorial`): Explore Deep Gaussian Processes - **Mountain Car Example** (:doc:`tutorials/mountain_car`): Reinforcement learning example Plotting Utilities ----------------- MLAI provides convenient plotting utilities for machine learning visualizations: .. code-block:: python import mlai.plot as ma_plot # Use MLAI's plotting utilities ma_plot.set_defaults() # Set default plotting parameters # Create publication-quality plots fig, ax = ma_plot.new_xy_figure() # ... your plotting code here Key Concepts ----------- MLAI is designed with these principles in mind: 1. **Clarity**: Code is written to be easily understood 2. **Mathematical Transparency**: Mathematical concepts are explicit in the code 3. **Educational Focus**: Every function serves a pedagogical purpose 4. **Reproducibility**: Examples can be run end-to-end Next Steps ---------- - Explore the :doc:`api/index` for detailed API documentation - Check out the :doc:`tutorials/index` for hands-on examples - Read about our :doc:`tenets` to understand the project philosophy