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1. Univariate Gaussian model. A Gaussian density governs a vector of uni-
variate observations, t = {ti}Ni=1. The associated error function has the
following form.

E(µ) =

N∑
i=1

(ti − µ)2

(a) Introduce the variance parameter, σ2 and convert the error function
to the Gaussian density. Find the maximum likelihood solutions for
both µ and σ2.

(b) Place the following Gaussian prior over the mean,

p(µ) =
1√
2πα

exp

(
− 1

2α
µ2

)
and compute the marginal likelihood for t and the posterior density
for µ.

2. Maximum likelihood in a multivariate Gaussian. A data set consists of
p dimensional vectors, ti,: from a matrix T = {ti,:}Ni=1 (i.e. T ∈ <N×p).
The likelihood is given by

p(T) =

N∏
i=1

p(ti,:)

where the likelihood of each data point is

p(ti,:) =
1

(2π)
p
2 |C|

1
2

exp

(
−1

2
(ti,: − µ)>C−1(ti,: − µ)

)
.

(a) Write down the log likelihood and use the following matrix and vector
derivatives

dx>Ax

dx
=Ax + A>x

d log |C|
dC

=C−1

da>C−1a

dC
=−C−1aa>C−1

1



to show that the maximum likelihood solutions for the mean, µ̂ and
covariance matrix, Ĉ, are

µ̂ =
1

N

N∑
i=1

ti,:,

Ĉ =
1

N

N∑
i=1

(ti,: − µ̂)(ti,: − µ̂)>.

(b) Now consider an independent Gaussian prior over the elements of the
mean vector,

p(µ) =

p∏
i=1

1√
2πα

exp

(
− 1

2α
µ2
i

)
i. Show that this can be written in vector form as follows:

p(µ) =
1

(2πα)
p
2

exp

(
− 1

2α
µ>µ

)
.

ii. Now compute the posterior density for µ, p(µ|T). Write down
the terms that remain that would be required for the marginal
likelihood of T, p(T) (note given the matrix algebra we’ve cov-
ered you won’t be able to write down the full form of the marginal
likelihood).

3. Regression with a basis function model. Assume that we wish to
perform a nonlinear regression by computing a set of basis functions, for
example,

φj(xi,:) = exp

(
− 1

2`2j
(xi − µj)

2

)
,

where µ is a location parameter and ` is a width parameter for the jth
basis function. For each data point we take the m basis functions and
write them in a vector of the following form

φi,: = [φ1(xi,:) . . . φm(xi,:)]
>

and the complete set of basis functions is written in a matrix, Φ ∈ <N×m

of the following form,

Φ =
[
φ1,:φ2,: . . .φN,:

]>
.

If we assume Gaussian noise we can write down the Gaussian likelihood
of a single data point, i,

p(ti|φi,:,w) =
1√
2πσ2

exp

(
− 1

2σ2
(ti −w>φi,:)

2

)
.

(a) Assume the noise is independent and identically distributed and write
down the corresponding likelihood and log likelihood of the entire
data set.
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(b) Show that the maximum likelihood solution for w is given by

ŵ =
(
Φ>Φ

)−1
Φ>t.

(c) Consider a Gaussian prior over the parameters, w,

p(w) =

m∏
i=1

1√
2πα

exp

(
− 1

2α
w2

i

)
.

Show that the posterior for w is given by a Gaussian with covariance

Cw =

(
1

σ2
Φ>Φ + α−1I

)−1
and mean

µw =
1

σ2
CwΦ>t

i. Compare the solution for the maximum likelihood and the pos-
terior mean over w. When do they become the same?

ii. What problems occur for the maximum likelihood solution if
m > N?

(d) Show that the marginal likelihood of the data set is given by

p(t|X, α, σ2) =
1

(2π)
N
2 |K|

1
2

exp

(
−1

2
t>K−1t

)
where

K = αΦΦ> + σ2I

by using the matrix inversion formula:

(A + BCD)
−1

= A−1 −A−1B
(
C−1 + DA−1B

)−1
DA−1.
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