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Abstract

Boltzmann machines are undirected graph�
ical models with two�state stochastic vari�
ables� in which the logarithms of the clique
potentials are quadratic functions of the node
states� They have been widely studied in the
neural computing literature� although their
practical applicability has been limited by
the di
culty of �nding an e�ective learning
algorithm� One well�established approach�
known as mean �eld theory� represents the
stochastic distribution using a factorized ap�
proximation� However� the corresponding
learning algorithm often fails to �nd a good
solution� We conjecture that this is due to
the implicit uni�modality of the mean �eld
approximation which is therefore unable to
capture multi�modality in the true distribu�
tion� In this paper we use variational meth�
ods to approximate the stochastic distribu�
tion using multi�modal mixtures of factorized
distributions� We present results for both in�
ference and learning to demonstrate the ef�
fectiveness of this approach�

� Introduction

The Boltzmann machine 
Ackley et al�� ����� is an
undirected graphical model whose nodes correspond to
two�state stochastic variables� with a particular choice
of clique potentials� Speci�cally� the joint distribution
over all states is given by a Boltzmann distribution of

the form

P 
S� �
exp
�E
S��T �

Z

��

in which S � fsig denotes the set of stochastic vari�
ables� and E
S� denotes the energy of a particular con�
�guration given by a quadratic function of the states

E
S� � �
X
i

��
�
X
j�i

wijsisj � wi�si

��
� � 
��

Here wij � � for nodes which are not neighbours on
the graph� Throughout this paper we shall choose
si � f��� �g� and we shall also absorb the �bias� param�
eters wi� into the �weight parameters� wij by introduc�
ing an additional variable s� � �� The �temperature�
parameter T in 
�� is in principle redundant since it
can be absorbed into the weights� However� in prac�
tice it can play a useful role through �annealing�� as
discussed in Section �� although for the moment we
set T � �� The normalization factor Z�� in 
�� is
called the partition function in statistical physics ter�
minology� and is given by marginalizing the numerator
over all con�gurations of states

Z �
X
S

exp
�E
S��� 
��

If there are L variables in the network� the number of
con�gurations of states is �L� and so evaluation of Z
may require exponential time 
e�g� for fully connected
models� and hence is� in the worst case� computation�
ally intractable�

The Boltzmann machine is generally used to learn the
probability distribution of a set of variables� We there�
fore partition the variables into a visible set V � fvig



whose values are observed� and a hidden set H � fhig
whose values are unobserved� The marginal probabil�
ity of the observed states is obtained by summing over
the hidden variables to give

P 
V � �
X
H

P 
H�V � 
	�

which can be viewed as a function of the parameters
fwijg in which case it represents a likelihood function�
A data set then consists of a set of instantiations of
the visible variables V�� � � � � VN � where it is assumed
that these observations are drawn independently from
the same distribution� In this case the log likelihood
becomes a sum over patterns

lnP 
V � �

NX
n��

ln

�X
Hn

P 
Hn� Vn�

�
� 
��

Here we are implicitly assuming that it is the same
set of variables which are observed in each pattern�
The formalism is easily generalized to allow arbitrary
combinations of missing and observed variables� From
now on we suppress the summations over n to avoid
cluttering the notation�

Learning in the Boltzmann machine is achieved by
maximizing the log likelihood 
�� with respect to the
parameters fwijg using gradient methods� Di�erenti�
ating 
�� and using 
�� and 
�� we obtain

� lnP 
V �

�wij
� hsisjiC � hsisjiF 
��

where h � iC denotes an expectation with respect to the
clamped distribution P 
H jV � while h � iF denotes ex�
pectation with respect to the free distribution P 
H�V �
so that� for some arbitrary G
H�V ��

hG
H�V �iC �
X
H

G
H�V �P 
H jV � 
��

hG
H�V �iF �
X
V

X
H

G
H�V �P 
H�V �� 
��

In the case of the clamped expectation� each si in 
��
corresponding to a visible variable is set to its observed
value�

Evaluation of the expectations in 
�� requires summing
over exponentially many states� and so is intractable
for densely conneted models� The original learning al�
gorithm for Boltzmann machines made use of Gibbs
sampling to generate separate samples from the joint
and marginal distributions over states� and used these
to evaluate the required gradients� A serious limita�
tion of this approach� however� is that the gradient is
expressed as the di�erence between two Monte Carlo

estimates and is thus very prone to sampling error�
This results in a very slow learning algorithm�

In an attempt to resolve these di
culties� there has
been considerable interest in approximating the ex�
pectations in 
�� using deterministic methods based
on mean �eld theory 
Peterson and Anderson� �����
Hinton� ������ Although in principle this leads to a rel�
atively fast algorithm� it often fails to �nd satisfactory
solutions for many problems of practical interest� In
Section � we review the variational framework for ap�
proximate inference in graphical models� in which we
seek to approximate the true distribution over states
with some parametric class of approximating distribu�
tions� We show that mean �eld theory can be derived
within this framework by using an approximating dis�
tribution which is assumed to be fully factorized� It
is this severe approximation which is believed to lie
at the heart of the di
culties with mean �eld the�
ory in Boltzmann machines 
Galland� ������ One of
its consequences is that the approximating distribu�
tion is constrained to be uni�modal� and is therefore
unable to capture multiple modes in the true distri�
bution� As a solution to this problem we introduce
mixtures of factorized distributions in Section �� and
derive the corresponding algorithms for inference and
learning� Experimental results on toy problems� and
on a problem involving hand�written digits� are pre�
sented in Sections 	 and �� Conclusions are presented
in Section ��

� Variational Inference

We have seen that� for the probability distribution
de�ned by the Boltzmann machine� standard opera�
tions such as normalization� or the evaluation of expec�
tations� involve intractable computations for densely
conneted graphs� A general framework for making
controlled approximations in such cases is provided
by variational methods 
Jordan et al�� ������ Con�
sider the conditional distribution P 
H jV � of the hid�
den variables given values for the visible variables�
Since it is intractable to work directly with this distri�
bution we consider some family of simpler distributions
QC
H jV� ��� where the su
x C denotes �clamped�� gov�
erned by a set of parameters �� We can de�ne the clos�
est approximation within this family to be that which
minimizes the Kullback�Leibler 
KL� divergence

KL
QCkP � � �
X
H

QC
H jV� �� ln

�
P 
H jV �

QC
H jV� ��

	

��

with respect to �� The KL divergence satis�es
KL
QkP � � �� with equality if and only if Q � P � One
motivation for this de�nition is that it corresponds to



a lower bound on the log likelihood� since we can write

lnP 
V � � ln
X
H

P 
H�V �

� ln
X
H

QC
H jV� ��
P 
H�V �

QC
H jV� ��

�
X
H

QC
H jV� �� ln
P 
H�V �

QC
H jV� ��

� L 
���

where we have used Jensen�s inequality� The di�erence
between the left and right hand sides of 
��� is given by
the KL divergence 
��� By maximizing L with respect
to � we obtain the highest lower bound achievable with
the family of distributions QC
H jV� ���

The goal in choosing a form for the distribution
QC
H jV� �� is to use a su
ciently rich family of ap�
proximating distributions that a good approximation
to the true distribution can be found� while still ensur�
ing that the family is su
ciently simple that inference
remains tractable�

In the case of the Boltzmann machine� we have to deal
with the joint distribution P 
H�V � and also with the
conditional distributions P 
HnjVn� for each pattern n
in the data set� If we approximate the conditional
distributions using variational methods� from 
��� we
have 
and again suppressing the sum over n for conve�
nience�

L � LC � lnZ 
���

where we have de�ned

LC � �
X
H

QC
H jV� ��E
H�V �

�
X
H

QC
H jV� �� lnQC
H jV� ��� 
���

By careful choice of the QC distribution� we can ar�
range for the summations overH in the �rst two terms
to be tractable�

The use of a lower bound for learning is particularly
attractive since if we adjust the parameters so as to
increase the bound this must increase the true log
likelihood and�or modify the true conditional distri�
bution to be closer to the approximating distribu�
tion 
in the sense of KL divergence� thereby making
the approximation more accurate� This can be inter�
preted as a generalized E�step in an EM 
expectation�
maximization� algorithm 
Neal and Hinton� ����� in
which the subsequent optimization of the model pa�
rameters corresponds to the M�step� If we allowed
arbitrary distributions QC instead of restricting at�
tention to a parametric family� we would recover the

conventional E�step of the standard EM algorithm

Dempster et al�� ������

Unfortunately� the term � lnZ involving the partition
function involves summing over exponentially many
con�gurations of the variables and hence remains in�
tractable� We therefore apply the variational frame�
work to this term also by introducing an approxi�
mating distribution QF
H�V j�� over the joint space�
where � denotes a vector of parameters� In this case
we obtain an upper bound on � lnZ of the form

� lnZ � � ln

�X
H

X
V

exp 
�E
H�V ��

�

�
X
H

X
V

QF
H�V j��E
H�V �

�
X
H

X
V

QF
H�V j�� lnQF
H�V j��

� LF� 
���

However� the combination of upper and lower bound is
not itself a bound� The absence of a rigorous bound is
a consequence of the use of an undirected graph� since
the lnZ term does not arise in the case of directed
graphs 
Bayesian networks��

��� Mean Field Theory

Mean �eld theory for Boltzmann machines 
Peterson
and Anderson� ����� Hinton� ����� can be formulated
within the variational framework by choosing varia�
tional distributions Q which are completely factorized
over the corresponding variables� The most general
factorized distribution is obtained by allowing each
marginal distribution to be governed by its own in�
dependent mean �eld parameter� which we denote by
� � f�ig in the case of the conditional distribution�
and m � fmig in the case of the joint distribution�
Thus we consider

QC
H jV��� �
Y
i�H



� � �i
�

� ��hi
�


�� �i
�

� ��hi
�


�	�

QF
H�V jm� �
Y

i�H�V



� �mi

�

� ��si
�


��mi

�

� ��si
�


���



Using 
��� 
��� and 
��� we then obtain the following
approximation to the log likelihood

Lmft � LC � LF

�
X
i

X
j�i

wij�i�j �
X
i

H



� � �i
�

�

�
X
i

X
j�i

wijmimj �
X
i

H



� �mi

�

�

���

where �i is de�ned to be equal to the observed value
in the case of clamped units� Here we have de�ned the
binary entropy given by

H
m� � �p ln p� 
�� p� ln
�� p�� 
���

Note how the assumption of a factorized distribution
has allowed the summations over the exponentially
many terms to be expressed in terms of a polynomial
sum�

We can now optimize the mean �eld parameters by
�nding the stationary points of 
��� with respect to �i
and mi� leading to the following �xed point equations

�i � tanh

�

X

j

wij�j

�
A 
���

mi � tanh

�

X

j

wijmj

�
A � 
���

which can be solved iteratively�

Once the mean �eld parameters have been determined
we can update the model parameters using gradient�
based optimization techniques� This requires evalua�
tion of the derivatives of the objective function� given
by

�Lmft

�wij
� �i�j �mimj � 
���

Thus we see that the gradients have been expressed
in terms of simple products of mean �eld parameters�
which themselves can be determined by iterative solu�
tion of deterministic equations� The resulting learn�
ing algorithm is computationally e
cient compared
with stochastic optimization of the true log likelihood�
Comparison of 
��� with 
�� shows how the expecta�
tions have been replaced with deterministic approxi�
mations�

In a practical setting it is often useful to introduce a
temperature parameter as in 
��� For large values of
T the true distribution of the parameters is smoothed
out and the variational optimization is simpli�ed� The
value of T can then be slowly reduced to T � � 
this is
called annealing� while continuing to update the mean

�eld parameters� This helps the variational approxi�
mation to �nd better solutions by avoiding locally op�
timal� but globally suboptimal� solutions�

� Mixture Representations

We have already noted that mean �eld theory� while
computationally tractable� frequently fails to �nd sat�
isfactory solutions 
Galland� ������ The origin of the
di
culty lies in the rather drastic assumption underly�
ing mean �eld theory of a fully factorized distribution�
One consequence is that mean �eld theory is only able
to approximate uni�modal distributions with any accu�
racy� In practice we will often expect the true distribu�
tions to be multi�modal� particularly in the case of the
joint distribution corresponding to the �free� phase� If�
for example� the data set consists of sub�populations�
or clusters� then the joint distribution will necessar�
ily be multi�modal� However� it may be the case that
each of the conditional distributions can be well ap�
proximated by a uni�modal distribution 
so that only
one hidden �cause� is required to explain each observa�
tion�� Indeed� this will trivially be the case for models
with no hidden variables� Thus we expect the prob�
lems with mean �eld theory to arise primarily in its ap�
proximation to the statistics of the unclampled phase�

We address this di
culty by introducing a variational
approximation consisting of a mixture of factorized
distributions 
Jaakkola and Jordan� ����� Bishop et

al�� ������ This is used to approximate the free
phase� while standard mean �eld theory is used for
the clamped phase�� We therefore consider an approx�
imating distribution of the form

Qmix
S� �

LX
l��

�lQF
Sjl� 
���

where each of the components QF
Sjl� is a factorized
distribution with its own variational parameters

QF
Sjl� �
Y

i�H�V



� �mli

�

� ��si
�


��mli

�

� ��si
�

�


���

The mixing coe
cients �l satisfy �l � � and
P

l �l �
�� Using the variational distribution 
��� we can ex�
press LF from 
��� in the form 
Jaakkola and Jordan�
�����

LF
Qmix� �

LX
l��

�lLF
QF
Sjl�� � I
l� S� 
���

�It is straightforward to extend the procedure to use
mixture distributions for the clamped phase also� if this is
thought necessary in some particular application�



where I
l� S� is the mutual information between the
component label l and the variables S given by

I
l� S� �
X
l

X
S

�lQF
Sjl� ln

�
QF
Sjl�

Qmix
S�

	
� 
�	�

The �rst term is simply a linear combination of mean
�eld contributions� and as such it provides no improve�
ment over the simple mean �eld bound 
since the op�
timal bound would be obtained by setting all of the
�l to zero except for the one corresponding to the
QF
Sjl� giving the tightest bound� thereby recovering
standard mean �eld theory�� It is the second� mu�
tual information� term which allows the mixture rep�
resentation to give an improved relative to mean �eld
theory� However� the mutual information again in�
volves an intractable summation over the states of the
variables� In order to be able to treat it e
ciently
we �rst introduce a set of �smoothing� distributions
R
Sjl�� and rewrite the mutual information 
�	� in the
form

I
l� S� �
X
l�S

�lQF
Sjl� lnR
Sjl��
X
l

�l ln�l

�
X
l�S

�lQF
Sjl� ln

�
R
Sjl�

�l

Qmix
S�

QF
Sjl�

	
� 
���

It is easily veri�ed that 
��� is equivalent to 
�	� for
arbitrary R
Sjl�� We next make use of the following
inequality

� lnx � ��x� ln�� � 
���

to replace the logarithm in the third term in 
��� with
a linear function 
conditionally on the component label
l�� This yields a lower bound on the mutual informa�
tion given by I
l� S� � I�
l� S� where

I�
l� S� �
X
l

X
S

�lQ
Sjl� lnR
Sjl��
X
l

�l ln�l

�
X
l

�l
X
S

R
Sjl�Qmix
S�

�
X
l

�l ln�l � �� 
���

The summations over con�gurations S in 
��� can be
performed analytically if we assume that the smooth�
ing distributions R
Sjl� factorize�

In order to obtain the tightest bound within the class
of approximating distributions� we can maximize the
bound with respect to the variational parameters mli�
the mixing coe
cients �l� the smoothing distributions
R
Sjl� and the variational parameters �l� This yields
straightforward re�estimation equations� for which the
details can be found in Jaakkola and Jordan 
������

Once the variational approximations to the joint and
conditional distributions have been optimized� the
derivatives of the cost function are evaluated using

�Lmix

�wij
� �i�j �

X
l

�lmlimlj � 
���

These derivatives are then used to update the weights
using a gradient�based optimization algorithm� The
learning algorithm then alternates between optimiza�
tion of the variational approximation 
analogous to an
E�step� and optimization of the weights 
analogous to
an M�step��

� Results� Inference

Our variational framework allows expectations of the
form hsisji to be approximated by deterministic ex�
pressions involving variational parameters� of the formP

l �lmlimlj � in which standard mean �eld theory cor�
responds to the case of just one component in the mix�
ture� We now investigate how well this approach is
able to approximate the true expectations� and how
the approximation improves as the number of compo�
nents in the mixture is increased�

For this purpose we consider small networks such that
the 
exponentially large� summation over states can
be performed exactly� thereby allowing us to compare
the variational approximation to the true expectation�
The networks have ten variables and are fully inter�
connected� and hence have �� independent parame�
ters including biases� None of the units are clamped�
Evaluation of the expectations involves summing over
��� � ���	 con�gurations� We have generated ��� net�
works at random in which the weights and biases have
been chosen from a uniform distribution over 
��� ���
For each network we approximate the joint distribu�
tion of variables using mixture distributions involving
L components� where L � �� � � � � ��� and the tempera�
ture parameter T was annealed in � steps from T � ��
to T � �� In Figure � we show plots of the histograms
of the di�erences between the approximate and exact
expectations� given by

LX
l��

�lmlimlj � hsisji� 
���

together with a summary of the behaviour of the sum�
of�squares of the di�erences 
summed over all ��� net�
works� versus the number L of components in the mix�
ture� We see that there is a clear and systematic im�
provement in the accuracy with which the expectations
are approximated as the number of components in the
mixture is increased�
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Figure �� Histograms of the di�erences between true and
approximate expectations for ��� randomly generated net�
works each having �� independent parameters� for di�erent
numbers L of components in the mixture approximation�
together with a summary of the dependence of the sum�of�
squares of the di�erences on L�

� Results� Learning

In the previous section we have seen how the use of
mixture representations can lead to improved accuracy
of inference compared with standard mean �eld the�
ory� We now investigate the extent to which improved
inference leads to improved learning� For simplicity
we use simple gradient ascent learning� with gradients
evaluated using 
��� or 
���� In Section ��� we consider
a simple toy problem designed to have a multi�modal
unconditional distribution� and then in Section ��� we
apply our approach to a problem involving images of
hand�written digits�

��� Toy Problem

As a simple example of a problem leading to a multi�
modal distribution we follow Kappen and Rodriguez

����� and consider a network consisting of just two
visible nodes� together with a data set consisting of
two copies of the pattern 
�� �� and one copy of the
pattern 
������� In this case the distribution in the
unclamped phase needs to be bimodal for the network
to have learned a solution to the problem� Due to
the small size of the network� comparison with exact
results is straightforward� We apply standard mean
�eld theory� and compare it with a mixture model
having two components� and with learning using the
exact log likelihood gradient� In the inference stage�
the variational parameters are iteratively updated un�
til the cost function LF changes by no more than �����

up to a maximum of �� iterations�� No annealing
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Figure �� Results from learning in the toy problem� �a�
The KL divergence between the true distribution of the
training data and the distribution represented by the net�
work as a function of the number of iterations of learn�
ing� The results from mean 	eld theory �dotted curve� are
wildly unstable whereas the results obtained using a mix�
ture model �dashed curve� are well behaved and almost
indistinguishable from those found using the true log like�
lihood �solid curve�� The remaining 	gures show the cor�
responding evolution of the weight parameter �b� and the
two bias parameters �c� and �d� for the three approaches�

was used� The network is initialized using parameters
drawn from a zero�mean Gaussian distribution having
a standard deviation of ���� and learning is by gradi�
ent ascent with a learning rate parameter of ����� The
results are shown in Figure ��

Mean �eld theory seen to be quite unstable during
learning� In particular� the bias parameters undergo
systematic oscillations� To investigate this further we
plot an expanded region of the training curve from
Figure � 
c� in Figure � together with the mean �eld
parameters at each learning step� We see that the uni�
modal approximating distribution of mean �eld theory
is oscillating between the two potential modes of the
joint distribution� as the algorithm tries to solve this
multi�modal problem�

This phenomenon can be analysed in terms of the sta�
bility structure of the mean �eld solutions� We �nd
that� for the �rst few iterations of the learning algo�
rithm when the weight value is small� the mean �eld
equations 
��� exhibit a single� stable solution with
small values of the mean �eld parameters� However�
once the weight value grows beyond a critical value�
two stable solutions 
and one unstable solution� ap�
pear whose values depend on the bias parameters�
Evolution of the bias parameters modi�es the shape
of the stability diagram and causes the mean �eld so�
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Figure �� Expanded plot of the evolution of one of the bias
parameters during training with mean 	eld theory� Also
shown are plots of the mean 	eld parameters� represented
as 
Hinton� diagrams in which each of the two parameters
is denoted by a square whose area is proportional to the
parameter value and white denotes negative values� while
grey denotes positive values�

lution to oscillate between the two stable solutions� as
the parameter vector repeatedly �falls o�� the edges of
the cusp bifurcation 
Parisi� ������

��� Handwritten Digits

As a second example of learning we turn to a more
realistic problem involving hand�written digits� which
have been pre�processed to give � � � binary images�
We extracted a data set consisting of ��� examples
of each of the digits � through �� Examples of the
training data are shown in Figure 	�

Figure 	� Examples of the hand�written digits from the
training set�

The networks consisted of �	 visible nodes in an �� �
grid� with each visible node connected to its neigh�
bours on both diagonals and in the horizontal and
vertical directions� The network also had ten hidden
nodes which are fully connected with each other and
with all the visible nodes� Additionally all nodes had

�Available on the CEDAR CDROM from the U�S�
Postal Service O�ce of Advanced Technology�

an associated bias� An annealing schedule was used
during the inference steps involving � successive val�
ues of the temperature parameter going from T � ���
down to T � �� Learning was achieved through �� it�
erations of gradient ascent in the parameters wij � with
a learning rate of ����N where N � �� ��� is the total
number of patterns in the training set�

Due to the size of the network it is no longer possible
to perform exact calculations for the unclamped dis�
tribution� We therefore compare standard mean �eld
theory with a mixture distribution having ten compo�
nents� Figure � shows the evolution of the cost func�
tions Lmft and Lmix� Again we see that mean �eld
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Figure �� Evolution of the cost functions Lmft �dotted
curve� and Lmix �dashed curve� for the digits problem�

theory is relatively unstable compared to the mixture
model�

Figure � shows the evolution of the variational param�
eters from the unclamped phase 
plotted for the visible
units only�� as this provides insight into the behaviour
of the algorithm� We see that simple mean �eld theory
exhibits substantial �mode hopping�� while the compo�
nents of the mixture distribution are much more stable

although some tendancy to mode hop is still evident�
suggesting that a larger number of components in the
distribution may be desirable��

� Discussion

In this paper we have shown how the fundamental lim�
itations of mean �eld theory for Boltzmann machines
can be overcome by using variational inference based
on mixture distributions� Preliminary results indicate
a signi�cant improvement over standard mean �eld
theory for problems in which the joint distribution over
visible and hidden units is multi�modal�



Figure �� Variational parameters from QF�H�V � in which
successive rows correspond to successive iterations of learn�
ing running from � to 
�� The right most column corre�
sponds to mean 	eld theory while the 	rst ten columns
correspond to the ten components in the mixture model�
In each case only the parameters corresponding to the vis�
ible variables are shown�

Although the use of mixtures is somewhat more
costly computationally than standard mean �eld the�
ory 
scaling roughly linearly in the number of compo�
nents in the mixture� it should be remembered that the
optimization of the corresponding Q distribution has
to be done only once for each pass through the data
set� while a separate optimization has to be done for
each clamped distribution corresponding to every data
point� For moderate to large data sets� the overall in�
crease in computational cost compared with standard
mean �eld theory will therefore be negligible� One
consequence it that it is possible to run this algorithm
with a very large number of components in the mixture
distribution while still incurring little computational
penalty compared with standard mean �eld theory�

Our experimental results have also revealed an inter�
esting phenomenon whereby the uni�modal distribu�
tion of mean �eld theory appears to oscillate between

modes in the joint distribution during learning�
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