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Review

I Last time: Looked at objective functions for movie
recommendation.

I Minimized sum of squares objective by steepest descent
and stochastic gradients.

I This time: explore least squares for regression.
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Regression Examples

I Predict a real value, yi given some inputs xi.
I Predict quality of meat given spectral measurements

(Tecator data).
I Radiocarbon dating, the C14 calibration curve: predict age

given quantity of C14 isotope.
I Predict quality of different Go or Backgammon moves

given expert rated training data.



Olympic 100m Data

I Gold medal times for
Olympic 100 m runners
since 1896.

Image from Wikimedia
Commons

http://bit.ly/191adDC

http://bit.ly/191adDC
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Olympic Marathon Data

I Gold medal times for
Olympic Marathon since
1896.

I Marathons before 1924
didn’t have a
standardised distance.

I Present results using
pace per km.

I In 1904 Marathon was
badly organised leading
to very slow times.

Image from Wikimedia
Commons

http://bit.ly/16kMKHQ

http://bit.ly/16kMKHQ
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What is Machine Learning?

data

+ model = prediction

I data: observations, could be actively or passively acquired
(meta-data).

I model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

I prediction: an action to be taken or a categorization or a
quality score.
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Regression: Linear Releationship

y = mx + c

I y: winning time/pace.

I x: year of Olympics.
I m: rate of improvement over time.
I c: winning time at year 0.
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Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

y1 =mx1 + c
y2 =mx2 + c
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Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

m =
y2 − y1

x2 − x1

c = y1 −mx1
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Two Simultaneous Equations

How do we deal with three
simultaneous equations with
only two unknowns?

y1 =mx1 + c
y2 =mx2 + c
y3 =mx3 + c
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Overdetermined System

I With two unknowns and two observations:

y1 =mx1 + c
y2 =mx2 + c

I Additional observation leads to overdetermined system.

y3 = mx3 + c

I This problem is solved through a noise model ε ∼ N
(
0, σ2

)
y1 = mx1 + c + ε1

y2 = mx2 + c + ε2

y3 = mx3 + c + ε3
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Noise Models

I We aren’t modeling entire system.
I Noise model gives mismatch between model and data.
I Gaussian model justified by appeal to central limit

theorem.
I Other models also possible (Student-t for heavy tails).
I Maximum likelihood with Gaussian noise leads to least

squares.



y = mx + c
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y = mx + c

point 1: x = 1, y = 3

3 = m + c

point 2: x = 3, y = 1

1 = 3m + c

point 3: x = 2, y = 2.5

2.5 = 2m + c









6 A PHILOSOPHICAL ESSAY ON PROBABILITIES.

height: "The day will come when, by study pursued

through several ages, the things now concealed will

appear with evidence; and posterity will be astonished

that truths so clear had escaped us.
' '

Clairaut then

undertook to submit to analysis the perturbations which

the comet had experienced by the action of the two

great planets, Jupiter and Saturn; after immense cal-

culations he fixed its next passage at the perihelion

toward the beginning of April, 1759, which was actually

verified by observation. The regularity which astronomy
shows us in the movements of the comets doubtless

exists also in all phenomena. -

The curve described by a simple molecule of air or

vapor is regulated in a manner just as certain as the

planetary orbits
;
the only difference between them is

that which comes from our ignorance.

Probability is relative, in part to this ignorance, in

part to our knowledge. We know that of three or a

greater number of events a single one ought to occur
;

but nothing induces us to believe that one of them will

occur rather than the others. In this state of indecision

it is impossible for us to announce their occurrence with

certainty. It is, however, probable that one of these

events, chosen at will, will not occur because we see

several cases equally possible which exclude its occur-

rence, while only a single one favors it.

The theory of chance consists in reducing all the

events of the same kind to a certain number of cases

equally possible, that is to say, to such as we may be

equally undecided about in regard to their existence,
and in determining the number of cases favorable to

the event whose probability is sought. The ratio of



y = mx + c + ε

point 1: x = 1, y = 3

3 = m + c + ε1

point 2: x = 3, y = 1

1 = 3m + c + ε2

point 3: x = 2, y = 2.5

2.5 = 2m + c + ε3



The Gaussian Density

I Perhaps the most common probability density.

p(y|µ, σ2) =
1

√

2πσ2
exp

(
−

(y − µ)2

2σ2

)
4
= N

(
y|µ, σ2

)
I The Gaussian density.



Gaussian Density
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The Gaussian PDF with µ = 1.7 and variance σ2 = 0.0225. Mean
shown as red line. It could represent the heights of a
population of students.



Gaussian Density

N

(
y|µ, σ2

)
=

1
√

2πσ2
exp

(
−

(y − µ)2

2σ2

)
σ2 is the variance of the density and µ is
the mean.



Two Important Gaussian Properties

Sum of Gaussians

I Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)

And the sum is distributed as

n∑
i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i


(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)
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Scaling a Gaussian

I Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
And the scaled density is distributed as

wy ∼ N
(
wµ,w2σ2

)
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Scaling a Gaussian

I Scaling a Gaussian leads to a Gaussian.

y ∼ N
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A Probabilistic Process

I Set the mean of Gaussian to be a function.

p
(
yi|xi

)
=

1
√

2πσ2
exp

− (
yi − f (xi)

)2

2σ2

 .
I This gives us a ‘noisy function’.
I This is known as a process.



Height as a Function of Weight

I In the standard Gaussian, parametized by mean and
variance.

I Make the mean a linear function of an input.
I This leads to a regression model.

yi = f (xi) + εi,

εi ∼N
(
0, σ2

)
.

I Assume yi is height and xi is weight.



Linear Function

1

2

50 60 70 80 90 100

y

x

data points
best fit line

A linear regression between x and y.



Data Point Likelihood

I Likelihood of an individual data point

p
(
yi|xi,m, c

)
=

1
√

2πσ2
exp

− (
yi −mxi − c

)2

2σ2

 .
I Parameters are gradient, m, offset, c of the function and

noise variance σ2.



Data Set Likelihood

I If the noise, εi is sampled independently for each data
point.

I Each data point is independent (given m and c).
I For independent variables:

p(y) =

n∏
i=1

p(yi)
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Data Set Likelihood

I If the noise, εi is sampled independently for each data
point.

I Each data point is independent (given m and c).
I For independent variables:

p(y|x,m, c) =
1

(2πσ2)
n
2

exp

−∑n
i=1

(
yi −mxi − c

)2

2σ2

 .



Log Likelihood Function

I Normally work with the log likelihood:

L(m, c, σ2) = −
n
2

log 2π −
n
2

log σ2
−

n∑
i=1

(
yi −mxi − c

)2

2σ2 .



Consistency of Maximum Likelihood

I If data was really generated according to probability we
specified.

I Correct parameters will be recovered in limit as n→∞.
I This can be proven through sample based approximations

(law of large numbers) of “KL divergences”.
I Mainstay of classical statistics.



Probabilistic Interpretation of the Error Function

I Probabilistic Interpretation for Error Function is Negative
Log Likelihood.

I Minimizing error function is equivalent to maximizing log
likelihood.

I Maximizing log likelihood is equivalent to maximizing the
likelihood because log is monotonic.

I Probabilistic interpretation: Minimizing error function is
equivalent to maximum likelihood with respect to
parameters.



Error Function

I Negative log likelihood is the error function leading to an
error function

E(m, c, σ2) =
n
2

log σ2 +
1

2σ2

n∑
i=1

(
yi −mxi − c

)2 .

I Learning proceeds by minimizing this error function for
the data set provided.



Connection: Sum of Squares Error

I Ignoring terms which don’t depend on m and c gives

E(m, c) ∝
n∑

i=1

(yi − f (xi))2

where f (xi) = mxi + c.
I This is known as the sum of squares error function.
I Commonly used and is closely associated with the

Gaussian likelihood.



Mathematical Interpretation

I What is the mathematical interpretation?
I There is a cost function.
I It expresses mismatch between your prediction and reality.

E(m, c) =

n∑
i=1

(
yi −mxi − c

)2

I This is known as the sum of squares error.



Learning is Optimization

I Learning is minimization of the cost function.
I At the minima the gradient is zero.
I Coordinate ascent, find gradient in each coordinate and set

to zero.
dE(m)

dm
= −2

n∑
i=1

xi
(
yi −mxi − c

)
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I Learning is minimization of the cost function.
I At the minima the gradient is zero.
I Coordinate ascent, find gradient in each coordinate and set
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Learning is Optimization

I Learning is minimization of the cost function.
I At the minima the gradient is zero.
I Coordinate ascent, find gradient in each coordinate and set

to zero.

c =

∑n
i=1

(
yi −mxi

)
n



Fixed Point Updates

Worked example.

c∗ =

∑n
i=1

(
yi −m∗xi

)
n

,

m∗ =

∑n
i=1 xi

(
yi − c∗

)∑n
i=1 x2

i

,

σ2 ∗ =

∑n
i=1

(
yi −m∗xi − c∗

)2

n
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Important Concepts Not Covered

I Optimization methods.
I Second order methods, conjugate gradient, quasi-Newton

and Newton.
I Effective heuristics such as momentum.

I Local vs global solutions.



Linear Function
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Reading

I Section 1.1-1.2 of Rogers and Girolami for fitting linear
models.

I Section 1.2.5 of Bishop up to equation 1.65.



Multi-dimensional Inputs

I Multivariate functions involve more than one input.
I Height might be a function of weight and gender.
I There could be other contributory factors.
I Place these factors in a feature vector xi.
I Linear function is now defined as

f (xi) =

q∑
j=1

w jxi, j + c



Vector Notation

mo

I Write in vector notation,

f (xi) = w>xi + c

I Can absorb c into w by assuming extra input x0 which is
always 1.

f (xi) = w>xi



Log Likelihood for Multivariate Regression

I The likelihood of a single data point is

p
(
yi|xi

)
=

1
√

2πσ2
exp

− (
yi −w>xi

)2

2σ2

 .
I Leading to a log likelihood for the data set of

L(w, σ2) = −
n
2

log σ2
−

n
2

log 2π −
∑n

i=1
(
yi −w>xi

)2

2σ2 .

I And a corresponding error function of

E(w, σ2) =
n
2

log σ2 +

∑n
i=1

(
yi −w>xi

)2

2σ2 .



Expand the Brackets

E(w, σ2) =
n
2

log σ2 +
1

2σ2

n∑
i=1

y2
i −

1
σ2

n∑
i=1

yiw>xi

+
1

2σ2

n∑
i=1

w>xix>i w + const.

=
n
2

log σ2 +
1

2σ2

n∑
i=1

y2
i −

1
σ2 w>

n∑
i=1

xiyi

+
1

2σ2 w>
 n∑

i=1

xix>i

 w + const.



Multivariate Derivatives

I We will need some multivariate calculus.
I For now some simple multivariate differentiation:

da>w
dw

= a

and
dw>Aw

dw
=

(
A + A>

)
w

or if A is symmetric (i.e. A = A>)

dw>Aw
dw

= 2Aw.



Differentiate

Differentiating with respect to the vector w we obtain

∂L
(
w, β

)
∂w

= β
n∑

i=1

xiyi − β

 n∑
i=1

xix>i

 w

Leading to

w∗ =

 n∑
i=1

xix>i


−1 n∑

i=1

xiyi,

Rewrite in matrix notation:

n∑
i=1

xix>i = X>X

n∑
i=1

xiyi = X>y



Update Equations

I Update for w∗.

w∗ =
(
X>X

)−1
X>y

I The equation for σ2 ∗ may also be found

σ2 ∗ =

∑n
i=1

(
yi − w∗ > xi

)2

n
.



Reading

I Section 1.3 of Rogers and Girolami for Matrix & Vector
Review.
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