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Online Resources

@ All source code and slides are available online
@ This talk available from my home page (see talks link on left hand
side).
e MATLAB examples in the ‘dimred’ toolbox (vrs 0.1)
» http://www.cs.man.ac.uk/"neill/dimred/.

@ MATLAB commands used for examples given in typewriter font.
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© Motivation

Neil Lawrence () Dimensionality Reduction



High Dimensional Data

USPS Data Set Handwritten Digit

@ 3648 Dimensions

@ 64 rows by 57 columns
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High Dimensional Data

USPS Data Set Handwritten Digit

"l=-'r"E, CLRCRL e

e 3648 Dimensions I E.,l_. - :l.".."":':. ';
@ 64 rows by 57 columns L .__|: -u'I'J' .‘ l-Il
@ Space contains more than ":- }'—__-.

just this digit. i 5:#:.
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High Dimensional Data

USPS Data Set Handwritten Digit
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@ 3648 Dimensions _'l"r:'-'_l?' ﬁ'—.ﬂﬂ—ﬁ.
@ 64 rows by 57 columns f:.'_'-'-'l"-'-'i-{ et T ﬁ'l
: S T '-'ﬁ" ]

@ Space contains more than 5 ER il .'.--.:-,'L‘., B el
. . e - LRt o B LR B
just this digit. e el T i e

@ Even if we sample every i.l"'l- oty :"'l' "_’_‘:"&
el b g ]

nanosecond from now L '_1_. LR T =
until the end of the L ;.‘l.':__rl_:.'r‘? 5 .:'_l_'.g
universe, you won't see L..rn '._'."._ll_l_.__.. i
the original six! Cal ol Rl 0 e T
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High Dimensional Data

USPS Data Set Handwritten Digit

@ 3648 Dimensions

[ o i

@ 64 rows by 57 columns ;-Tr- e "'l_ ".I:Il.-'.:__-__l__."i

@ Space contains more than i :_1.'."1-_,__;.%-,___ I-E

just this digit. e VS A

. L v I ‘_I..i_. b

@ Even if we sample every i ﬁ g Tl v'_‘h:' oy
i £ Bs =

nanosecond from now L .ﬁ%f-._'-' -,:.:.':F

until the end of the ;I_;:::.__'.l."- l-__."'.'.!'._ o

universe, you won't see |_:'I.:J ~_' X rl_: - ...h":_.- '

the original six! '.—' : _.l_':'-—:" - :'73::.:
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Simple Model of Digit

@ Rotate a 'Prototype’
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Simple Model of Digit

@ Rotate a 'Prototype’
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MATLAB Demo

demDigitsManifold([1 2], ’all’)
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MATLAB Demo

demDigitsManifold([1 2], ’all’)
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MATLAB Demo

demDigitsManifold([1 2], ’sixnine’)

0.1
any <
G

0.05} C
P 2 (
LA :

] )
-0.05 CR
01751 oo 0 0.05 01
PCno1l

Neil Lawrence () Dimensionality Reduction



Low Dimensional Manifolds

Pure Rotation is too Simple

@ In practice the data may undergo several distortions.

» e.g. digits undergo 'thinning’, translation and rotation.

@ For data with 'structure’:
@ we expect fewer distortions than dimensions;
@ we therefore expect the data to live on a lower dimensional manifold.

@ Conclusion: deal with high dimensional data by looking for lower
dimensional non-linear embedding.
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g— dimension of latent/embedded space
D— dimension of data space
N— number of data points

data matrix, Y = [yl,:, “ee ,YN,:]T = [)’:,1; e 7yZ,D] € §RNXD

latent variables, X = [xq.,. .. ,xN,:]T =[x.1,...,%. 4] € RNxq
mapping matrix, W € RP*d9

centering matrix, H = 1 — N7111T ¢ RVxN
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Reading Notation

@ a;. is a vector from the jth row of a given matrix A.
@ a.; is a vector from the jth row of a given matrix A.
@ X and Y are design matrices.

o Centred data matrix given by Y = HY.
@ Sample covariance given by S = N-IYTY.

@ Centred inner product matrix given by K = YY?T.
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© Distance Matching
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Data Representation

@ Classical statistical approach: represent via proximities. [Mardia, 1972]
@ Proximity data: similarities or dissimilarities.

@ Example of a dissimilarity matrix: a distance matrix.

dij = lyi; = ¥j:ll, = \/(YI —Yj:) (Yi,: —Yj:)

@ For a data set can display as a matrix.
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Interpoint Distances for Rotated Sixes

360

90
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360

Figure: Interpoint distances for the rotated digits data.
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Multidimensional Scaling

e Find a configuration of points, X, such that each
0ij = lIxi: = %[l

closely matches the corresponding d; j in the distance matrix.

@ Need an objective function for matching A = (5iJ)iJ toD = (diJ)iJ'
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Feature Selection

@ An entrywise L1 norm on difference between squared distances

EX)=3) |
i=1 j=1

@ Reduce dimension by selecting features from data set.

@ Select for X, in turn, the column from Y that most reduces this error
until we have the desired q.

@ To minimise E (Y) we compose X by extracting the columns of Y
which have the largest variance.
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Reconstruction from Latent Space

360

360 i
Left: distances reconstructed with two dimensions. Right: distances recon-
structed with 10 dimensions.
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Reconstruction from Latent Space

180

270

360
Left: distances reconstructed with 100 dimensions. Right: distances recon-
structed with 1000 dimensions.

360
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Feature Selection
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Figure: demRotationDist. Feature selection via distance preservation.
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Feature Selection
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Figure: demRotationDist. Feature selection via distance preservation.
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Feature Selection
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Figure: demRotationDist. Feature selection via distance preservation.
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Feature Extraction
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Figure: demRotationDist. Rotation preserves interpoint distances. .
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Feature Extraction
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Figure: demRotationDist. Rotation preserves interpoint distances. .
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Feature Extraction
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Figure: demRotationDist. Rotation preserves interpoint distances. .
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Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. .
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Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. .
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Feature Extraction

-4

Figure: demRotationDist. Rotation preserves interpoint distances. Residuals are
much reduced.
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Feature Extraction
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Figure: demRotationDist. Rotation preserves interpoint distances. Residuals are
much reduced.
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Which Rotation?

@ We need the rotation that will minimise residual error.
e We already an algorithm for discarding directions.
@ Discard direction with maximum variance.

@ Error is then given by the sum of residual variances.

D
E(X)=2N*> > of.
k=q+1

@ Rotations of data matrix do not effect this analysis.

Neil Lawrence () Dimensionality Reduction



Rotation Reconstruction from Latent Space

360 360

180 180 60

270 270

10
360 360 \

Left: distances reconstructed with two dimensions. Right: distances recon-
structed with 10 dimensions.
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Rotation Reconstruction from Latent Space

180 % 180

270 - 270

360 360 k

Left: distances reconstructed with 100 dimensions. Right: distances recon-
structed with 360 dimensions.
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Reminder: Principal Component Analysis

How do we find these directions?

Find directions in data with maximal variance.
» That's what PCA does!

PCA: rotate data to extract these directions.

e PCA: work on the sample covariance matrix S = N-1YTY.
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Principal Component Analysis

@ Find a direction in the data, x.1 = ?rl, for which variance is
maximised.

A

r = argmax,var (le)

subject to : rirn=1

@ Can rewrite in terms of sample covariance
° T
var (X.1) = Nt (?n) Yr = rrlr (N_I?T?) = riFSrl
| —

sample covariance
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@ Solution via constrained optimisation:
L(r, A1) =riSr + X\ (1- r?rl)
@ Gradient with respect to ry

dL (r1, )\1)

=2 -2
dr1 SI’1 >\1r1

rearrange to form
Sr1 = )\1r1.

Which is recognised as an eigenvalue problem.

Neil Lawrence () Dimensionality Reduction



Lagrange Multiplier

@ Recall the gradient,

dL(ry, A
% = 2SI’1 — 2)\1[’1 (1)
to find A1 premultiply (1) by r{ and rearrange giving

)\1 = rrfSrl.

@ Maximum variance is therefore necessarily the maximum eigenvalue of

S.

@ This is the first principal component.
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Further Directions

@ Find orthogonal directions to earlier extracted directions with maximal
variance.

@ Orthogonality constraints, for j < k we have
rJ-Trk =0 r;frk =1

@ Lagrangian

k—1
L (I’k, )\k,"y) = rESrk + Ak (1 — r;frk) + nyjrork
=1
dL (rk,>\k) =
d—rk = 2Sr) — 2\iri + jz_;’yj'l'j
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Further Eigenvectors

@ Gradient of Lagrangian:

k—1
(lL(I’k,)\k)
R S — E -t 2
e 2SI'k 2)\krk + = Vivj ( )

e Premultipling (2) by r; with i < k implies
vi =0

which allows us to write
Srk = )\krk.

e Premultiplying (2) by ry implies
A = rESrk.
@ This is the kth principal component.
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Principal Coordinates Analysis

@ The rotation which finds directions of maximum variance is the
eigenvectors of the covariance matrix.

@ The variance in each direction is given by the eigenvalues.

@ Problem: working directly with the sample covariance, S, may be
impossible.

@ For example: perhaps we are given distances between data points, but
not absolute locations.

» No access to absolute positions: cannot compute original sample
covariance.
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An Alternative Formalism

@ Matrix representation of eigenvalue problem for first g eigenvectors.
YTYR, = R,A, R, € RP*9 (3)

@ Premultiply by Y:

N|=

@ Postmultiply by A,
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N|=
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An Alternative Formalism

@ Matrix representation of eigenvalue problem for first g eigenvectors.
YTYR, = R,A, R, € RP*9 (3)

@ Premultiply by Y:
YYTYR, = YR/A,

N|=

@ Postmultiply by A,

NI

YYTU, =U,A, U,=YR,A,
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U, Diagonalizes the Inner Product Matrix

@ Need to prove that U, are eigenvectors of inner product matrix.

N

A A _1 A A ATA _
UsYYTU, = A 2RIYTYYTYRGA,
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U, Diagonalizes the Inner Product Matrix

@ Need to prove that U, are eigenvectors of inner product matrix.
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U, Diagonalizes the Inner Product Matrix

@ Need to prove that U, are eigenvectors of inner product matrix.

1 2 1
TywT “3RT (VT -3
UTVYTU, = Ag?RY (YTV) ReA, ?
@ Full eigendecomposition of sample covariance

Y'Y = RART
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U, Diagonalizes the Inner Product Matrix

@ Need to prove that U, are eigenvectors of inner product matrix.
Ty T “InT (vIv) R A3
UTVYTU, = Ag?RY (YTV) ReA, ?
@ Full eigendecomposition of sample covariance
Y'Y = RART

@ Implies that

(?T?)2 — RARTRART = RA?RT.
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U, Diagonalizes the Inner Product Matrix

@ Need to prove that U, are eigenvectors of inner product matrix.
1 1
TxywT 3 RTRA2RT -3
U, YY Uy =Ng R RARTRGA, 2
@ Full eigendecomposition of sample covariance
Y'Y = RART

@ Implies that

(?T?)2 — RARTRART = RA?RT.
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U, Diagonalizes the Inner Product Matrix

@ Need to prove that U, are eigenvectors of inner product matrix.

A _1 1
U, YY U = A 2RJRA’RTRGA,
@ Product of the first g eigenvectors with the rest,

RTR, = [ I(;’ ] € RPx9

where we have used |, to denote a g x g identity matrix.
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U, Diagonalizes the Inner Product Matrix

@ Need to prove that U, are eigenvectors of inner product matrix.

NI

A _1 _
U, YYTUg = A 2RJRA’RTRGA,
@ Product of the first g eigenvectors with the rest,

RTR, = [ I(;’ ] € RPx9

where we have used |, to denote a g x g identity matrix.

@ Premultiplying by eigenvalues gives,

A
ARTR, = [ 0 ]

Neil Lawrence () Dimensionality Reduction



U, Diagonalizes the Inner Product Matrix

@ Need to prove that U, are eigenvectors of inner product matrix.

NI

A _1 _
U, YYTUg = A 2RJRA’RTRGA,
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U, Diagonalizes the Inner Product Matrix

@ Need to prove that U, are eigenvectors of inner product matrix.

NN 1
U, YYTU; = A;2 [RIRNRTRy| A
@ Product of the first g eigenvectors with the rest,

NI

RTR, = [ I(;’ ] € RPx9
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U, Diagonalizes the Inner Product Matrix

@ Need to prove that U, are eigenvectors of inner product matrix.

N 1
U YYTU, = Ag 2 [RIRNRTR] A,
@ Product of the first g eigenvectors with the rest,

N=

RTR, = [ I(;’ ] € RPx9

where we have used |, to denote a g x g identity matrix.

@ Premultiplying by eigenvalues gives,

A
ARTR, = [ 0 ]

@ Multiplying by self transpose gives
TRA2RTR — A2
R,RAR' R, = A



U, Diagonalizes the Inner Product Matrix

@ Need to prove that U, are eigenvectors of inner product matrix.

N=

A 1 _
U YYTU, =N 2N2A,
@ Product of the first g eigenvectors with the rest,

RTR, = [ I(;’ ] € RPx9

where we have used |, to denote a g x g identity matrix.

@ Premultiplying by eigenvalues gives,

A
ARTR, = [ 0 ]

@ Multiplying by self transpose gives
TRA2RTR _ A2
R,RAR' R, = A



U, Diagonalizes the Inner Product Matrix

@ Need to prove that U, are eigenvectors of inner product matrix.

UsYYTU, = A,
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U, Diagonalizes the Inner Product Matrix

@ Need to prove that U, are eigenvectors of inner product matrix.

YYTU, = U\,
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Equivalent Eigenvalue Problems

@ Two eigenvalue problems are equivalent. One solves for the rotation,
the other solves for the location of the rotated points.

@ When D < N it is easier to solve for the rotation, R;. But when
D > N we solve for the embedding (principal coordinate analysis).

@ In MDS we may not know Y, cannot compute YTY from distance
matrix.

o Can we compute YYT instead?
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Covariance Interpretation

o N71YTY is the data covariance.
e YYT is a centred inner product matrix.

> Also has an interpretation as a covariance matrix (Gaussian processes).

> |t expresses correlation and anti correlation between data points.

» Standard covariance expresses correlation and anti correlation between
data dimensions.
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Distance to Similarity: A Gaussian Covariance

Interpretation

@ Translate between covariance and distance.

» Consider a vector sampled from a zero mean Gaussian distribution,
z~ N(0,K).
» Expected square distance between two elements of this vector is
2 2
dij= <(Zi - z) >
=(z') +(z) - 2(zz)
under a zero mean Gaussmn with covariance given by K this is
2
dij = kii+kjj = 2kij.

Take the distance to be square root of this,
1
dij = (kii+ kjj— 2kij)’
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Standard Transformation

@ This transformation is known as the standard transformation between
a similarity and a distance [Mardia et al., 1979, pg 402].
o If the covariance is of the form K = YY™ then k;; = yly;. and

N=

dij = (yiyi: + iy —2yryi) 2 = i — ¥i:ll,-

@ For other distance matrices this gives us an approach to covert to a
similarity matrix or kernel matrix so we can perform classical MDS.
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Example: Road Distances with Classical MDS

@ Classical example: redraw a map from road distances (see e.g. Mardia
et al. 1979).

@ Here we use distances across Europe.

» Between each city we have road distance.

» Enter these in a distance matrix.

» Convert to a similarity matrix using the covariance interpretation.
» Perform eigendecomposition.

@ See http://www.cs.man.ac.uk/ " neill/dimred for the data we
used.
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Distance Matrix

Convert distances to similarities using “covariance interpretation”.

00 12 24 36 48
LB - I.1.. | .
- | | r
e g e =
12 i o LR | l 1
s | im i
[ ]
L
24F Eom  sm EEE -
-.- L e | ‘.I L I
| | | | | |
[ ] id =1 40
2 i et
- ‘B ET -
» I mo=
48

Figure: Left: road distances between European cities visualised as a matrix.

Right: similarity matrix derived from these distances. If this matrix is a covariance
matrix, then expected distance between samples from this covariance is given on

the left.
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Example: Road Distances with Classical MDS
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Figure: demCmdsRoadData. Reconstructed locations projected onto true map
using Procrustes rotations.
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Beware Negative Eigenvalues
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Figure: Eigenvalues of the similarity matrix are negative in this case.
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European Cities Distance Matrices

12},

241

36

48

Figure: Left: the original distance matrix. Right: the reconstructed distance
matrix.
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Other Distance Similarity Measures

e Can use similarity/distance of your choice.
@ Beware though!

» The similarity must be positive semi definite for the distance to be
Euclidean.

» Why? Can immediately see positive definite is sufficient from the
“covariance intepretation”.

» For more details see [Mardia et al., 1979, Theorem 14.2.2].
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A Class of Similarities for Vector Data

@ All Mercer kernels are positive semi definite.

e Example, squared exponential (also known as RBF or Gaussian)

o = oxp <_ Iyic 33 ) _

This leads to a kernel eigenvalue problem.
@ This is known as Kernel PCA Schélkopf et al. 1998.
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Implied Distance Matrix

@ What is the equivalent distance d; ;?

dij = \/kii+ kjj— 2kij
e If point separation is large, ki ; — 0. ki; =1 and k; ; = 1.

di,jZ\/E

@ Kernel with RBF kernel projects along axes PCA can produce poor
results.

@ Uses many dimensions to keep dissimilar objects a constant amount
apart.
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Implied Distances on Rotated Sixes

0

0O 90 180 270 360 d 90 180 270 360

90 90
07
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360 360

Figure: Left: similarity matrix for RBF kernel on rotated sixes. Right: implied
distance matrix for kernel on rotated sixes. Note that most of the distances are
set to V2 ~ 1.41.

Neil Lawrence () Dimensionality Reduction Data Modelling School 44 / 70



Kernel PCA on Rotated Sixes
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Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space

for kernel PCA. Points spread out along axes so that dissimilar points are always
\/§ apart.
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Kernel PCA on Rotated Sixes
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Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space
for kernel PCA. Points spread out along axes so that dissimilar points are always

V2 apart.
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Kernel PCA on Rotated Sixes
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Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space
for kernel PCA. Points spread out along axes so that dissimilar points are always

V2 apart.
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Kernel PCA on Rotated Sixes
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Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space
for kernel PCA. Points spread out along axes so that dissimilar points are always

\/2 apart.
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Kernel PCA on Rotated Sixes
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Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space
for kernel PCA. Points spread out along axes so that dissimilar points are always

\/2 apart.
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Kernel PCA on Rotated Sixes
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Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space
for kernel PCA. Points spread out along axes so that dissimilar points are always

V2 apart.
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MDS Conclusions

Multidimensional scaling: preserve a distance matrix.
Classical MDS

» a particular objective function
» for Classical MDS distance matching is equivalent to maximum variance
» spectral decomposition of the similarity matrix

@ For Euclidean distances in Y space classical MDS is equivalent to
PCA.

» known as principal coordinate analysis (PCO)

@ Haven't discussed choice of distance matrix.
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@ Distances along the Manifold
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-20 -20 -10 -20

(b) ’swissroll’ (c) *trefoil’

Figure: lllustrative data sets for the talk. Each data set is generated by calling
generateManifoldData(dataType). The dataType argument is given below
each plot.
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Isomap

@ Tenenbaum et al. 2000

@ MDS finds geometric configuration preserving distances
@ MDS applied to Manifold distance

@ Geodesic Distance = Manifold Distance

e Cannot compute geodesic distance without knowing manifold
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Isomap

@ Isomap: define neighbours and compute distances between
neighbours.

@ Geodesic Distance approximated by shortest path through adjacency
matrix.
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Examples!

demIsomap

!Data generation Carl Henrik Ek
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Isomap: Summary

@ MDS on shortest path approximation of manifold distance
+ Simple

+ Intrinsic dimension from eigen spectra

- Solves a very large eigenvalue problem

- Cannot handle holes or non-convex manifold

- Sensitive to “short circuit”
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Inverse Covariance

@ From the “covariance interpretation” we think of the similarity matrix
as a covariance.

@ Each element of the covariance is a function of two data points.

@ Another option is to specify the inverse covariance.
If the inverse covariance between two points is zero. Those points are
independent given all other points.

» This is a conditional independence.
» Describes how points are connected.

@ Laplacian Eigenmaps and LLE can both be seen as specifiying the
inverse covariance.

Neil Lawrence () Dimensionality Reduction



LLE Examples?

27 neighbours used. No playing with settings.
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LLE Examples?
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Generative

@ Observed data have been sampled from manifold
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@ Observed data have been sampled from manifold
@ Spectral methods start in the “wrong” end
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Generative

@ Observed data have been sampled from manifold
@ Spectral methods start in the “wrong” end
@ “It's a lot easier to make a mess than to clean it up!”

» Things break or disapear

@ How to model observation “generation?
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Model Selection
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Model Selection

@ Observed data have been sampled from low dimensional manifold
°y="f(x)
o Idea: Model f rank embedding according to

@ Data fit of £
@ Complexity of

@ How to model 7

@ Making as few assumtpions about f as possible?
@ Allowing f from as “rich” class as possible?
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Gaussian Processes

@ Generalisation of Gaussian Distribution over infinite index sets
@ Can be used specify distributions over functions

@ Regression

y = f(x)+e
p(YX, ®) = / p(Y|F. X, ®)p(f[X, ®)df
p(fIX,®) = N(0,K)

® = argmaxep(Y|X, ®)
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Gaussian Processes
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Gaussian Process Latent Variable Models

@ GP-LVM models sampling process

y = f(x)+e
p(YIX,®) = / p(Y|f, X, ®)p(F|X, ®)df
p(fIX,®) = AN(0,K)

{)A(, 6} = argmaxy ¢p(Y|X, ®)

@ Linear: Closed form solution

@ Non-Linear: Gradient based solution
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Model Selection

@ Lawrence - 2003 suggested the use of Spectral algorithms to initialise
the latent space Y
@ Harmeling - 2007 evaluated the use of GP-LVM objective for model
selection
» Comparisons between Procrustes score to ground truth and GP-LVM
objective
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Model Selection: Results®

*Model selection results kindly provided by Carl Henrik Ek.



Model Selection: Results®

Embedding Isomap vy

*Model selection results kindly provided by Carl Henrik Ek.



Model Selection: Results®

GP-LVM Objective Isomap vy

*Model selection results kindly provided by Carl Henrik Ek.
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Model Selection: Results®
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Model Selection: Results®
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Model Selection: Results®

Embodding

*Model selection results kindly provided by Carl Henrik Ek.



Model Selection: Results®
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Model Selection: Results®
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Conclusion

@ Assume “local” structure contains enough “characteristics” to unravel
global structure

+ Intuative

Hard to set parameters without knowing manifold

Learns embeddings not mappings i.e. Visualisations

Models problem “wrong” way around

Sensitive to noise

+ Currently best strategy to initialise generative models
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@ Acknowledgement: Carl Henrik Ek for GP log likelihood examples.

@ My examples given here
http://www.cs.man.ac.uk/ "neill/dimred/

e This talk
http://www.cs.man.ac.uk/"neill/
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utline

@ Distance Matching
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Centering Matrix

If Y is a version of Y with the mean removed then:

Y = HY

<>
I

(|—N—111T)Y
= Y-1 11TY)
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Feature Selection Derivation

@ Squared distance can be re-expressed as

D
di = (yik — vik)*.
=1

@ Can re-order the columns of Y without affecting the distances.

» Choose ordering: first g columns of Y are the those that will best
represent the distance matrix.
» Substitution x. x =y.x for k=1...q.

@ Distance in latent space is given by:

q

q
05 =3 Cak—x6)7 =Y (Vik = ¥jk)
k=1

k=1
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Feature Selection Derivation I

@ Can rewrite

N N
E(X)=>_>_dj -3l

i=1 j=1
as

N N D
2
EX) =YY" > ik —yun)
i=1 j=1 k=g+1
@ Introduce mean of each dimension, yx = % Z,N:1 Yiks

N N D
EX)=> 3" > ((ik— ) — ik — %))’

i=1 j=1 k=q+1
@ Expand brackets
N N D
EX) =" > ik =7+ ik = 7> = 2(jok — i) (viok — )
i=1 j=1 k=q+1
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Feature Selection Derivation Il

@ Expand brackets
E(X)= ZZ Z Vi =) + Wik = 7)° = 2 (Y = V) ik — Vi)
i=1 j=1 k=qg+1
Bring sums in
D N
EX)= > (NZ()’:k}’k +NZ(ka*Yk) *22 Yik = Yk Z(y:k}’k)
k=qg+1 i=1

@ Recognise as the sum of the variances discarded columns of Y,

D
E(X)=2N*> > of.

k=qg+1

@ We should compose X by extracting the columns of Y which have the

|argest Varia [g[o(=Mll ¢ Return Selection . <« Return Rotation
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