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Online Resources

All source code and slides are available online

This talk available from my home page (see talks link on side).

MATLAB examples in the ’fgplvm’ (vrs 0.132) and ’oxford’
(vrs 0.13) toolbox .

http://www.dcs.shef.ac.uk/~neil/fgplvm/.
http://www.dcs.shef.ac.uk/~neil/oxford/.

MATLAB commands used for examples given in typewriter
font.

Neil D. Lawrence, Joaquin Quiñonero-Candela Back Constrained GP-LVM
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Dimensional Reduction

Dealing with High Dimensional Data

Many machine learning problems involve high dimensional
data.

Learning in true high dimensional requires exponentially many
data points.

Fortunately, in practice, many high dimensional data sets are
often intrinsically low dimensional.

Seek to deal with data by representing a high dimensional
data seta Y ∈ <n×k as a low dimensional matrix X ∈ <n×q

where q � k.

aHere Y and X have the form of design matrices. This means that YYT is

an inner product matrix and, for centred Y, 1
n
YTY is a covariance matrix.
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Statistical Approach

Multi-dimensional Scaling (MDS)

Construct matrix of distances in data space, then:

either use spectral techniques.
or iteratively minimise a ’stress function’ for matching
distances, e.g.,

S =
n∑

j=1

j−1∑
i=1

(δij − dij)
2 .

δij = ||xi − xj ||

latent space distance

dij = ||yi − yj ||

data space distance
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Machine Learning Approaches

Spectral Approaches

Classical MDS

Semi-definite embedding: places constraints on nearby
distances [Weinberger et al., 2004].
Isomap: constructs an approximation to geodesic distance
[Tenenbaum et al., 2000].

Kernel PCA

Genereally doesn’t reduce dimension (certainly not with an
RBF kernel) [Schölkopf et al., 1998].

Locally Linear Embeddings [Roweis and Saul, 2000].

Probabilistic Approaches: GTM [Bishop et al., 1998] and Density
Networks [MacKay, 1995].
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Preserving Distances

Local Distance Preservation

Most of the non-probabilistic approaches seek to preserve
local distances in the latent space.

 

c 

a b 

Figure: Local Distance preservation. Preserve distance between (a)
and (b) but not between (a) and (c).
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Gaussian Processes

Inference about functions

Gaussian Processes (GPs) are probabilistic models for
functions, p (f|X). [O’Hagan, 1978, 1992, Rasmussen and Williams, 2006]

GPs allow inference about functions in the presence of
uncertainty.

They are ideal for the domain of regression.

Probabilistic version of kernel regression: kernel parameters
can be determined by data.
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Learning Kernel Parameters
Adapting the Covariance function to Data

demOptimiseKern (in oxford toolbox vrs 0.13)
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A Latent Variable Model
How can a model designed primarily for regression be used as a technique for dimensional
reduction?

Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Standard Latent variable
approach:

Optimise over
parameters integrate
out latent variables.

Define Gaussian prior over
latent space, X.

X W

Y

p (Y|X, W) =
nY

i=1

N
`
yi |Wxi , σ

2I
´

p (X) =
nY

i=1

N (xi |0, I)

p (Y|W) =
nY

i=1

N
“
yi |0, WWT + σ2I

”

Neil D. Lawrence, Joaquin Quiñonero-Candela Back Constrained GP-LVM
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A Latent Variable Model
How can a model designed primarily for regression be used as a technique for dimensional
reduction?

Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Standard Latent variable
approach:

Optimise over
parameters integrate
out latent variables.

Define Gaussian prior over
latent space, X.

X W

Y

p (Y|W) =
nY

i=1

N
“
yi |0, WWT + σ2I

”
Maximum wrt W found from

eigendecomposition of 1
n
YTY
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A Latent Variable Model
How can a model designed primarily for regression be used as a technique for dimensional
reduction?

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach

Optimise over latent
variables integrate out
parameters

Define Gaussian prior over
parameteters, W.

W

Y

X

p (Y|X, W) =
nY

i=1

N
`
yi |Wxi , σ

2I
´

p (W) =
kY

j=1

N
`
wj |0, I

´

p (Y|X) =
kY

j=1

N
“
y:,j |0, XXT + σ2I

”
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A Latent Variable Model
How can a model designed primarily for regression be used as a technique for dimensional
reduction?

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach

Optimise over latent
variables integrate out
parameters

Define Gaussian prior over
parameteters, W.

W

Y

X

p (Y|X) =
kY

j=1

N
“
y:,j |0, XXT + σ2I

”

Maximum wrt X found from

eigendecomposition of 1
k
YYT
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A Latent Variable Model
How can a model designed primarily for regression be used as a technique for dimensional
reduction?

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach

Optimise over latent
variables integrate out
parameters

Define Gaussian prior over
parameteters, W.

This likelihood is recognised as a
product of Gaussian Processes,

p (Y|X) =
kY

j=1

N
`
y:,j |0, K

´
,

with a linear kernel

K =XXT + σ2I.
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GP-LVM

Low Dimensional Manifolds for High Dimensional Data

By replacing the linear model with a Gaussian process we
obtain non-linear probabilistic PCA [Lawrence, 2005].

The Gaussian process gives a mapping from the low
dimensional latent space to high dimensional data space.

Several important applications including tracking [Urtasun et al.,

2005] and graphics [Grochow et al., 2004].

Neil D. Lawrence, Joaquin Quiñonero-Candela Back Constrained GP-LVM
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Motion Capture Example

Generalization with less Data than Dimensions

Subject runs for three paces.

Data consists of x , y , z locations of markers.

55 frames of motion capture.
34 markers giving k = 34× 3 = 102.

Data from Ohio State University
http://accad.osu.edu/research/mocap/mocap_data.htm

Neil D. Lawrence, Joaquin Quiñonero-Candela Back Constrained GP-LVM
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Motion Capture Results

demStick1
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Figure: The latent space for the motion capture data. Lines connect points that are

neighbours in time, temporal nature of the data not used by the algorithm ( see e.g.

Wang et al. [2006] ). Note the jumps in the sequence..

Neil D. Lawrence, Joaquin Quiñonero-Candela Back Constrained GP-LVM



Brief Review of Dimensional Reduction
Gaussian Process Latent Variable Model

Back Constraints
Conclusions

NeuroScale and Multidimensional Scaling
Optimising the Model
Back Constrained Results

Why are there Jumps?

Discontinuities in the Latent Space

1 GP-LVM gives a smooth mapping from latent to data space.

Points that are close in latent space will be close in data space.
Points close in the data space may not be close in latent space.

2 Kernel PCA gives a smooth mapping from data to latent
space.

Points that are close in data space will be close in latent space.
Points close in the latent space may not be close in data space.

However, we can constrain the GP-LVM to force it to fulfill the
second property.

Neil D. Lawrence, Joaquin Quiñonero-Candela Back Constrained GP-LVM
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Mapping in Different Directions

Forward Mapping (demBackMapping in oxford toolbox)

Mapping from 1-D latent space to 2-D data space.

y1 = x2 − 0.5, y2 = −x2 + 0.5
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Mapping in Different Directions

Backward Mapping (demBackMapping in oxford toolbox)

Mapping from 2-D data space to 1-D latent.
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NeuroScale

Multi-Dimensional Scaling with a Mapping

Lowe and Tipping [1997] made latent positions a function of
the data.

δij = ||xi − xj || , xij = fj (yi ;w)

Function was either multi-layer perceptron or a radial basis
function network.

Their motivation was different from ours:

They wanted to add the advantages of a true mapping to
multi-dimensional scaling.

Neil D. Lawrence, Joaquin Quiñonero-Candela Back Constrained GP-LVM
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Back Constraints in the GP-LVM

Back Constraints

We can use the same idea to force the GP-LVM to respect
local distances.

By constraining each xi to be a ‘smooth’ mapping from yi

local distances can be respected.

This works because in the GP-LVM we maximise wrt latent
variables, we don’t integrate out.

Can use any ’smooth’ function:

1 Neural network.
2 RBF Network.
3 Kernel based mapping.

Neil D. Lawrence, Joaquin Quiñonero-Candela Back Constrained GP-LVM
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Optimising BC-GPLVM

Computing Gradients

GP-LVM normally proceeds by optimising

L (X) = log p (Y|X)

with respect to X using dL
dX .

The back constraints are of the form

xij = fj (yi ;w)

where w are parameters.

We can compute dL
dw via chain rule and optimise parameters of

mapping.

Neil D. Lawrence, Joaquin Quiñonero-Candela Back Constrained GP-LVM
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Motion Capture Results

demStick3
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Figure: The latent space for the motion capture data with back
constraints based on an RBF kernel..
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Stick Man Results

demStick2
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(a) (b) (c) (d)

Projection into data space from four points in the latent space. The
inclination of the runner changes becoming more upright.

Neil D. Lawrence, Joaquin Quiñonero-Candela Back Constrained GP-LVM



Brief Review of Dimensional Reduction
Gaussian Process Latent Variable Model

Back Constraints
Conclusions

NeuroScale and Multidimensional Scaling
Optimising the Model
Back Constrained Results

Vowel Data

Vocal Joystick Data

Vowel sounds from a vocal joystick system [Bilmes et al., 2006].

Vowels are from a single speaker and represented as:

cepstral coefficients (12 dimensions) and
’deltas’ (further 12 dimensions).

2700 data points in total (300 for each vowel).

Neil D. Lawrence, Joaquin Quiñonero-Candela Back Constrained GP-LVM
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GP-LVM Results

demVowels2

−2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

The different vowels are
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Isomap Results
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BC-GPLVM Results
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1-Nearest Neighbour in X

Comparison of the Approaches

Nearest neighbour classification in latent space.

Method GP-LVM Isomap BC-GP-LVM

Errors 226 458 155

cf 24 errors in data space.
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Conclusions

Summary

Most Dimension Reduction techniques preserve local distances
in the latent space.

The GP-LVM preserves ’dissimilarities’.

Constrained maximum likelihood forces the GP-LVM to
respect local distances.
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