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Review

I Last time: Looked at generalisation and validation.
I Introduced cross validation, hold out validation, reviewed

training and test sets.
I This time: Classification.
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Classification

I We are given data set containing “inputs”, X, and
“targets”, y.

I Each data point consists of an input vector xi,: and a class
label, yi.

I For binary classification assume yi should be either 1 (yes)
or −1 (no).

I Input vector can be thought of as features.



Classification Examples

I Classifying hand written digits from binary images
(automatic zip code reading).

I Detecting faces in images (e.g. digital cameras).
I Who a detected face belongs to (e.g. Picasa).
I Classifying type of cancer given gene expression data.
I Categorization of document types (different types of news

article on the internet).



The Perceptron

I Developed in 1957 by Rosenblatt.
I Take a data point at, xi.
I Predict it belongs to a class, yi = 1 if

∑
j w jxi, j + b > 0 i.e.

w>xi + b > 0. Otherwise assume yi = −1.



Perceptron-like Algorithm

1. Select a random data point i.
2. Ensure i is correctly classified by setting w = yixi.

I i.e. sign
(
w>xi,:

)
= sign

(
yix>i,:xi,:

)
= sign

(
yi
)

= yi



Perceptron Iteration

1. Select a misclassified point, i.
2. Set w← w + ηyixi,:.

I If η is large enough this will guarantee this point becomes
correctly classified.

3. Repeat until there are no misclassified points.



Perceptron Algorithm

I Iteration 1 data no 29

I w1 = 0, w2 = 0
I First Iteration
I Set weight vector to data

point.
I w = y29x29,:

I Select new incorrectly
classified data point.
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Perceptron Algorithm

I Iteration 2 data no 16

I w1 = 0.3519,
w2 = −0.6787

I Incorrect classification
I Adjust weight vector

with new data point.
I w← w + ηy16x16,:

I Select new incorrectly
classified data point.
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Perceptron Algorithm

I Iteration 3 data no 58

I w1 = −1.2143,
w2 = −1.0217

I Incorrect classification
I Adjust weight vector

with new data point.
I w← w + ηy58x58,:

I All data correctly
classified.
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Bayesian Approach

I Likelihood for the regression example has the form

p(y|w, σ2) =

n∏
i=1

N

(
yi|w>φi, σ

2
)
.

I Suggestion was to maximize this likelihood with respect to
w.

I This can be done with gradient based optimization of the
log likelihood.

I Alternative approach: integration across w.
I Consider expected value of likelihood under a range of

potential ws.
I This is known as the Bayesian approach.



Note on the Term Bayesian

I We will use Bayes’ rule to invert probabilities in the
Bayesian approach.

I Bayesian is not named after Bayes’ rule (v. common
confusion).

I The term Bayesian refers to the treatment of the parameters
as stochastic variables.

I This approach was proposed by ? and ? independently.
I For early statisticians this was very controversial (Fisher et

al).



Bernoulli Distribution

I Jacob Bernoulli described this
distribution in terms of an ‘urn’.

I Write as a function

P(Y = y) = πy(1 − π)1−y
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Bernoulli Distribution Revisited

I Thomas Bayes considered a ball
landing uniformly across a table.

I And another ball landing on the left
or right (?, page 385).

I The position of the first ball gives
the parameter π.

I That ‘parameter’ is itself a random
variable.

I This treatment of a parameter, π, as
a random variable that was/is
considered controversial.
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Bayesian Controversy

I Bayesian controversy relates to treating epistemic
uncertainty as aleatoric uncertainty.

I Another analogy:
I Before a football match the uncertainty about the result is

aleatoric.
I If I watch a recorded match without knowing the result the

uncertainty is epistemic.



Simple Bayesian Inference

posterior =
likelihood × prior

marginal likelihood

I Four components:
1. Prior distribution: represents belief about parameter values

before seeing data.
2. Likelihood: gives relation between parameters and data.
3. Posterior distribution: represents updated belief about

parameters after data is observed.
4. Marginal likelihood: represents assessment of the quality of

the model. Can be compared with other models
(likelihood/prior combinations). Ratios of marginal
likelihoods are known as Bayes factors.
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Naive Bayes

I Recall first lecture: Probabilities over everything.
I Covariances, x, & response y.



Prediction Reminder

I Idea in Machine Learning: Joint Distribution over
everything.

I Reformulate joint distribution using sum and product rules
to answer question we want.

I First construct model: P(y∗, x∗,y,X)
I Then make prediction:

P(y∗|x∗,y,X)

can be found using product rule of probability.



Model

1. Data Conditional Independence There are parameters of the
model, θ, and conditioned on these parameters all data
points in the model are independent.

P(y∗, x∗,y,X|θ) = P(y∗, x∗|θ)
n∏

i=1

P(yi, xi|θ)

2. Feature Conditional Independence The covariates/features of
the model are also conditionally independent given the
label.

P(xi|yi,θ) =

q∏
j=1

p(xi, j|yi,θ)

where q is the covariate dimensionality.



Model

I These two assumptions are enough to begin to specify our
model.

I We further need a marginal distribution over the data
labels,

p(yi|π) = yπi (1 − yi)(1−π)

I Which we can specify as Bernoulli because it is the most
general form. π is the probability of a positive class.

I This equips us to specify the joint distribution for a single
data point using the product rule.

p(yi, xi|θ) = p(yi)
q∏

j=1

p(xi, j|yiθ)



The Joint Probability of the Training Data

We can now fit the joint probability to our data y, X.

I Using sum rule and data conditional independence we have

P(y,X|θ) =
∑

y∗

∑
y∗

P(y∗, x∗,y,X|θ)

=

n∏
i=1

P(yi, xi|θ)
∑

y∗

∑
y∗

P(y∗, x∗)

=

n∏
i=1

P(yi, xi|θ)



The Joint Probability of a Training Point

We now need to specify the joint distribution for a single point.

I Using product rule and feature conditional independence.

P(yi, xi|θ) = P(yi)P(xi|yi,θ) = P(yi)
∏

i, j

P(xi, j|yi,θ)

GOT TO NHERE!



Reading
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Generalised Linear Models

I Link function



Logit: Predicting the Log Odds

I ..



Logit: Interpretation as a Squashing Function

I ..



Reading
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