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1. Univariate Gaussian model. A Gaussian density governs a vector of uni-
variate observations, t = {t;},. The associated error function has the

following form.
N
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(a) Introduce the variance parameter, o2 and convert the error function
to the Gaussian density. Find the maximum likelihood solutions for
both p and o2.

(b) Place the following Gaussian prior over the mean,

1 1,
= exp | ——
) = —— p< e >
and compute the marginal likelihood for t and the posterior density
for p.

2. Maximum likelihood in a multivariate Gaussian. A data set consists of
p dimensional vectors, t; . from a matrix T = {t; . N, (ie. T € RNV>P).
The likelihood is given by

where the likelihood of each data point is
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(a) Write down the log likelihood and use the following matrix and vector
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to show that the maximum likelihood solutions for the mean, & and
covariance matrix, C, are
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(b) Now consider an independent Gaussian prior over the elements of the

mean vector,
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i. Show that this can be written in vector form as follows:
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ii. Now compute the posterior density for p, p(u|T). Write down
the terms that remain that would be required for the marginal
likelihood of T, p(T) (note given the matrix algebra we’ve cov-
ered you won'’t be able to write down the full form of the marginal
likelihood).

3. Regression with a basis function model. Assume that we wish to
perform a nonlinear regression by computing a set of basis functions, for
example,

¢j(xi,:)=exp< 222( u])>»

where p is a location parameter and ¢ is a width parameter for the jth
basis function. For each data point we take the m basis functions and
write them in a vector of the following form

G = [1(xi,) - D (xi,)] T

and the complete set of basis functions is written in a matrix, ® € RYV*™

of the following form,
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If we assume Gaussian noise we can write down the Gaussian likelihood
of a single data point, 4,
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(a) Assume the noise is independent and identically distributed and write
down the corresponding likelihood and log likelihood of the entire
data set.




(b) Show that the maximum likelihood solution for w is given by
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(¢) Consider a Gaussian prior over the parameters, w,
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Show that the posterior for w is given by a Gaussian with covariance
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i. Compare the solution for the maximum likelihood and the pos-
terior mean over w. When do they become the same?

ii. What problems occur for the maximum likelihood solution if
m > N7

(d) Show that the marginal likelihood of the data set is given by
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where
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by using the matrix inversion formula:
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