Classification

MLAI: Week 9

Neil D. Lawrence

Department of Computer Science Sheffield University

25th November 2014

- Last time: Looked at generalisation and validation.
- Introduced cross validation, hold out validation, reviewed training and test sets.
- This time: Classification.

Outline

- We are given data set containing "inputs", X, and "targets", y.
- ► Each data point consists of an input vector **x**_{*i*,:} and a class label, *y*_{*i*}.
- For binary classification assume *y_i* should be either 1 (yes) or −1 (no).
- Input vector can be thought of as features.

- Classifying hand written digits from binary images (automatic zip code reading).
- Detecting faces in images (e.g. digital cameras).
- Who a detected face belongs to (e.g. Picasa).
- Classifying type of cancer given gene expression data.
- Categorization of document types (different types of news article on the internet).

- Developed in 1957 by Rosenblatt.
- ► Take a data point at, **x**_{*i*}.
- Predict it belongs to a class, y_i = 1 if ∑_j w_jx_{i,j} + b > 0 i.e.
 w[⊤]x_i + b > 0. Otherwise assume y_i = −1.

- 1. Select a random data point *i*.
- 2. Ensure *i* is correctly classified by setting $\mathbf{w} = y_i \mathbf{x}_i$.
 - i.e. $\operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i,:}) = \operatorname{sign}(y_i\mathbf{x}_{i,:}^{\mathsf{T}}\mathbf{x}_{i,:}) = \operatorname{sign}(y_i) = y_i$

- 1. Select a misclassified point, *i*.
- 2. Set $\mathbf{w} \leftarrow \mathbf{w} + \eta y_i \mathbf{x}_{i,:}$.
 - If η is large enough this will guarantee this point becomes correctly classified.
- 3. Repeat until there are no misclassified points.

Simple Dataset 6 4 2 × x_2 0 -2 × × -4 × -6 -2 2 4 0 -6

Iteration 1 data no 29

 x_1

6

- Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$

- Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$
- First Iteration

- Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$
- First Iteration
- Set weight vector to data point.

- $w_1 = 0, w_2 = 0$
- First Iteration
- Set weight vector to data point.
- $\mathbf{w} = y_{29} \mathbf{x}_{29,:}$

- Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$
- First Iteration
- Set weight vector to data point.
- $\mathbf{w} = y_{29} \mathbf{x}_{29,:}$
- Select new incorrectly classified data point.

Iteration 2 data no 16

• $w_1 = 0.3519,$ $w_2 = -0.6787$

- $w_1 = 0.3519,$ $w_2 = -0.6787$
- Incorrect classification

- Iteration 2 data no 16
- $w_1 = 0.3519,$ $w_2 = -0.6787$
- Incorrect classification
- Adjust weight vector with new data point.

- Iteration 2 data no 16
- $w_1 = 0.3519,$ $w_2 = -0.6787$
- Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w} + \eta y_{16} \mathbf{x}_{16,:}$

- Iteration 2 data no 16
- $w_1 = 0.3519,$ $w_2 = -0.6787$
- Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w} + \eta y_{16} \mathbf{x}_{16,:}$
- Select new incorrectly classified data point.

Iteration 3 data no 58

- Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$

- Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$
- Incorrect classification

- Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$
- Incorrect classification
- Adjust weight vector with new data point.

- Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$
- Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w} + \eta y_{58} \mathbf{x}_{58,:}$

- Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$
- Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w} + \eta y_{58} \mathbf{x}_{58,:}$
- All data correctly classified.

Outline

Bayesian Approach

Likelihood for the regression example has the form

$$p(\mathbf{y}|\mathbf{w},\sigma^2) = \prod_{i=1}^n \mathcal{N}\left(y_i|\mathbf{w}^\top \boldsymbol{\phi}_i,\sigma^2\right).$$

- Suggestion was to maximize this likelihood with respect to w.
- This can be done with gradient based optimization of the log likelihood.
- Alternative approach: integration across **w**.
- Consider expected value of likelihood under a range of potential ws.
- This is known as the *Bayesian* approach.

- We will use Bayes' rule to invert probabilities in the Bayesian approach.
 - Bayesian is not named after Bayes' rule (v. common confusion).
 - The term Bayesian refers to the treatment of the parameters as stochastic variables.
 - This approach was proposed by ? and ? independently.
 - For early statisticians this was very controversial (Fisher et al).

 Jacob Bernoulli described this distribution in terms of an 'urn'.

- Jacob Bernoulli described this distribution in terms of an 'urn'.
- Write as a function

$$P(Y = y) = \pi^{y}(1 - \pi)^{1 - y}$$

- Jacob Bernoulli described this distribution in terms of an 'urn'.
- Write as a function

$$P(Y = y) = \pi^{y}(1 - \pi)^{1 - y}$$

 Thomas Bayes considered a ball landing uniformly across a table.

 Thomas Bayes considered a ball landing uniformly across a table.

- Thomas Bayes considered a ball landing uniformly across a table.
- And another ball landing on the left or right (?, page 385).

- Thomas Bayes considered a ball landing uniformly across a table.
- And another ball landing on the left or right (?, page 385).

- Thomas Bayes considered a ball landing uniformly across a table.
- And another ball landing on the left or right (?, page 385).
- The position of the first ball gives the parameter π.

- Thomas Bayes considered a ball landing uniformly across a table.
- And another ball landing on the left or right (?, page 385).
- The position of the first ball gives the parameter π.
- That 'parameter' is *itself* a random variable.

- Thomas Bayes considered a ball landing uniformly across a table.
- And another ball landing on the left or right (?, page 385).
- The position of the first ball gives the parameter π.
- That 'parameter' is *itself* a random variable.
- This treatment of a parameter, π, as a random variable that was/is considered controversial.

- Thomas Bayes considered a ball landing uniformly across a table.
- And another ball landing on the left or right (?, page 385).
- The position of the first ball gives the parameter *π*.
- That 'parameter' is *itself* a random variable.
- This treatment of a parameter, π, as a random variable that was/is considered controversial.

- Thomas Bayes considered a ball landing uniformly across a table.
- And another ball landing on the left or right (?, page 385).
- The position of the first ball gives the parameter *π*.
- That 'parameter' is *itself* a random variable.
- This treatment of a parameter, π, as a random variable that was/is considered controversial.

- Thomas Bayes considered a ball landing uniformly across a table.
- And another ball landing on the left or right (?, page 385).
- The position of the first ball gives the parameter *π*.
- That 'parameter' is *itself* a random variable.
- This treatment of a parameter, π, as a random variable that was/is considered controversial.

- Bayesian controversy relates to treating *epistemic* uncertainty as *aleatoric* uncertainty.
- Another analogy:
 - Before a football match the uncertainty about the result is *aleatoric*.
 - If I watch a recorded match *without* knowing the result the uncertainty is *epistemic*.

Simple Bayesian Inference

$posterior = \frac{likelihood \times prior}{marginal likelihood}$

- Four components:
 - 1. Prior distribution: represents belief about parameter values before seeing data.
 - 2. Likelihood: gives relation between parameters and data.
 - 3. Posterior distribution: represents updated belief about parameters after data is observed.
 - Marginal likelihood: represents assessment of the quality of the model. Can be compared with other models (likelihood/prior combinations). Ratios of marginal likelihoods are known as Bayes factors.

Outline

- ► Recall first lecture: Probabilities over everything.
- Covariances, **x**, & response **y**.

- Idea in Machine Learning: Joint Distribution over everything.
- Reformulate joint distribution using *sum* and *product* rules to answer question we want.
- First construct model: P(y*, x*, y, X)
- Then make prediction:

 $P(y^*|\mathbf{x}^*, \mathbf{y}, \mathbf{X})$

can be found using product rule of probability.

Model

 Data Conditional Independence There are parameters of the model, θ, and conditioned on these parameters all data points in the model are independent.

$$P(y^*, \mathbf{x}^*, \mathbf{y}, \mathbf{X}|\boldsymbol{\theta}) = P(y^*, \mathbf{x}^*|\boldsymbol{\theta}) \prod_{i=1}^n P(y_i, \mathbf{x}_i|\boldsymbol{\theta})$$

2. *Feature Conditional Independence* The covariates/features of the model are *also* conditionally independent given the label.

$$P(\mathbf{x}_i|y_i,\boldsymbol{\theta}) = \prod_{j=1}^q p(x_{i,j}|y_i,\boldsymbol{\theta})$$

where *q* is the covariate dimensionality.

Model

- These two assumptions are enough to begin to specify our model.
- We further need a *marginal* distribution over the data labels,

$$p(y_i|\pi) = y_i^{\pi} (1 - y_i)^{(1-\pi)}$$

- Which we can specify as *Bernoulli* because it is the most general form. *π* is the probability of a positive class.
- This equips us to specify the *joint* distribution for a single data point using the product rule.

$$p(y_i, \mathbf{x}_i | \boldsymbol{\theta}) = p(y_i) \prod_{j=1}^q p(x_{i,j} | y_i \boldsymbol{\theta})$$

The Joint Probability of the Training Data

We can now *fit* the *joint probability* to our data **y**, **X**.

Using sum rule and *data conditional independence* we have

$$P(\mathbf{y}, \mathbf{X}|\boldsymbol{\theta}) = \sum_{y^*} \sum_{\mathbf{y}^*} P(y^*, \mathbf{x}^*, \mathbf{y}, \mathbf{X}|\boldsymbol{\theta})$$
$$= \prod_{i=1}^n P(y_i, \mathbf{x}_i|\boldsymbol{\theta}) \sum_{y^*} \sum_{\mathbf{y}^*} P(y^*, \mathbf{x}^*)$$
$$= \prod_{i=1}^n P(y_i, \mathbf{x}_i|\boldsymbol{\theta})$$

We now need to specify the joint distribution for a single point.

• Using product rule and *feature conditional independence*.

$$P(y_i, \mathbf{x}_i | \boldsymbol{\theta}) = P(y_i) P(\mathbf{x}_i | y_i, \boldsymbol{\theta}) = P(y_i) \prod_{i,j} P(x_{i,j} | y_i, \boldsymbol{\theta})$$

GOT TO NHERE!

Reading

Outline

Generalised Linear Models

Link function

Logit: Predicting the Log Odds

Logit: Interpretation as a Squashing Function

Reading

References I