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Regression Examples

Predict a real value, t; given some inputs x;.

Predict quality of meat given spectral measurements (Tecator
data).

Radiocarbon dating, the C14 calibration curve: predict age
given quantity of C14 isotope.

Predict quality of different Go or Backgammon moves given
expert rated training data.
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Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

ti =mx; + ¢

th =mxo + C




Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

t; — tr =m(x1 — x2)




Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

t1 —t
X1 — X2




Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.
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Two Simultaneous Equations

How do we deal with three
simultaneous equations with only
two unknowns?

N W B~ G

ti =mxy +c¢

th =mxp + C m= o=




Overdetermined System

e With two unknowns and two observations:

ti =mxy + ¢

th =mxo + C

e This problem is solved through a noise model € ~ A/ (0, c%)

=mxi + C+ €1
mxs + € + €2

mx3 + C + €3




Overdetermined System

e With two unknowns and two observations:

ti =mxy + ¢

th =mxo + C

o Additional observation leads to overdetermined system.

t3 = mx3 + ¢
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Overdetermined System

e With two unknowns and two observations:

t1 =mxy + C

th =mxo + C

o Additional observation leads to overdetermined system.

t3 = mx3 + C

e This problem is solved through a noise model ¢ ~ N (0,02)

t1=mx3+c+e
to
3 = mx3 + Cc+ €3

mxz + C + €2



Noise Models

We aren’t modeling entire system.

Noise model gives mismatch between model and data.
Gaussian model justified by appeal to central limit theorem.
Other models also possible (Student-t for heavy tails).

Maximum likelihood with Gaussian noise leads to least
squares.
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The Gaussian Density

o Perhaps the most common probability density.

C(t—p)

) 1
p(tlp, 0%) = Norohiad 552
:N(t|u,a2)




Gaussian Density

p(hlp, o)

0] 1 2
h, height/m

The Gaussian PDF with p = 1.7 and variance 0 = 0.0225. Mean
shown as red line. It could represent the heights of a population of
students.



Gaussian Density

N (t|p, 0?) = L op (_(t—u)z)
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A Probabilistic Process

e Set the mean of Gaussian to be a function.

e This gives us a ‘noisy function'.

e This is known as a process.




Height as a Function of Weight

In the standard Gaussian, parametized by mean and variance.
Make the mean a linear function of an input.

This leads to a regression model.

ti =y (i) + €,
~N (0,02) .

€

Assume t; is height and x; is weight.



Linear Function

2 data points x
best fit line

t, height in m
X




e Likelihood of an individual data point

1 x . (t,' — mx; — C)2
2mo2 P 202 .

p (tilxi,m,c) =

o Parameters are gradient, m, offset, ¢ of the function and noise

variance 2.




Likelihood Function

e Assume samples are independent and identically distributed
given the parameters (i.i.d.)

e Leads to the log likelihood

N (t; — mx; — c)?

N N
L(m,c,az):—Elog27r—§Iog02—Z 22
g

i=



Error Function

o Negative log likelihood is the error function leading to an error
function

N 1<
E(m,C,Jz):Eng 2—2 (t; — mx; — ¢)?.

e Learning proceeds by minimizing this error function for the
data set provided.



Connection: Sum of Squares Error

e lgnoring terms which don’'t depend on m and ¢ gives

N
E(m,c)oc Y (i = y(x))?
i=1
where y(x;) = mx; + c.
e This is known as the sum of squares error function.

e Commonly used and is closely associated with the Gaussian
likelihood.



Fixed Point Updates

Worked example.

o _ X (= mx)
N )

N *
- Xj(ti—cC
(=)

C




Multi-dimensional Inputs

Multivariate functions involve more than one input.
Height might be a function of weight and gender.
There could be other contributory factors.

Place these factors in a feature vector x;.

Linear function is now defined as

q
y(xi) =) wxij+c
j=1



Vector Notation

e Write in vector notation,

y(xi))=w'x; +c

e Can absorb ¢ into w by assuming extra input xp which is
always 1.




Log Likelihood for Multivariate Regression

e The likelihood of a single data point is

1 (t;—wa,')2
P(ti|Xi):WEXP T g2 |-

e Leading to a log likelihood for the data set of

DR (ti — WTXI’)2

N N
L(w,02):—§|oga2—§|og2w— 202
o

e And a corresponding error function of

SV (- wix;)

202

N
E(w,o?) = B log 0% +



Expand the Brackets

N ;N N
E(w,o?) zfloga —22 - Z w ' x;
i=1 =1

E w' XiX; w+const
i=1

202

lo ; B 3 iti
go? Z — W Zx,t,
i=1 i=1

T2

W —+ const.

lﬁ




Multivariate Derivatives

e We will need some multivariate calculus.

e For now some simple multivariate differentiation:

da'w

dw -2

and
dw ' Aw
dw

or if A is symmetric (ie. A =AT)

- (A+AT)W

dw ' Aw

= 2Aw.
dw W



Differentiate

Differentiating with respect to the vector w we obtain

N N
oL (Waﬁ) T
aw:ﬂiz_;x,'t,'ﬂlgxix; w
Leading to
N -1y
wh = [Z XinT] > xit;,
i i=1

Rewrite in matrix notation:

N
Z xix; = XX
i=1

N
Z i = X't
i=1



Update Equations

o Update for w*.
-1
w = (xTx) XTt

e The equation for 2" may also be found

2
N
. 2i=1 (t,- = W*Txi)

2




Reading

Section 1.2.5 of Bishop up to equation 1.65.
Section 1.1 of Bishop as preparation for Friday.

Section 1.1-1.2 of Rogers and Girolami for fitting linear
models.

Section 1.3 of Rogers and Girolami for Matrix & Vector
Review.
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