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1 Introduction

The purpose of this note is to introduce and solve in detail a probabilistic model
for integrating microarray data with location data (typically obtained via Chro-
matine Immunoprecipitation, ChIP). Experimental validation and biological in-
sights obtained using this model will be published elsewhere (Sanguinetti et al.
[2006]).

The problem we are addressing is a key one in bioinformatics. Cellular pro-
cesses are assumed to be initiated by the transcription of genes into mRNA and
its successive translation into proteins. Transcription is regulated by a complex
network of biochemical processes, entailing the binding of transcription factor
proteins to the promoter regions of the genes. Given the structure of the network
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(i.e. which transcription factors bind which genes) and some gene expression
measurements, can we deduce quantitative estimates of the strength of the tran-
scription factors-genes interactions? This would include the quantitative effect
of a transcription factor in regulating its targets (whether it’s a promoter or a re-
pressor), the relative strength with which different transcription factors regulate
their targets, and what are the correlations between transcription factors.

Data about the structure of transcriptional networks is becoming increas-
ingly available. The regulatory network of yeast has now been studied in detail
using Chromatine Immunoprecipitation (ChIP) by Lee et al. [2002]; some infor-
mation about the transcriptional regulatory network in higher organisms is also
becoming available using motif conservation studies (Xie et al. [2005]).

Studies so far on how to integrate this information with microarray data have
focused on modified forms of regression ([Liao et al., 2003, Gao et al., 2004, Alter
and Golub, 2004, Boulesteix and Strimmer, 2005], and see the introduction sec-
tion of Boulesteix and Strimmer [2005] for a review of these methods). While
these methods provide a worthwhile global picture, they only infer a generic
transcription factor activity (TFA) for each transcription factor, assumed con-
stant across genes. This is often an unrealistic assumption, as it is well known
that different genes may respond differently to the same concentration of tran-
scription factor protein (for example, due to the presence of other transcription
factors binding the same gene). Also, none of these methods is probabilistic and
it is hard to see how to assign credibility intervals to their predictions.

We propose a probabilistic model that models individual gene-specific TFAs
for each transcription factor. The resulting explosion in the number of pa-
rameters is dealt with by placing a prior distribution on the TFAs (shared by
all genes) and marginalising. The model is computationally tractable and can
be further modified to propagate known uncertainties in the microarray data
(following Sanguinetti et al. [2005]).

2 Model

The logged gene expression measurements are collected in a design matrix Y ∈
<N×d, where N is the number of genes and d the number of experiments. We
assume the rows of the design matrix to be centred, so that each gene expression
oscillates about zero. The connectivity measurements are collected in a binary
matrix X ∈ <N×q, where q is the number of transcription factors; element (i, j)
of X is one if transcription factor j binds gene i, zero otherwise.

We assume that the TFAs can be obtained by regressing the gene expressions
using the connectivity information, giving the following linear model

yn = Bnxn + εn. (1)

Here n = 1, . . . , N indexes the gene, yn = Y (n, :)T , xn = X (n, :)T and εn is
an error term. The matrix Bn has d rows and q columns, and models the gene-
specific TFAs; each column contains the TFA of a certain transcription factor
relative to gene n. The crucial difference between our model and other models
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previously proposed is that the regression coefficients (the TFAs) are allowed to
be different from gene to gene.

Allowing different TFAs for each gene leads to an explosion in the number
of model parameters. We can deal with this large parameter space through
marginalization by placing a prior distribution on the rows of Bn (the gene
specific TFAs at a certain experimental point, denoted as bnt). We will make
two physically plausible assumptions in selecting the prior distribution. Firstly,
we assume that the gene specific TFA at time t depends solely on the gene
specific TFA at time t − 1 (mathematically, this means that the sequence bnt

has the Markov property). This is a simplifying assumption but should be
sufficient to capture the main correlations between time points. Secondly, we
assume the prior distribution to be stationary in time, i.e. no time point is
a priori special. Mathematically, this amounts to requiring the distributions
obtained by marginalising all but one of the time points to be the same.

There are two obvious limiting cases of prior distributions satisfying these
conditions. The first is when all the bnt are assumed to be identical, so that

bn1 ∼ N (µ,Σ) ,

bn(t+1) ∼ N (bnt, 0) .
(2)

This would be an appropriate model when the experimental data set consists
of replicates of a condition. The second limiting case is when all the bnt are
assumed to be independent and identically distributed,

bnt ∼ N (µ,Σ) . (3)

This is a static model which could be of use when the data set consists of
independent samples drawn from conditions without a temporal order.

In general, we expect a realistic model of time-series data to be somewhere
in between these two extremes. There are infinite possible choices for such a
model; we will make the simplest possible choice of a linear combination of
the two models, as this combines computational tractability with simplicity in
interpreting the results. We therefore model the gene specific TFAs as

bn(t+1) ∼ N
(
γbnt + (1− γ) µ,

(
1− γ2

)
Σ
)

(4)

for t = 1, . . . , d− 1 and
bn1 ∼ N (µ,Σ) .

γ ∈ [0, 1] is a parameter measuring the global variability of the TFAs: γ = 1
returns the replicates model (2), while γ = 0 returns the static model with all
TFAs independent (3).
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3 Likelihood computations

The joint likelihood is factorized as

p (y1, . . . , yd,b1, . . . ,bd|β, τ,µ,Σ) =

N (b1|µ,Σ) Πd
t=1N

(
yt|bT

t x, β−2
)
Πd

t=2N
(
bt|γbt−1 + (1− γ) µ,

(
1− γ2

)
Σ
)
.

(5)

To compute the marginal likelihood, we first compute the following integral∫
N
(
y|bTx, β−2

)
N (b|µ,Σ) = N

(
y|µT x, β−2 + xT Σx

)
. (6)

We then proceed to integrate eq (5); we notice that bT appears only in one
factor in equation (??), therefore we start off by integrating it first to obtain∫

Πd−2
t=1N

(
yt|bT

t x, β−2
)
Πd−2

t=2N
(
bt|γbd−1 + (1− γ)µ,

(
1− γ2

)
Σ
)

×N (b1|µ,Σ)N
(
yd−1|bT

d−1x, β−2
)

×N
(
yd|γbT

d−1x + (1− γ) µT x, β−2 +
(
1− γ2

)
xT Σx

) (7)

where we have used eq. (6) with µ = γbd−1 + (1− γ)µ and Σ =
(
1− γ2

)
Σ.

We notice that the second line in eq. (7) can be rearranged using(
yd−1 − bT

d−1x
)2

β−2
+

(
yd − γbT

d−1x− (1− γ) µT x
)2

β−2 + (1− γ2)xT Σx
=

(
kd−1 − bT

d−1x
)2

α−2
d−1

+ ιd−1

where

α2
d−1 = β2 + γ2

[
β−2 +

(
1− γ2

)
xT Σx

]−1

kd−1

α−2
d−1

=
yd−1

β−2
+ γ

yd − (1− γ) µT x
β−2 + (1− γ2)xT Σx

ι =

(
yd−(1−γ)µT x

γ − yd−1

)2

β−2 + β−2+(1−γ2)xT Σx
γ2

.

(8)

In other words, the precision is replaced with the sum of the precisions and the
observed variable is replaced with the precision-weighted sum of the observed
variables. The factor ι is independent of the bs and can be taken out of the
integral.

We can then proceed to marginalise bd−1; equation (8) provides us with a
handle to compute the general solution recursively. Therefore we get

p (y1, . . . , yd|β, τ,µ,Σ) = Πd
t=2N

(
yt−1|kt, φ

−1
t

)
×N

(
k1|xT µ, φ−1

1

)
(9)
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where

kd =
yd − (1− γ) µT x

γ

φd =

(
β−2 +

β−2 +
(
1− γ2

)
xT Σx

γ2

)−1

φd−1 =

(
β−2 +

α−2
d−1 +

(
1− γ2

)
xT Σx

γ2

)−1

αd−1 and kd−1 were defined in eq (8) and finally

α2
d−2 = β2 + γ2

(
α−2

d−1 +
(
1− γ2

)
xT Σx

)−1

kd−2

α−2
d−2

=
yd−2

β−2
+ γ2 kd−1

α−2
d−1 + (1− γ2)xT Σx

φ1 =
(
α−2

1 + xTΣx
)−1

(10)

(the last update is different because of the different prior).
Having computed the marginal likelihood we now need the gradients in order

to optimise it. Again, we can exploit equation (10) to obtain recursive formulae
for the gradient with respect to the various parameters. Defining αd = β,

∂α2
d

∂β
= 2β

∂αd

∂γ
=

∂αd

∂Σ
=

∂αt

∂µ
= 0

∂α2
t

∂β
= 2β − γ2α−4

t+1

(
α−2

t+1 +
(
1− γ2

)
xT Σx

)−2 ∂α2
t+1

∂β

∂α2
t

∂γ
= γ2

(
α−2

t+1 +
(
1− γ2

)
xT Σx

)−2
(

2γxT Σx− α−4
t+1

∂α2
t

∂γ

)
+

2γ
(
α−2

t+1 +
(
1− γ2

)
xT Σx

)−1

∂α2
t

∂Σ
= −γ2

(
1− γ2

) (
α−2

t+1 +
(
1− γ2

)
xT Σx

)−2
xxT − γ2α−4

t+1

(
α−2

t+1 +
(
1− γ2

)
xT Σx

)−2 ∂α2
t+1

∂Σ
∂φ−1

t−1

∂β
= 2β +

1
γ2

∂α−2
t−1

∂β

∂φ−1
t−1

∂γ
= −2

[
α−2

d−1 +
(
1− γ2

)
xT Σx

γ3
+

xT Σx
γ

]
∂φ−1

t−1

∂Σ
=

(
1− γ2

)
γ2

xxT
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∂kd

∂β
=

∂kd

∂Σ
= 0

∂kd

∂γ
= −yd − (1− γ) µT x

γ2
+

µT x
γ

∂kd

∂µ
= − (1− γ)

γ
x

∂kt−1

∂β
= − kt−1

α2
t−1

∂α2
t−1

∂β
+

γ2α−2
t−1kt

α4
t

[
α−2

t + (1− γ2)xT Σx
]2 ∂α2

t

∂β
+

2βα−2
t−1yt−1 +

γ2α−2
t−1[

α−2
t + (1− γ2)xT Σx

] ∂kt

∂β

∂kt−1

∂γ
= − kt−1

α2
t−1

∂α2
t−1

∂γ
+

γ2α−2
t−1kt

α4
t

[
α−2

t + (1− γ2)xT Σx
]2 ∂α2

t

∂γ
+

γ2α−2
t−1[

α−2
t + (1− γ2)xT Σx

] ∂kt

∂γ
+

2γ3xT Σxα−2
t−1kt[

α−2
t + (1− γ2)xT Σx

]2 +

2γα−2
t−1kt[

α−2
t + (1− γ2)xT Σx

]
∂kt−1

∂µ
=

γ2α−2
t−1[

α−2
t + (1− γ2)xT Σx

] ∂kt

∂µ

∂kt−1

∂Σ
= − kt−1

α2
t−1

∂α2
t−1

∂Σ
+

γ2α−2
t−1kt

α4
t

[
α−2

t + (1− γ2)xT Σx
]2 ∂α2

t

∂Σ
+

γ2α−2
t−1[

α−2
t + (1− γ2)xT Σx

] ∂kt

∂Σ
+

γ2
(
1− γ2

)
α−2

t−1ktxxT[
α−2

t + (1− γ2)xT Σx
]2 .

4 Posterior estimation

Once the model parameters have been optimised, gene-specific TFAs can now
be estimated from the posterior distribution over the bns. This is obtained by
applying Bayes’ rule and has the form

p (bn1, . . . ,bnd|σ, γ, µ,Σ,X,Y) = N
(
b̄n,Σbn

)
(11)

where the posterior covariance is given by

Σbn
=


A1 B 0 0
B A . . . 0
0 B . . . B
0 0 . . . Ad


−1

(12)
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where

A1 = Ad = σ−2xnxT
n +

(
1− γ2

)−1
Σ−1

A = σ−2xnxT
n +

(
1 + γ2

) (
1− γ2

)−1
Σ−1

B = −γ
(
1− γ2

)−1
Σ−1,

and the posterior mean is given by

b̄n = Σbn


σ−2y1x + 1

1+γ Σ−1µ

σ−2y2x + 1−γ
1+γ Σ−1µ

...
σ−2ydx + 1

1+γ Σ−1µ

 .

Notice that the posterior mean is a dq dimensional vector and the posterior
covariance a dq× dq matrix. These numbers for a genome-wide study are quite
large (in the thousands) and inverting the matrix in equation (12) in a careless
way can lead to severe computational costs. We can speed it up considerably
by exploiting the special structure of the matrix (12) using a banded LU de-
composition (see e.g. Golub and van Loan [1996] sect 4.5).

Then the LU decomposition of C yields

C = FG =


I 0 0 0
L1 I 0 0
0 · · · · · · 0
0 0 Ld−1 I




U1 B 0 0
0 U2 B 0
0 0 · · · B
0 0 0 Ud


with the Ls and Us defined recursively as

U1 = D1

Li−1 = −γ
(
1− γ2

)−1
Σ−1U−1

i−1

Ui = Di + Li−1γ
(
1− γ2

)−1
Σ−1

where Di are the diagonal blocks in (12). The computation of the inverses of
the Uis is particularly simple using the Sherman-Morrison formula (Golub and
van Loan [1996] sect. 2.1.3)(

κΣ−1 + αxxT
)−1

= κ−1Σ− α
yyT

1 + λ

where y = κ−1Σx and λ = αxT
(
κ−1Σ

)
x. Notice that Li contains terms

involving the identity matrix and xyT , while Ui always contains terms involving
only Σ−1 and xxT . The inverse of C is easily obtained by noticing the following
property of banded triangular matrices

I 0 0 0
L1 I 0 0
0 L2 I 0
0 0 L3 I


−1

=


I 0 0 0

−L1 I 0 0
L2L1 −L2 I 0

−L3L2L1 L3L2 −L3 I
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and similarly for upper triangular matrices
U1 −F 0 0
0 U2 −F 0
0 0 U3 −F
0 0 0 U4


−1

=


U−1

1 U−1
1 FU−1

2 U−1
1 FU−1

2 FU−1
3 U−1

1 FU−1
2 FU−1

3 FU−1
4

0 U−1
2 U−1

2 FU−1
3 U−1

2 FU−1
3 FU−1

4

0 0 U−1
3 U−1

3 FU−1
4

0 0 0 U−1
4


We have described the 4× 4 case; generalisation to the d× d case is trivial.
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