API Reference
This section contains detailed API documentation for all MLAI modules and functions.
API Reference:
- MLAI Core Module
- Plotting Module
- mlai.plot
pred_range()
matrix()
base_plot()
covariance_capacity()
prob_diagram()
bernoulli_urn()
bayes_billiard()
hyperplane_coordinates()
init_perceptron_plot()
update_perceptron_plot()
contour_error()
regression_contour()
init_regression()
update_regression()
update_regression_path()
regression_contour_fit()
regression_contour_sgd()
regression_contour_coordinate_descent()
over_determined_system()
gaussian_of_height()
gaussian_volume_1D()
gaussian_volume_2D()
gaussian_volume_3D()
marathon_fit()
rmse_fit()
holdout_fit()
loo_fit()
cv_fit()
under_determined_system()
bayes_update()
height_weight()
independent_height_weight()
correlated_height_weight()
two_point_pred()
output_augment_x()
basis()
computing_covariance()
kern_circular_sample()
animate_covariance_function()
multi_output_covariance_func()
multi_output_covariance_heatmap()
multi_output_sample_plot()
multi_output_animate_covariance_function()
covariance_func()
rejection_samples()
two_point_sample()
poisson()
logistic()
height()
weight()
low_rank_approximation()
blank_canvas()
kronecker_illustrate()
kronecker_IK()
kronecker_IK_highlight()
kronecker_WX()
perceptron()
dist2()
clear_axes()
non_linear_difficulty_plot_3()
non_linear_difficulty_plot_2()
non_linear_difficulty_plot_1()
network
layer
neural_network()
deep_nn()
deep_nn_bottleneck()
box()
stack_gp_sample()
vertical_chain()
horizontal_chain()
shared_gplvm()
ppca_graphical_model()
dppca_graphical_model()
three_pillars_innovation()
model_output()
model_sample()
multiple_optima()
google_trends()
gp_optimize_quadratic()
tsne_example()
squared_distances()
visualise_relu_activations()
visualise_activation_summary()
visualise_decision_boundaries()
- Gaussian Process Tutorial Module
- Deep Gaussian Process Tutorial Module
- Mountain Car Module
Module Overview
mlai: Core machine learning functionality
plot: Plotting utilities and visualization tools
gp_tutorial: Gaussian Process tutorial functions
deepgp_tutorial: Deep Gaussian Process tutorial functions
mountain_car: Mountain car reinforcement learning example
Code Style
All MLAI code follows these conventions:
Functions and classes are documented with detailed docstrings
Mathematical notation is used in comments and docstrings
Type hints are provided where they improve clarity
Examples are included in docstrings
For more information about the project’s coding standards, see the Project Tenets.