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Regression Examples

• Predict a real value, ti given some inputs xi .

• Predict quality of meat given spectral measurements (Tecator
data).

• Radiocarbon dating, the C14 calibration curve: predict age
given quantity of C14 isotope.

• Predict quality of different Go or Backgammon moves given
expert rated training data.
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Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

t1 =mx1 + c

t2 =mx2 + c
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Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.
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Two Simultaneous Equations

How do we deal with three
simultaneous equations with only
two unknowns?

t1 =mx1 + c

t2 =mx2 + c

t3 =mx3 + c 0
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Overdetermined System

• With two unknowns and two observations:

t1 =mx1 + c

t2 =mx2 + c

• Additional observation leads to overdetermined system.

t3 = mx3 + c

• This problem is solved through a noise model ε ∼ N
(
0, σ2

)
t1 = mx1 + c + ε1

t2 = mx2 + c + ε2

t3 = mx3 + c + ε3
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Noise Models

• We aren’t modeling entire system.

• Noise model gives mismatch between model and data.

• Gaussian model justified by appeal to central limit theorem.

• Other models also possible (Student-t for heavy tails).

• Maximum likelihood with Gaussian noise leads to least
squares.
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The Gaussian Density

• Perhaps the most common probability density.

p(t|µ, σ2) =
1√

2πσ2
exp

(
−(t − µ)2

2σ2

)
= N

(
t|µ, σ2

)
• The Gaussian density.



Gaussian Density
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The Gaussian PDF with µ = 1.7 and variance σ2 = 0.0225. Mean
shown as red line. It could represent the heights of a population of
students.



Gaussian Density

N
(
t|µ, σ2

)
=

1√
2πσ2

exp

(
−(t − µ)

2

2σ2
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A Probabilistic Process

• Set the mean of Gaussian to be a function.

p (ti |xi ) =
1√

2πσ2
exp

(
−(ti − y (xi ))2

2σ2

)
.

• This gives us a ‘noisy function’.

• This is known as a process.



Height as a Function of Weight

• In the standard Gaussian, parametized by mean and variance.

• Make the mean a linear function of an input.

• This leads to a regression model.

ti =y (xi ) + εi ,

εi ∼N
(
0, σ2

)
.

• Assume ti is height and xi is weight.



Linear Function
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• Likelihood of an individual data point

p (ti |xi ,m, c) =
1√

2πσ2
exp

(
−(ti −mxi − c)2

2σ2

)
.

• Parameters are gradient, m, offset, c of the function and noise
variance σ2.



Likelihood Function

• Assume samples are independent and identically distributed
given the parameters (i.i.d.)

• Leads to the log likelihood

L(m, c, σ2) = −N

2
log 2π − N

2
log σ2 −

N∑
i=1

(ti −mxi − c)2

2σ2
.



Error Function

• Negative log likelihood is the error function leading to an error
function

E (m, c, σ2) =
N

2
log σ2 +

1

2σ2

N∑
i=1

(ti −mxi − c)2 .

• Learning proceeds by minimizing this error function for the
data set provided.



Connection: Sum of Squares Error

• Ignoring terms which don’t depend on m and c gives

E (m, c) ∝
N∑
i=1

(ti − y(xi ))2

where y(xi ) = mxi + c.

• This is known as the sum of squares error function.

• Commonly used and is closely associated with the Gaussian
likelihood.



Fixed Point Updates

Worked example.

c∗ =

∑N
i=1 (ti −m∗xi )

N
,

m∗ =

∑N
i=1 xi (ti − c∗)∑N

i=1 x
2
i

,

σ2 ∗ =

∑N
i=1 (ti −m∗xi − c∗)2

N



Multi-dimensional Inputs

• Multivariate functions involve more than one input.

• Height might be a function of weight and gender.

• There could be other contributory factors.

• Place these factors in a feature vector xi .

• Linear function is now defined as

y(xi ) =

q∑
j=1

wjxi ,j + c



Vector Notation

• Write in vector notation,

y(xi ) = w>xi + c

• Can absorb c into w by assuming extra input x0 which is
always 1.

y(xi ) = w>xi



Log Likelihood for Multivariate Regression

• The likelihood of a single data point is

p (ti |xi ) =
1√

2πσ2
exp

(
−
(
ti −w>xi

)2

2σ2

)
.

• Leading to a log likelihood for the data set of

L(w, σ2) = −N

2
log σ2 − N

2
log 2π −

∑N
i=1

(
ti −w>xi

)2

2σ2
.

• And a corresponding error function of

E (w, σ2) =
N

2
log σ2 +

∑N
i=1

(
ti −w>xi

)2

2σ2
.



Expand the Brackets

E (w, σ2) =
N

2
log σ2 +

1

2σ2

N∑
i=1

t2
i −

1

σ2

N∑
i=1

tiw
>xi

+
1

2σ2

N∑
i=1

w>xix
>
i w + const.

=
N

2
log σ2 +

1

2σ2

N∑
i=1

t2
i −

1

σ2
w>

N∑
i=1

xi ti

+
1

2σ2
w>

[
N∑
i=1

xix
>
i

]
w + const.



Multivariate Derivatives

• We will need some multivariate calculus.

• For now some simple multivariate differentiation:

da>w

dw
= a

and
dw>Aw

dw
=
(
A + A>

)
w

or if A is symmetric (i.e. A = A>)

dw>Aw

dw
= 2Aw.



Differentiate

Differentiating with respect to the vector w we obtain

∂L (w, β)

∂w
= β

N∑
i=1

xi ti − β

[
N∑
i=1

xix
>
i

]
w

Leading to

w∗ =

[
N∑
i=1

xix
>
i

]−1 N∑
i=1

xi ti ,

Rewrite in matrix notation:

N∑
i=1

xix
>
i = X>X

N∑
i=1

xi ti = X>t



Update Equations

• Update for w∗.

w∗ =
(
X>X

)−1
X>t

• The equation for σ2 ∗ may also be found

σ2 ∗ =

∑N
i=1

(
ti − w∗ > xi

)2

N
.



Reading

• Section 1.2.5 of Bishop up to equation 1.65.

• Section 1.1 of Bishop as preparation for Friday.

• Section 1.1-1.2 of Rogers and Girolami for fitting linear
models.

• Section 1.3 of Rogers and Girolami for Matrix & Vector
Review.
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