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Revisit Olympics Data

I Use Bayesian approach on olympics data with
polynomials.

I Choose a prior w ∼ N (0, αI) with α = 1.
I Choose noise variance σ2 = 0.01



Sampling the Prior

I Always useful to perform a ‘sanity check’ and sample from
the prior before observing the data.

I Since y =Φw + ε just need to sample

w ∼ N (0, α)

ε ∼ N
(
0, σ2

)
with α = 1 and ε = 0.01.



Polynomial Fits to Olympics Data
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 0, model error 29.757, σ2 = 0.286, σ = 0.535.
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 1, model error 14.942, σ2 = 0.0749, σ = 0.274.
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 2, model error 9.7206, σ2 = 0.0427, σ = 0.207.
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 3, model error 10.416, σ2 = 0.0402, σ = 0.200.
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 4, model error 11.34, σ2 = 0.0401, σ = 0.200.
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 5, model error 11.986, σ2 = 0.0399, σ = 0.200.
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Left: fit to data, Right: marginal log likelihood. Polynomial
order 6, model error 12.369, σ2 = 0.0384, σ = 0.196.



Model Fit

I Marginal likelihood doesn’t always increase as model
order increases.

I Bayesian model always has 2 parameters, regardless of
how many basis functions (and here we didn’t even fit
them).

I Maximum likelihood model over fits through increasing
number of parameters.

I Revisit maximum likelihood solution with validation set.



Recall: Validation Set for Maximum Likelihood
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Left: fit to data, Right: model error. Polynomial order 0, training
error -1.8774, validation error -0.13132, σ2 = 0.302, σ = 0.549.
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Left: fit to data, Right: model error. Polynomial order 1, training
error -15.325, validation error 2.5863, σ2 = 0.0733, σ = 0.271.
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Left: fit to data, Right: model error. Polynomial order 2, training
error -17.579, validation error -8.4831, σ2 = 0.0578, σ = 0.240.
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Left: fit to data, Right: model error. Polynomial order 3, training
error -18.064, validation error 11.27, σ2 = 0.0549, σ = 0.234.
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Left: fit to data, Right: model error. Polynomial order 4, training
error -18.245, validation error 232.92, σ2 = 0.0539, σ = 0.232.
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Left: fit to data, Right: model error. Polynomial order 5, training
error -20.471, validation error 9898.1, σ2 = 0.0426, σ = 0.207.
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Left: fit to data, Right: model error. Polynomial order 6, training
error -22.881, validation error 67775, σ2 = 0.0331, σ = 0.182.



Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 0, training
error 29.757, validation error -0.29243, σ2 = 0.302, σ = 0.550.
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Left: fit to data, Right: model error. Polynomial order 1, training
error 14.942, validation error 4.4027, σ2 = 0.0762, σ = 0.276.
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Left: fit to data, Right: model error. Polynomial order 2, training
error 9.7206, validation error -8.6623, σ2 = 0.0580, σ = 0.241.
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Left: fit to data, Right: model error. Polynomial order 3, training
error 10.416, validation error -6.4726, σ2 = 0.0555, σ = 0.236.
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Left: fit to data, Right: model error. Polynomial order 4, training
error 11.34, validation error -8.431, σ2 = 0.0555, σ = 0.236.
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Left: fit to data, Right: model error. Polynomial order 5, training
error 11.986, validation error -10.483, σ2 = 0.0551, σ = 0.235.
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Left: fit to data, Right: model error. Polynomial order 6, training
error 12.369, validation error -3.3823, σ2 = 0.0537, σ = 0.232.



Regularized Mean

I Validation fit here based on mean solution for w only.
I For Bayesian solution

µw =
[
σ−2Φ>Φ + α−1I

]−1
σ−2Φ>y

instead of
w∗ =

[
Φ>Φ

]−1
Φ>y

I Two are equivalent when α→∞.
I Equivalent to a prior for w with infinite variance.
I In other cases αI regularizes the system (keeps parameters

smaller).



Sampling the Posterior

I Now check samples by extracting w from the posterior.
I Now for y =Φw + ε need

w ∼ N
(
µw,Cw

)
with Cw =

[
σ−2Φ>Φ + α−1I

]−1
and µw = Cwσ−2Φ>y

ε ∼ N
(
0, σ2

)
with α = 1 and ε = 0.01.



Marginal Likelihood

I The marginal likelihood can also be computed, it has the
form:

p(y|X, σ2, α) =
1

(2π)
n
2 |K|

1
2

exp
(
−

1
2

y>K−1y
)

where K = αΦΦ> + σ2I.
I So it is a zero mean n-dimensional Gaussian with

covariance matrix K.



Computing the Expected Output

I Given the posterior for the parameters, how can we
compute the expected output at a given location?

I Output of model at location xi is given by

f (xi; w) = φ>i w

I We want the expected output under the posterior density,
p(w|y,X, σ2, α).

I Mean of mapping function will be given by〈
f (xi; w)

〉
p(w|y,X,σ2,α) = φ>i 〈w〉p(w|y,X,σ2,α)

= φ>i µw



Variance of Expected Output

I Variance of model at location xi is given by

var( f (xi; w)) =
〈
( f (xi; w))2

〉
−

〈
f (xi; w)

〉2

= φ>i
〈
ww>

〉
φi −φ

>

i 〈w〉 〈w〉
>φi

= φ>i Cwφi

where all these expectations are taken under the posterior
density, p(w|y,X, σ2, α).



Book

Rasmussen and Williams (2006)
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Sampling a Function

Multi-variate Gaussians

I We will consider a Gaussian with a particular structure of
covariance matrix.

I Generate a single sample from this 25 dimensional
Gaussian distribution, f =

[
f1, f2 . . . f25

]
.

I We will plot these points against their index.



Gaussian Distribution Sample
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Figure : A sample from a 25 dimensional Gaussian distribution.
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Gaussian Distribution Sample
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Prediction of f2 from f1
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I The single contour of the Gaussian density represents the
joint distribution, p( f1, f2).

I We observe that f1 = −0.313.
I Conditional density: p( f2| f1 = −0.313).
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Prediction with Correlated Gaussians

I Prediction of f2 from f1 requires conditional density.
I Conditional density is also Gaussian.

p( f2| f1) = N

 f2|
k1,2

k1,1
f1, k2,2 −

k2
1,2

k1,1


where covariance of joint density is given by

K =

[
k1,1 k1,2
k2,1 k2,2

]



Prediction of f5 from f1
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I The single contour of the Gaussian density represents the
joint distribution, p( f1, f5).

I We observe that f1 = −0.313.
I Conditional density: p( f5| f1 = −0.313).
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Prediction with Correlated Gaussians

I Prediction of f∗ from f requires multivariate conditional
density.

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|K∗,fK−1

f,f f,K∗,∗ −K∗,fK−1
f,f Kf,∗

)

I Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]



Prediction with Correlated Gaussians

I Prediction of f∗ from f requires multivariate conditional
density.

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|µ,Σ

)
µ = K∗,fK−1

f,f f

Σ = K∗,∗ −K∗,fK−1
f,f Kf,∗

I Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.
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Covariance Functions
Where did this covariance matrix come from?

k
(
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= α exp
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−
||xi−x j||

2

2`2
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x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x1 = −3.0, x1 = −3.0

k1,1 = 1.00 × exp
(
−

(−3.0−−3.0)2

2×2.002

)
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k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x2 = 1.20

k3,2 = 1.00 × exp
(
−

(1.40−1.20)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00 × exp
(
−

(1.40−1.40)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995 1.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00 × exp
(
−

(1.40−1.40)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00 × exp
(
−

(1.40−1.40)2

2×2.002

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x1 = −3, x1 = −3

k1,1 = 1.0 × exp
(
−

(−3−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x1 = −3, x1 = −3

k1,1 = 1.0 × exp
(
−

(−3−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0 × exp
(
−

(1.2−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0

0.11

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0 × exp
(
−

(1.2−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0 × exp
(
−

(1.2−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x2 = 1.2

k2,2 = 1.0 × exp
(
−

(1.2−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x2 = 1.2

k2,2 = 1.0 × exp
(
−

(1.2−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0 × exp
(
−

(1.4−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0 × exp
(
−

(1.4−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0 × exp
(
−

(2.0−2.0)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0 × exp
(
−

(2.0−2.0)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0 × exp
(
−

(2.0−2.0)2

2×2.02

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00 × exp
(
−

(−3.0−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00 × exp
(
−

(−3.0−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00 × exp
(
−

(1.20−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00

2.81

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00 × exp
(
−

(1.20−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00 × exp
(
−

(1.20−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00 × exp
(
−

(1.20−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00 × exp
(
−

(1.20−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
(
−

(1.40−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

2.72

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
(
−

(1.40−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
(
−

(1.40−−3.0)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00 × exp
(
−

(1.40−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00 × exp
(
−

(1.40−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00 × exp
(
−

(1.40−1.20)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)



Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)
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Basis Function Form

Radial basis functions commonly have the form

φk (xi) = exp
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∣∣∣xi − µk
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2`2

 .

I Basis function
maps data into a
“feature space” in
which a linear sum
is a non linear
function.
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Basis Function Representations

I Represent a function by a linear sum over a basis,

f (xi,:; w) =

m∑
k=1

wkφk(xi,:), (1)

I Here: m basis functions and φk(·) is kth basis function and

w = [w1, . . . ,wm]> .

I For standard linear model: φk(xi,:) = xi,k.



Random Functions

Functions derived
using:

f (x) =

m∑
k=1

wkφk(x),

where W is sampled
from a Gaussian
density,

wk ∼ N (0, α) .
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Figure : Functions sampled using the basis set from
figure 4. Each line is a separate sample, generated
by a weighted sum of the basis set. The weights, w
are sampled from a Gaussian density with variance
α = 1.
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Direct Construction of Covariance Matrix

Use matrix notation to write function,

f (xi; w) =

m∑
k=1

wkφk (xi)

computed at training data gives a vector

f =Φw.

w ∼ N (0, αI)

w and f are only related by an inner product.

Φ ∈ <n×p is a design matrix

Φ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.



Expectations

I We have
〈f〉 =Φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈
ff>

〉
− 〈f〉 〈f〉>

We use 〈·〉 to denote expectations under prior distributions.
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I We have
〈f〉 =Φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈
ff>

〉
− 〈f〉 〈f〉>

〈
ff>

〉
=Φ

〈
ww>

〉
Φ>,

giving
K = αΦΦ>.

We use 〈·〉 to denote expectations under prior distributions.



Covariance between Two Points

I The prior covariance between two points xi and x j is

k
(
xi, x j

)
= αφ: (xi)

> φ:

(
x j

)
,

or in sum notation

k
(
xi, x j

)
= α

m∑
k=1

φk (xi)φk

(
x j

)
I For the radial basis used this gives

k
(
xi, x j

)
= α

m∑
k=1

exp

−
∣∣∣xi − µk

∣∣∣2 +
∣∣∣x j − µk

∣∣∣2
2`2

 .
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Selecting Number and Location of Basis

I Need to choose
1. location of centers

2. number of basis functions

I Consider uniform spacing over a region:

k
(
xi, x j

)
= α′∆µ

m∑
k=1

exp

−x2
i + x2

j − 2µk

(
xi + x j

)
+ 2µ2

k

2`2

 ,
Restrict analysis to 1-D input, x.
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Uniform Basis Functions

I Set each center location to

µk = a + ∆µ · (k − 1).

I Specify the basis functions in terms of their indices,

k
(
xi, x j

)
=α′∆µ

m−1∑
k=0

exp
(
−

x2
i + x2

j

2`2

−

2
(
a + ∆µ · k

) (
xi + x j

)
+ 2

(
a + ∆µ · k

)2

2`2

)
.

I Here we’ve scaled variance of process by ∆µ.
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Infinite Basis Functions

I Take µ0 = a and µm = b so b = a + ∆µ · (m − 1).

I Take limit as ∆µ→ 0 so m→∞

k(xi, x j) =α′
∫ b

a
exp

(
−

x2
i + x2

j

2`2

+
2
(
µ − 1

2

(
xi + x j

))2
−

1
2

(
xi + x j

)2

2`2

)
dµ,

where we have used k · ∆µ→ µ.
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Result

I Performing the integration leads to

k(xi,x j) = α′
√

π`2

2
exp

−
(
xi − x j

)2

4`2


×

erf


(
b − 1

2

(
xi + x j

))
`

 − erf


(
a − 1

2

(
xi + x j

))
`


 ,

I Now take limit as a→ −∞ and b→∞
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Infinite Feature Space

I An RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is given by the exponentiated
quadratic covariance function.

k
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where α = α′

√
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Infinite Feature Space

I An RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is the exponentiated quadratic.
I Note: The functional form for the covariance function and

basis functions are similar.
I this is a special case,
I in general they are very different

Similar results can obtained for multi-dimensional input
models Williams (1998); Neal (1996).



Nonparametric Gaussian Processes

I We’ve seen how we go from parametric to non-parametric.
I The limit implies infinite dimensional w.
I Gaussian processes are generally non-parametric: combine

data with covariance function to get model.
I This representation cannot be summarized by a parameter

vector of a fixed size.



The Parametric Bottleneck

I Parametric models have a representation that does not
respond to increasing training set size.

I Bayesian posterior distributions over parameters contain
the information about the training data.

I Use Bayes’ rule from training data, p
(
w|y,X

)
,

I Make predictions on test data

p
(
y∗|X∗,y,X

)
=

∫
p
(
y∗|w,X∗

)
p
(
w|y,X)dw

)
.

I w becomes a bottleneck for information about the training
set to pass to the test set.

I Solution: increase m so that the bottleneck is so large that it
no longer presents a problem.

I How big is big enough for m? Non-parametrics says
m→∞.



The Parametric Bottleneck

I Now no longer possible to manipulate the model through
the standard parametric form.

I However, it is possible to express parametric as GPs:

k
(
xi, x j

)
= φ: (xi)

> φ:

(
x j

)
.

I These are known as degenerate covariance matrices.
I Their rank is at most m, non-parametric models have full

rank covariance matrices.
I Most well known is the “linear kernel”, k(xi, x j) = x>i x j.
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Making Predictions

I For non-parametrics prediction at new points f∗ is made by
conditioning on f in the joint distribution.

I In GPs this involves combining the training data with the
covariance function and the mean function.

I Parametric is a special case when conditional prediction
can be summarized in a fixed number of parameters.

I Complexity of parametric model remains fixed regardless
of the size of our training data set.

I For a non-parametric model the required number of
parameters grows with the size of the training data.
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Covariance Functions

RBF Basis Functions

k (x, x′) = αφ(x)>φ(x′)

φi(x) = exp

−
∥∥∥x − µi

∥∥∥2
2

`2


µ =


−1
0
1
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Covariance Functions and Mercer Kernels

I Mercer Kernels and Covariance Functions are similar.

I the kernel perspective does not make a probabilistic
interpretation of the covariance function.

I Algorithms can be simpler, but probabilistic interpretation
is crucial for kernel parameter optimization.
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Gaussian Process Interpolation
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Figure : Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Gaussian Noise

I Gaussian noise model,

p
(
yi| fi

)
= N

(
yi| fi, σ2

)
where σ2 is the variance of the noise.

I Equivalent to a covariance function of the form

k(xi, x j) = δi, jσ
2

where δi, j is the Kronecker delta function.
I Additive nature of Gaussians means we can simply add

this term to existing covariance matrices.
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Learning Covariance Parameters
Can we determine covariance parameters from the data?

N
(
y|0,K

)
=

1

(2π)
n
2 |K|

1
2
exp

(
−

y>K−1y
2

)

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)
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Can we determine covariance parameters from the data?

logN
(
y|0,K
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2
−

n
2
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Learning Covariance Parameters
Can we determine covariance parameters from the data?

E(θ) =
1
2

log |K| +
y>K−1y

2

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)



Eigendecomposition of Covariance

A useful decomposition for understanding the objective
function.

K = RΛ2R>

λ1
λ2

Diagonal of Λ represents distance
along axes.
R gives a rotation of these axes.

where Λ is a diagonal matrix and R>R = I.

Useful representation since |K| =
∣∣∣Λ2

∣∣∣ = |Λ|2.
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Capacity control: log |K|

|RΛ| = λ1λ2

w1,1 w1,2

w2,1 w2,2
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|Λ|
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Data Fit: y>K−1y
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?
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Gene Expression Example

I Given given expression levels in the form of a time series
from Della Gatta et al. (2008).

I Want to detect if a gene is expressed or not, fit a GP to each
gene (Kalaitzis and Lawrence, 2011).



RESEARCH ARTICLE Open Access

A Simple Approach to Ranking Differentially
Expressed Gene Expression Time Courses through
Gaussian Process Regression
Alfredo A Kalaitzis* and Neil D Lawrence*

Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms
of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which
genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is
drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal
nature of the data based on a Gaussian process.

Results: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene
expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of
time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings
produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for
the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing
that the proposed approach considerably outperforms the current state of the art.

Conclusions: Gaussian processes offer an attractive trade-off between efficiency and usability for the analysis of
microarray time series. The Gaussian process framework offers a natural way of handling biological replicates and
missing values and provides confidence intervals along the estimated curves of gene expression. Therefore, we
believe Gaussian processes should be a standard tool in the analysis of gene expression time series.

Background
Gene expression profiles give a snapshot of mRNA con-
centration levels as encoded by the genes of an organ-
ism under given experimental conditions. Early studies
of this data often focused on a single point in time
which biologists assumed to be critical along the gene
regulation process after the perturbation. However, the
static nature of such experiments severely restricts the
inferences that can be made about the underlying dyna-
mical system.
With the decreasing cost of gene expression microar-

rays time series experiments have become commonplace
giving a far broader picture of the gene regulation pro-
cess. Such time series are often irregularly sampled and
may involve differing numbers of replicates at each time
point [1]. The experimental conditions under which

gene expression measurements are taken cannot be per-
fectly controlled leading the signals of interest to be cor-
rupted by noise, either of biological origin or arising
through the measurement process.
Primary analysis of gene expression profiles is often

dominated by methods targeted at static experiments, i.
e. gene expression measured on a single time-point, that
treat time as an additional experimental factor [1-6].
However, were possible, it would seem sensible to con-
sider methods that can account for the special nature of
time course data. Such methods can take advantage of
the particular statistical constraints that are imposed on
data that is naturally ordered [7-12].
The analysis of gene expression microarray time-series

has been a stepping stone to important problems in sys-
tems biology such as the genome-wide identification of
direct targets of transcription factors [13,14] and the full
reconstruction of gene regulatory networks [15,16]. A
more comprehensive review on the motivations and
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Limitations of Gaussian Processes

I Inference is O(n3) due to matrix inverse (in practice use
Cholesky).

I Gaussian processes don’t deal well with discontinuities
(financial crises, phosphorylation, collisions, edges in
images).

I Widely used exponentiated quadratic covariance (RBF) can
be too smooth in practice (but there are many
alternatives!!).
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Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2


I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.



Covariance Functions

Linear Covariance Function

k (x, x′) = αx>x′

I Bayesian linear
regression.

α = 1
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Covariance Functions

MLP Covariance Function

k (x, x′) = αasin
(

wx>x′ + b
√

wx>x + b + 1
√

wx′>x′ + b + 1

)

I Based on infinite neural
network model.

w = 40

b = 4
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Covariance Functions
Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

k (x, x′) = α exp
(
−
|x − x′|

2`2

)
I In one dimension arises

from a stochastic
differential equation.
Brownian motion in a
parabolic tube.

I In higher dimension a
Fourier filter of the form

1
π(1+x2) .
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Summary

I Broad introduction to Gaussian processes.
I Started with Gaussian distribution.
I Motivated Gaussian processes through the multivariate

density.

I Emphasized the role of the covariance (not the mean).
I Performs nonlinear regression with error bars.
I Parameters of the covariance function (kernel) are easily

optimized with maximum likelihood.



Reading

I Section 3.7–3.8 of Rogers and Girolami (pg 122–133).
I Section 3.4 of Bishop (pg 161–165).
I Chapter 1 & 2 of Rasmussen and Williams.



References I

C. M. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag, 2006. [Google Books] .

G. Della Gatta, M. Bansal, A. Ambesi-Impiombato, D. Antonini,
C. Missero, and D. di Bernardo. Direct targets of the trp63
transcription factor revealed by a combination of gene expression
profiling and reverse engineering. Genome Research, 18(6):939–948,
Jun 2008. [URL]. [DOI].

A. A. Kalaitzis and N. D. Lawrence. A simple approach to ranking
differentially expressed gene expression time courses through
Gaussian process regression. BMC Bioinformatics, 12(180), 2011.
[DOI].

R. M. Neal. Bayesian Learning for Neural Networks. Springer, 1996.
Lecture Notes in Statistics 118.

J. Oakley and A. O’Hagan. Bayesian inference for the uncertainty
distribution of computer model outputs. Biometrika, 89(4):769–784,
2002.

http://books.google.com/books?as_isbn=0387310738
http://dx.doi.org/10.1101/gr.073601.107
http://dx.doi.org/10.1101/gr.073601.107
http://dx.doi.org/10.1186/1471-2105-12-180


References II

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, Cambridge, MA, 2006. [Google Books] .

S. Rogers and M. Girolami. A First Course in Machine Learning. CRC
Press, 2011. [Google Books] .

C. K. I. Williams. Computation with infinite neural networks. Neural
Computation, 10(5):1203–1216, 1998.

http://books.google.com/books?as_isbn=0-262-18253-X
http://books.google.com/books?as_isbn=9781439824146

	Bayesian Polynomials
	Distributions over Functions
	Two Point Marginals

	Covariance from Basis Functions
	Basis Function Representations
	Covariance from Basis Functions
	Basis Function Representations
	An Alternative Analysis
	An Infinite Basis
	Parametric Models are a Bottleneck
	Parametric Models are a Bottleneck
	GP Interpolation
	GP Regression
	Parameter Optimization

	GP Limitations
	Conclusions
	Summary


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	anm1: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	2.20: 
	2.21: 
	2.22: 
	2.23: 
	2.24: 
	2.25: 
	2.26: 
	2.27: 
	2.28: 
	2.29: 
	anm2: 
	3.0: 
	3.1: 
	3.2: 
	3.3: 
	3.4: 
	3.5: 
	3.6: 
	3.7: 
	3.8: 
	3.9: 
	3.10: 
	3.11: 
	3.12: 
	3.13: 
	3.14: 
	3.15: 
	3.16: 
	3.17: 
	3.18: 
	3.19: 
	3.20: 
	3.21: 
	3.22: 
	3.23: 
	3.24: 
	3.25: 
	3.26: 
	3.27: 
	3.28: 
	3.29: 
	3.30: 
	3.31: 
	3.32: 
	3.33: 
	3.34: 
	3.35: 
	3.36: 
	3.37: 
	3.38: 
	3.39: 
	anm3: 
	4.0: 
	4.1: 
	4.2: 
	4.3: 
	4.4: 
	4.5: 
	4.6: 
	4.7: 
	4.8: 
	4.9: 
	4.10: 
	4.11: 
	4.12: 
	4.13: 
	4.14: 
	4.15: 
	4.16: 
	4.17: 
	4.18: 
	4.19: 
	4.20: 
	4.21: 
	4.22: 
	4.23: 
	4.24: 
	4.25: 
	4.26: 
	4.27: 
	4.28: 
	4.29: 
	anm4: 


