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Online Resources

All source code and slides are available online

@ This talk available from my home page (see talks link on side).
o MATLAB examples in the 'fgplvm’ (vrs 0.132) and 'oxford’
(vrs 0.13) toolbox .

e http://www.dcs.shef.ac.uk/ neil/fgplvm/.
e http://www.dcs.shef.ac.uk/ neil/oxford/.

@ MATLAB commands used for examples given in typewriter
font.
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Brief Review of Dimensional Reduction v Asprerdh

Machine Learning Approaches
Local Distance Preservation

Dimensional Reduction

Dealing with High Dimensional Data

@ Many machine learning problems involve high dimensional
data.

@ Learning in true high dimensional requires exponentially many
data points.

@ Fortunately, in practice, many high dimensional data sets are
often intrinsically low dimensional.

@ Seek to deal with data by representing a high dimensional
data set? Y € R"* as a low dimensional matrix X € $7*9
where g < k.

?Here Y and X have the form of design matrices. This means that vy Tis
an inner product matrix and, for centred Y, %YTY is a covariance matrix.
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Brief Review of Dimensional Reduction Statistical Approach

Machine Learning Approaches
Local Distance Preservation

Statistical Approach

Multi-dimensional Scaling (M

@ Construct matrix of distances in data space, then:

e either use spectral techniques.
e or iteratively minimise a 'stress function’' for matching
distances, e.g.,

n j—1
S=>_> (65— dy).
j=1i=1
dij = [|xi — x| dj = [lyi — yjl|
latent space distance data space distance
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Brief Review of Dimensional Reduction v Asprerdh

Machine Learning Approaches
Local Distance Preservation

Machine Learning Approaches

Spectral Approaches

@ Classical MDS

e Semi-definite embedding: places constraints on nearby
distances [Weinberger et al., 2004].

e Isomap: constructs an approximation to geodesic distance
[Tenenbaum et al., 2000].

o Kernel PCA

o Genereally doesn't reduce dimension (certainly not with an
RBF kernel) [Schslkopf et al., 1998].

@ Locally Linear Embeddings [Roweis and Saul, 2000].

@ Probabilistic Approaches: GTM [Bishop et al., 1998] and Density
Networks [MacKay, 1995].
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Brief Review of Dimensional Reduction Statistical Approach

Machine Learning Approaches
Local Distance Preservation

Preserving Distances

Local Distance Preservation

@ Most of the non-probabilistic approaches seek to preserve
local distances in the latent space.

Figure: Local Distance preservation. Preserve distance between (a)
and (b) but not between (a) and (c).
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Gaussian Processes
PCA as a Gaussian Process
GP-LVM Motion Capture Example

Gaussian Process Latent Variable Model

Gaussian Processes

Inference about functions

@ Gaussian Processes (GPs) are probabilistic models for
functions, pP (f|X) [O’'Hagan, 1978, 1992, Rasmussen and Williams, 2006]

@ GPs allow inference about functions in the presence of
uncertainty.

@ They are ideal for the domain of regression.

@ Probabilistic version of kernel regression: kernel parameters
can be determined by data.
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Gaussian Processes
PCA as a Gaussian Process
GP-LVM Motion Capture Example

Gaussian Process Latent Variable Model

Learning Kernel Parameters

Adapting the Covariance function to Data
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Gaussian Process Latent Variable Model GaUSSJan Pr?C§§S§s o
PCA as a Gaussian Process
GP-LVM Motion Capture Example

Learning Kernel Parameters
Adapting the Covariance function to Data
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Gaussian Processes
PCA as a Gaussian Process
GP-LVM Motion Capture Example

Gaussian Process Latent Variable Model

Learning Kernel Parameters

Adapting the Covariance function to Data
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Gaussian Processes
PCA as a Gaussian Process
GP-LVM Motion Capture Example
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PCA as a Gaussian Process
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Gaussian Process Latent Variable Model
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PCA as a Gaussian Process
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Gaussian Process Latent Variable Model
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Gaussian Processes
PCA as a Gaussian Process
GP-LVM Motion Capture Example

Gaussian Process Latent Variable Model

Learning Kernel Parameters

Adapting the Covariance function to Data
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Gaussian Processes
PCA as a Gaussian Process
GP-LVM Motion Capture Example

Gaussian Process Latent Variable Model

A Latent Variable Model

How can a model designed primarily for regression be used as a technique for dimensional
reduction?

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

T n
e Standard Latent variable P (YIX.W) = [TV (3: Wi, o)
approach: Pl
e Optimise over n
parameters integrate p(X) = H N (x;]0,1)
out latent variables. =1
@ Define Gaussian prior over p(YIW) =N (y;IO, wwT +U2|)
latent space, X. i=1
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Gaussian Processes
PCA as a Gaussian Process
GP-LVM Motion Capture Example

Gaussian Process Latent Variable Model

A Latent Variable Model

How can a model designed primarily for regression be used as a technique for dimensional
reduction?

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

e Standard Latent variable

approach: n
. p(YIW) =TT (vilo, wwT + o21)
e Optimise over palie}

parameters integrate

out latent variables Maximum wrt W found from

. . . eigendecomposition of %YTY
@ Define Gaussian prior over

latent space, X.
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Gaussian Processes
PCA as a Gaussian Process
GP-LVM Motion Capture Example

Gaussian Process Latent Variable Model

A Latent Variable Model

How can a model designed primarily for regression be used as a technique for dimensional
reduction?

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

Novel L iabl -
@ Novel Latent variable p (Y%, W) = [ N (yiWx;, o21)
approach i=1
e Optimise over latent K
variables integrate out p(W) =[]N (wlo.1)
parameters =t
@ Define Gaussian prior over p(YIX) = HN( 10, xxT +U2|)

parameteters, W.
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Gaussian Processes
PCA as a Gaussian Process
GP-LVM Motion Capture Example

Gaussian Process Latent Variable Model

A Latent Variable Model

How can a model designed primarily for regression be used as a technique for dimensional
reduction?

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable

approach

T 2
o p(Y|X)=] | Ny ;]0,XX" + o4
e Optimise over latent H ( . )

variables integrate out
parameters Maximum wrt X found from

. . . eigendecomposition of %YYT
@ Define Gaussian prior over

parameteters, W.
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Gaussian Processes
PCA as a Gaussian Process
GP-LVM Motion Capture Example

Gaussian Process Latent Variable Model

A Latent Variable Model

How can a model designed primarily for regression be used as a technique for dimensional
reduction?

Dual Probabilistic PCA

@ Define linear-Gaussian

relat/onsh/p between This likelihood is recognised as a
latent variables and data. product of Gaussian Processes,
@ Novel Latent variable
approach p(Y[X) = H N (y.;|0,K)
e Optimise over latent
variables integrate out with a linear kernel
arameters
P K =xXT + o2l

@ Define Gaussian prior over
parameteters, W.
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Gaussian Processes
PCA as a Gaussian Process
GP-LVM Motion Capture Example

Gaussian Process Latent Variable Model

GP-LVM

Low Dimensional Manifolds for High Dimensional Data

@ By replacing the linear model with a Gaussian process we
obtain non-linear probabilistic PCA [Lawrence, 2005].

e The Gaussian process gives a mapping from the low
dimensional /atent space to high dimensional data space.

@ Several important applications including tracking [Urtasun et al.,
2005] and graphics [Grochow et al., 2004].
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Gaussian Processes
PCA as a Gaussian Process
GP-LVM Motion Capture Example

Gaussian Process Latent Variable Model

Motion Capture Example

Generalization with less Data than Dimensions

@ Subject runs for three paces.

@ Data consists of x, y, z locations of markers.

e 55 frames of motion capture.
o 34 markers giving k = 34 x 3 = 102.

e Data from Ohio State University
http://accad.osu.edu/research/mocap/mocap_data.htm
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Gaussian Processes
PCA as a Gaussian Process
GP-LVM Motion Capture Example

Gaussian Process Latent Variable Model

Motion Capture Results

0I5

Figure: The latent space for the motion capture data. Lines connect points that are
neighbours in time, temporal nature of the data not used by the algorithm ( see e.g.

Wang et al. [2006] ). Note the jumps in the sequence.
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NeuroScale and Multidimensional Scaling
Optimising the Model

Back Constraints Back Constrained Results

Why are there Jumps?

Discontinuities in the Latent Space

@ GP-LVM gives a smooth mapping from latent to data space.

e Points that are close in latent space will be close in data space.
e Points close in the data space may not be close in latent space.

@ Kernel PCA gives a smooth mapping from data to latent
space.

e Points that are close in data space will be close in latent space.
e Points close in the latent space may not be close in data space.

However, we can constrain the GP-LVM to force it to fulfill the
second property.
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NeuroScale and Multidimensional Scaling
Optimising the Model

Back Constraints Back Constrained Results

Mapping in Different Directions

Forward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 1-D latent space to 2-D data space.

y1=x>—05, yp=-x>+05

0.
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0 -1
o -1 1 a -1 1
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NeuroScale and Multidimensional Scaling
Optimising the Model

Back Constraints Back Constrained Results

Mapping in Different Directions

Forward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 1-D latent space to 2-D data space.

y1=x>—05, yp=-x>+05
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NeuroScale and Multidimensional Scaling
Optimising the Model

Back Constraints Back Constrained Results

Mapping in Different Directions

Backward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 2-D data space to 1-D latent.

x=05(yf +y5 +1)

0.
15 0
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0. =
05 15 2 0 05 15 2
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8]e
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Back Constraints Back Constrained Results

Mapping in Different Directions

Backward Mapping (demBackMapping in oxford toolbox)
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NeuroScale and Multidimensional Scaling
Optimising the Model

Back Constraints Back Constrained Results

Mapping in Different Directions

Backward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 2-D data space to 1-D latent.
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NeuroScale and Multidimensional Scaling
Optimising the Model

Back Constraints Back Constrained Results

NeuroScale

Multi-Dimensional Scaling with a Mapping

@ Lowe and Tipping [1997] made latent positions a function of
the data.
6 = |Ixi = xjl[, x5 = £ (yisw)
@ Function was either multi-layer perceptron or a radial basis
function network.
@ Their motivation was different from ours:

e They wanted to add the advantages of a true mapping to
multi-dimensional scaling.
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NeuroScale and Multidimensional Scaling
Optimising the Model

Back Constraints Back Constrained Results

Back Constraints in the GP-LVM

Back Constraints

@ We can use the same idea to force the GP-LVM to respect
local distances.

e By constraining each x; to be a ‘smooth’ mapping from y;
local distances can be respected.

@ This works because in the GP-LVM we maximise wrt latent
variables, we don't integrate out.
@ Can use any 'smooth’ function:

@ Neural network.
@ RBF Network.
© Kernel based mapping.
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NeuroScale and Multidimensional Scaling
Optimising the Model

Back Constraints Back Constrained Results

Optimising BC-GPLVM

Computing Gradients

@ GP-LVM normally proceeds by optimising
L(X) = log p(Y|X)

with respect to X using g—)L(

@ The back constraints are of the form

xjj = i (yi; w)

where w are parameters.

o We can compute via chain rule and optimise parameters of
mapping.
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NeuroScale and Multidimensional Scaling
Optimising the Model
Back Constrained Results

Back Constraints

Motion Capture Results

demStick3

-06 -04 -02 0 0.2 0.4 0.6 0.8

Figure: The latent space for the motion capture data with back
constraints based on an RBF kernel.
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NeuroScale and Multidimensional Scaling
Optimising the Model

Back Constraints Back Constrained Results

Stick Man Results

(a) (b) (c) (d)

Projection into data space from four points in the latent space. The
inclination of the runner changes becoming more upright.
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NeuroScale and Multidimensional Scaling
Optimising the Model

Back Constraints Back Constrained Results

Vowel Data

Vocal Joystick Data

@ Vowel sounds from a vocal joystick system [Bilmes et al., 2006].

@ Vowels are from a single speaker and represented as:

o cepstral coefficients (12 dimensions) and
o 'deltas’ (further 12 dimensions).

@ 2700 data points in total (300 for each vowel).
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NeuroScale and Multidimensional Scaling
Optimising the Model
Back Constrained Results

Back Constraints

GP-LVM Results

demVowels?2

The different vowels are
shown as follows: /a/
red cross /ae/ green
circle /ao/ blue plus
/e/ cyan asterix /i/
pink square /ibar/
yellow diamond /o/ red
down triangle /schwa/
green up triangle and
/u/ blue left triangle.
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NeuroScale and Multidimensional Scaling
Optimising the Model
Back Constrained Results

Back Constraints

Isomap Results

demVowelsIsomap

1.5¢
1 ,
The different vowels are
0.5 shown as follows: /a/
red cross /ae/ green
(o]3 circle /ao/ blue plus
/e/ cyan asterix /i/
-0.51 pink square /ibar/
yellow diamond /o/ red
-1r down triangle /schwa/
green up triangle and
-1.5¢ ¥ /u/ blue left triangle.
_2,
-2 =il 0 1
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NeuroScale and Multidimensional Scaling
Optimising the Model
Back Constrained Results

Back Constraints

BC-GPLVM Results

demVowels3

The different vowels are
shown as follows: /a/
red cross /ae/ green
circle /ao/ blue plus
/e/ cyan asterix /i/
pink square /ibar/
yellow diamond /o/ red
down triangle /schwa/
green up triangle and
/u/ blue left triangle.
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NeuroScale and Multidimensional Scaling
Optimising the Model

Back Constraints Back Constrained Results

1-Nearest Neighbour in X

Comparison of the Approaches

@ Nearest neighbour classification in latent space.

Method | GP-LVM | Isomap | BC-GP-LVM
Errors 226 458 155

cf 24 errors in data space.
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Conclusions

Conclusions

@ Most Dimension Reduction techniques preserve local distances
in the latent space.

@ The GP-LVM preserves 'dissimilarities’.

@ Constrained maximum likelihood forces the GP-LVM to
respect local distances.

@ Joaquin’s visit to Sheffield was funded by the PASCAL FP6
Network of excellence.
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