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Sampling a Function

Multi-variate Gaussians

• We will consider a Gaussian with a particular structure of
covariance matrix.

• Generate a single sample from this 25 dimensional Gaussian
distribution, y = [y1, y2 . . . y25].

• We will plot these points against their index.
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Figure: A sample from a 25 dimensional Gaussian distribution.
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Prediction of y2 from y1
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• The single contour of the Gaussian density represents the joint
distribution, p(y1, y2).

• We observe that y1 = −0.313.

• Conditional density: p(y2|y1 = −0.313).
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Prediction with Correlated Gaussians

• Prediction of y2 from y1 requires conditional density.

• Conditional density is also Gaussian.

p(y2|y1) = N

(
y2|

k1,2

k1,1
y1, k2,2 −

k2
1,2

k1,1

)

where covariance of joint density is given by

K =

[
k1,1 k1,2

k2,1 k2,2

]
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Prediction with Correlated Gaussians

• Prediction of y∗ from y requires multivariate conditional
density.

• Multivariate conditional density is also Gaussian.

p(y∗|y) = N
(
y∗|K∗,yK−1

y,yy,K∗,∗ −K∗,yK
−1
y,yKy,∗

)

• Here covariance of joint density is given by

K =

[
Ky,y K∗,y
Ky,∗ K∗,∗

]



Prediction with Correlated Gaussians

• Prediction of y∗ from y requires multivariate conditional
density.

• Multivariate conditional density is also Gaussian.

p(y∗|y) = N (y∗|µ,Σ)

µ = K∗,yK
−1
y,yy

Σ = K∗,∗ −K∗,yK
−1
y,yKy,∗

• Here covariance of joint density is given by

K =

[
Ky,y K∗,y
Ky,∗ K∗,∗

]



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k
(
x, x′

)
= α exp

(
−
‖x− x′‖2

2

2`2

)

• Covariance matrix is built
using the inputs to the
function x.

• For the example above it
was based on Euclidean
distance.

• The covariance function is
also know as a kernel.
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Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x1 = −3.0, x1 = −3.0

k1,1 = 1.00× exp
(
− (−3.0−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x1 = −3.0, x1 = −3.0

k1,1 = 1.00× exp
(
− (−3.0−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x1 = −3.0

k2,1 = 1.00× exp
(
− (1.20−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00

0.110

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x1 = −3.0

k2,1 = 1.00× exp
(
− (1.20−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x1 = −3.0

k2,1 = 1.00× exp
(
− (1.20−−3.0)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x2 = 1.20

k2,2 = 1.00× exp
(
− (1.20−1.20)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)
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Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x1 = −3.0

k3,1 = 1.00× exp
(
− (1.40−−3.0)2

2×2.002
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Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

0.0889

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x1 = −3.0

k3,1 = 1.00× exp
(
− (1.40−−3.0)2

2×2.002

)
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(
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Covariance Functions
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Covariance Functions
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2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995 1.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x1 = −3, x1 = −3

k1,1 = 1.0× exp
(
− (−3−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x1 = −3, x1 = −3

k1,1 = 1.0× exp
(
− (−3−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0× exp
(
− (1.2−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0

0.11

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0× exp
(
− (1.2−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0× exp
(
− (1.2−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x2 = 1.2

k2,2 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x2 = 1.2

k2,2 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0× exp
(
− (1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

0.089

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0× exp
(
− (1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0× exp
(
− (1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0× exp
(
− (1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0× exp
(
− (1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0× exp
(
− (1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0× exp
(
− (2.0−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0× exp
(
− (2.0−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0× exp
(
− (2.0−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0× exp
(
− (2.0−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044 0.92

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0× exp
(
− (2.0−1.2)2

2×2.02

)
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Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0× exp
(
− (2.0−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?
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0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0× exp
(
− (2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92 0.96

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0× exp
(
− (2.0−1.4)2

2×2.02

)
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(
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2
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)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0× exp
(
− (2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92
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0.044 0.92 0.96

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00× exp
(
− (−3.0−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00× exp
(
− (−3.0−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00× exp
(
− (1.20−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00

2.81

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00× exp
(
− (1.20−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00× exp
(
− (1.20−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00× exp
(
− (1.40−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

2.72

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00× exp
(
− (1.40−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00× exp
(
− (1.40−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00× exp
(
− (1.40−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00× exp
(
− (1.40−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00× exp
(
− (1.40−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Basis Function Form

Radial basis functions commonly have the form

φk (xi ) = exp

(
−|xi − µk |2

2`2

)
.

• Basis function maps
data into a “feature
space” in which a
linear sum is a non
linear function.

0

0.5

1

-8 -6 -4 -2 0 2 4 6 8

φ
(x

)

x

Figure: A set of radial basis functions with width
` = 2 and location parameters µ = [−4 0 4]>.



Basis Function Representations

• Represent a function by a linear sum over a basis,

y(xi ,:;w) =
m∑

k=1

wkφk(xi ,:), (1)

• Here: m basis functions and φk(·) is kth basis function and

w = [w1, . . . ,wm]> .

• For standard linear model: φk(xi ,:) = xi ,k .



Random Functions

Functions derived using:

y(x) =
m∑

k=1

wkφk(x),

where W is sampled
from a Gaussian density,

wk ∼ N (0, α) .

-2

-1

0

1

2

-8 -6 -4 -2 0 2 4 6 8
y

(x
)

x
Figure: Functions sampled using the basis set from
figure 2. Each line is a separate sample, generated by
a weighted sum of the basis set. The weights, w are
sampled from a Gaussian density with variance α = 1.



Direct Construction of Covariance Matrix

• Use matrix notation to write function,

y (xi ;w) =
m∑

k=1

wkφk (xi )

computed at training data gives a vector

y = Φw.

• w and y are only related by a inner product.

• Φ is fixed and non-stochastic for a given training set.

• y is Gaussian distributed.

• it is straightforward to compute distribution for y
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Direct Construction of Covariance Matrix

• Use matrix notation to write function,

y (xi ;w) =
m∑

k=1

wkφk (xi )

computed at training data gives a vector

y = Φw.

• w and y are only related by a inner product.

• Φ is fixed and non-stochastic for a given training set.

• y is Gaussian distributed.

• it is straightforward to compute distribution for y



Expectations

• We use 〈·〉 to denote expectations under prior distributions.

• We have
〈y〉 = φ 〈w〉 .

• Prior mean of w was zero giving

〈y〉 = 0.

• Prior covariance of y is

K =
〈
yy>

〉
− 〈y〉 〈y〉>

〈
yy>

〉
= Φ

〈
ww>

〉
Φ>,

giving
K = γ′ΦΦ>.
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Covariance between Two Points

• The prior covariance between two points xi and xj is

k (xi , xj) = γ′
m∑
`

φ` (xi )φ` (xj)

or in vector form

k (xi , xj) = φ: (xi )
> φ: (xj) ,

• For the radial basis used this gives

k (xi , xj) = γ′
m∑

k=1

exp

(
−
|xi − µk |2 + |xj − µk |2

2`2

)
.
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Covariance between Two Points

• The prior covariance between two points xi and xj is

k (xi , xj) = γ′
m∑
`

φ` (xi )φ` (xj)

or in vector form

k (xi , xj) = φ: (xi )
> φ: (xj) ,

• For the radial basis used this gives

k (xi , xj) = γ′
m∑

k=1

exp

(
−
|xi − µk |2 + |xj − µk |2

2`2

)
.



Selecting Number and Location of Basis

• Need to choose

1 location of centers
2 number of basis functions

• Consider uniform spacing over a region:

k (xi , xj) = γ∆µ
m∑

k=1

exp

(
−

x2
i + x2

j − 2µk (xi + xj) + 2µ2
k

2`2

)
,
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Selecting Number and Location of Basis

• Need to choose

1 location of centers
2 number of basis functions

• Consider uniform spacing over a region:

k (xi , xj) = γ∆µ
m∑

k=1

exp

(
−

x2
i + x2

j − 2µk (xi + xj) + 2µ2
k

2`2

)
,



Uniform Basis Functions

• Set each center location to

µk = a + ∆µ · (k − 1).

• Specify the bases in terms of their indices,

k (xi , xj) =γ∆µ
m∑

k=1

exp

(
−

x2
i + x2

j

2`2

−
2 (a + ∆µ · k) (xi + xj) + 2 (a + ∆µ · k)2

2`2

)
.



Uniform Basis Functions

• Set each center location to

µk = a + ∆µ · (k − 1).

• Specify the bases in terms of their indices,

k (xi , xj) =γ∆µ
m∑

k=1

exp

(
−

x2
i + x2

j

2`2

−
2 (a + ∆µ · k) (xi + xj) + 2 (a + ∆µ · k)2

2`2

)
.



Infinite Basis Functions

• Take µ0 = a and µm = b so b = a + ∆µ · (m − 1).

• Take limit as ∆µ→ 0 so m→∞

k(xi , xj) =γ

∫ b

a
exp

(
−

x2
i + x2

j

2`2

+
2
(
µ− 1

2 (xi + xj)
)2 − 1

2 (xi + xj)
2

2`2

)
dµ,

where we have used k ·∆µ→ µ.
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Infinite Basis Functions

• Take µ0 = a and µm = b so b = a + ∆µ · (m − 1).

• Take limit as ∆µ→ 0 so m→∞

k(xi , xj) =γ

∫ b

a
exp

(
−

x2
i + x2

j

2`2

+
2
(
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2
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where we have used k ·∆µ→ µ.



Result

• Performing the integration leads to
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Infinite Feature Space

• A RBF model with infinite basis functions is a Gaussian
process.

• The covariance function is the exponentiated quadratic.

• Note: The functional form for the covariance function and
basis functions are similar.

• this is a special case,
• in general they are very different

• Similar results can obtained for multi-dimensional input
networks Williams (1998); Neal (1996).
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Nonparametric Gaussian Processes

• This work takes us from parametric to non-parametric.

• The limit implies infinite dimensional w.

• Gaussian processes are generally non-parametric: combine
data with covariance function to get model.

• This representation cannot be summarized by a parameter
vector of a fixed size.



The Parametric Bottleneck

• Parametric models have a representation that does not
respond to increasing training set size.

• Bayesian posterior distributions over parameters contain the
information about the training data.

• Use Bayes’ rule from training data, p (w|t,X),
• Make predictions on test data

p (t∗|X∗, t,X) =

∫
p (t∗|w,X∗) p (w|t,X)dw) .

• w becomes a bottleneck for information about the training set
to pass to the test set.

• Solution: increase m so that the bottleneck is so large that it
no longer presents a problem.

• How big is big enough for m? Non-parametrics says m→∞.



The Parametric Bottleneck

• Now no longer possible to manipulate the model through the
standard parametric form given in (1).

• However, it is possible to express parametric as GPs:

k (xi , xj) = φ: (xi )
> φ: (xj) .

• These are known as degenerate covariance matrices.

• Their rank is at most m, non-parametric models have full rank
covariance matrices.

• Most well known is the “linear kernel”, k(xi , xj) = x>i xj .
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Making Predictions

• For non-parametrics prediction at new points y∗ is made by
conditioning on y in the joint distribution.

• In GPs this involves combining the training data with the
covariance function and the mean function.

• Parametric is a special case when conditional prediction can
be summarized in a fixed number of parameters.

• Complexity of parametric model remains fixed regardless of
the size of our training data set.

• For a non-parametric model the required number of
parameters grows with the size of the training data.
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Covariance Functions

RBF Basis Functions
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Covariance Functions and Mercer Kernels

• Mercer Kernels and Covariance Functions are similar.

• the kernel perspective does not make a probabilistic
interpretation of the covariance function.

• Algorithms can be simpler, but probabilistic interpretation is
crucial for kernel parameter optimization.
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Constructing Covariance Functions

• Sum of two covariances is also a covariance function.

k(x, x′) = k1(x, x′) + k2(x, x′)



Constructing Covariance Functions

• Product of two covariances is also a covariance function.

k(x, x′) = k1(x, x′)k2(x, x′)



Multiply by Deterministic Function

• If y(x) is a Gaussian process.

• g(x) is a deterministic function.

• h(x) = y(x)g(x)

• Then
kh(x, x′) = g(x)kf (x, x′)g(x′)

where kh is covariance for h(·) and kf is covariance for y(·).



Covariance Functions

MLP Covariance Function

k
(
x, x′

)
= αasin

(
wx>x′ + b

√
wx>x + b + 1

√
wx′>x′ + b + 1

)

• Based on infinite neural
network model.

w = 40

b = 4
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Covariance Functions

Linear Covariance Function

k
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x, x′
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• Bayesian linear regression.
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Gaussian Process Interpolation
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Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Gaussian Noise

• Gaussian noise model,

p (ti |yi ) = N
(
ti |yi , σ2

)
where σ2 is the variance of the noise.

• Equivalent to a covariance function of the form

k(xi , xj) = δi ,jσ
2

where δi ,j is the Kronecker delta function.

• Additive nature of Gaussians means we can simply add this
term to existing covariance matrices.



Gaussian Process Regression
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Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

t(
x

)

x

Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

t(
x

)

x

Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

t(
x

)

x

Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

t(
x

)

x

Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

t(
x

)

x

Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

t(
x

)

x

Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

t(
x

)

x

Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

t(
x

)

x

Figure: Examples include WiFi localization, C14 callibration curve.



Learning Covariance Parameters
Can we determine covariance parameters from the data?

N (t|0,K) =
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)
The parameters are inside the covariance

function (matrix).

ki ,j = k(xi , xj ;θ)
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Learning Covariance Parameters
Can we determine covariance parameters from the data?

E (θ) =
1

2
log |K| + t>K−1t

2

The parameters are inside the covariance
function (matrix).

ki ,j = k(xi , xj ;θ)



Eigendecomposition of Covariance

A useful decomposition for understanding the objective function.

K = RΛ2R>

λ1

λ2
Diagonal of Λ represents distance
along axes.
R gives a rotation of these axes.

where Λ is a diagonal matrix and R>R = I.

Useful representation since |K| =
∣∣Λ2
∣∣ = |Λ|2.
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?
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Gene Expression Example

Global expression estimation with l = 30

Global expression estimation with l = 15.6

Data from Della Gatta et al. (2008). Figure from Kalaitzis and
Lawrence (2011).
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Limitations of Gaussian Processes

• Inference is O(N3) due to matrix inverse (in practice use
Cholesky).

• Gaussian processes don’t deal well with discontinuities
(financial crises, phosphorylation, collisions, edges in images).

• Widely used exponentiated quadratic covariance (RBF) can be
too smooth in practice (but there are many alternatives!!).



Summary

• Broad introduction to Gaussian processes.
• Started with Gaussian distribution.
• Motivated Gaussian processes through the multivariate density.

• Emphasized the role of the covariance (not the mean).

• Performs nonlinear regression with error bars.

• Parameters of the covariance function (kernel) are easily
optimized with maximum likelihood.



Reading

• Chapter 1 & 2 of Rasmussen and Williams.
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