

Dimensionality Reduction

Neil D. Lawrence

neill@cs.man.ac.uk

Mathematics for Data Modelling
University of Sheffield
January 23rd 2008

Outline

- 1 Motivation
- 2 Background
- 3 Distance Matching
- 4 Distances along the Manifold
- 5 Model Selection
- 6 Conclusions

Online Resources

- All source code and slides are available online
- This talk available from my home page (see talks link on left hand side).
- MATLAB examples in the 'dimred' toolbox (vrs 0.1)
 - ▶ <http://www.cs.man.ac.uk/~neill/dimred/>.
- MATLAB commands used for examples given in typewriter font.

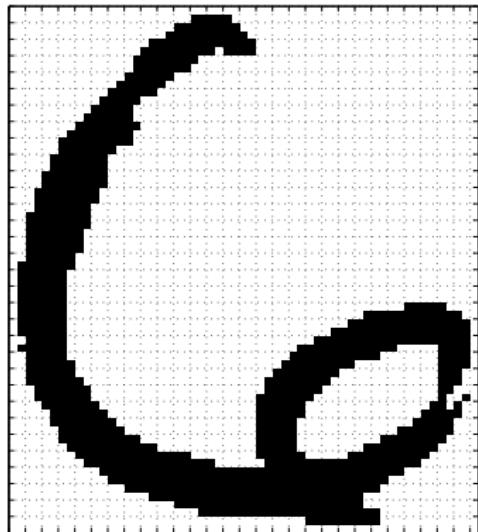
Outline

- 1 Motivation
- 2 Background
- 3 Distance Matching
- 4 Distances along the Manifold
- 5 Model Selection
- 6 Conclusions

High Dimensional Data

USPS Data Set Handwritten Digit

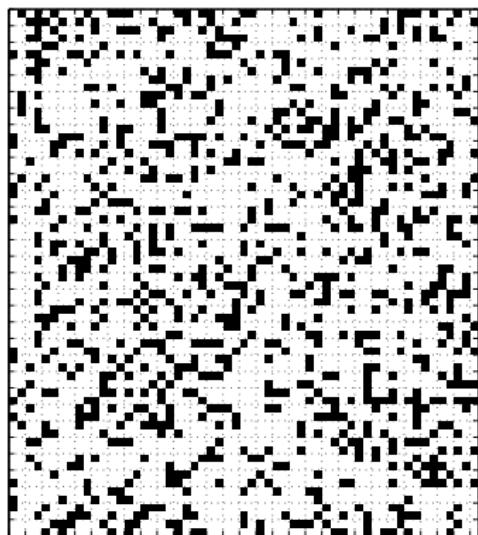
- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!



High Dimensional Data

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!



High Dimensional Data

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!

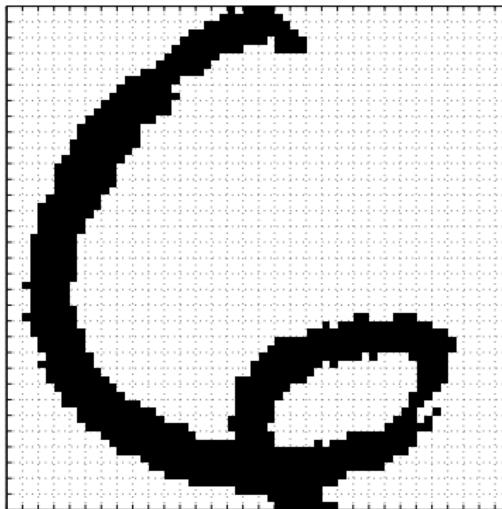
High Dimensional Data

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!

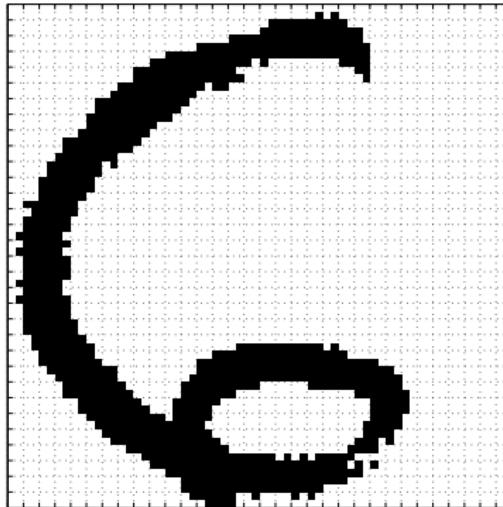
Simple Model of Digit

- Rotate a 'Prototype'



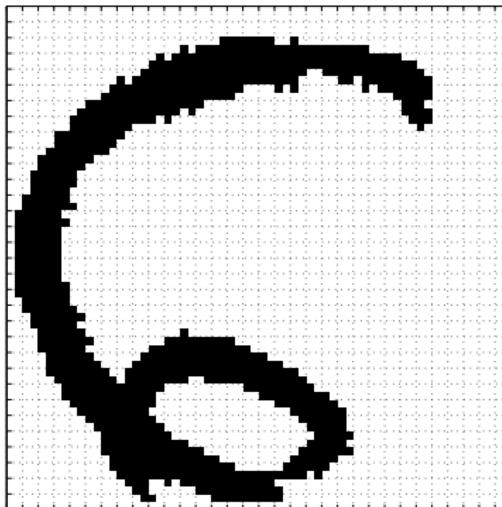
Simple Model of Digit

- Rotate a 'Prototype'



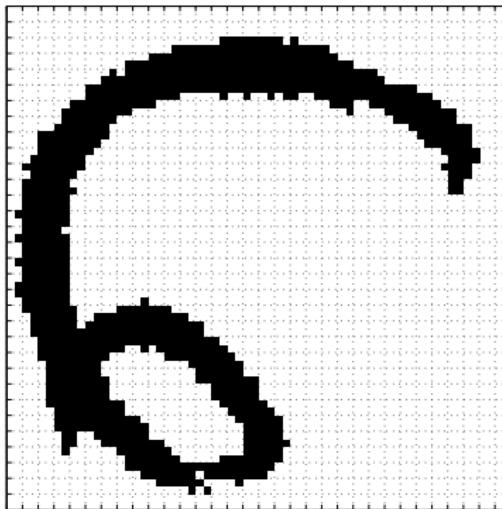
Simple Model of Digit

- Rotate a 'Prototype'



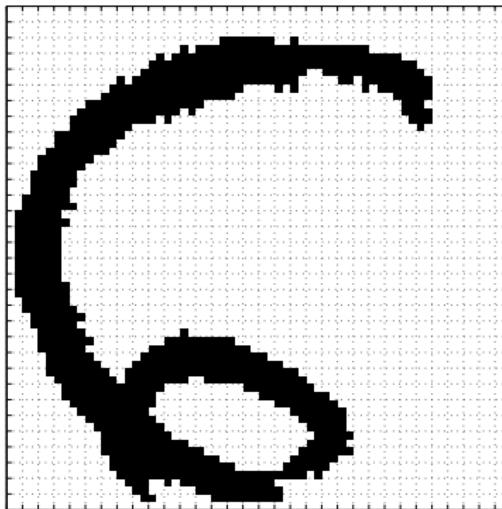
Simple Model of Digit

- Rotate a 'Prototype'



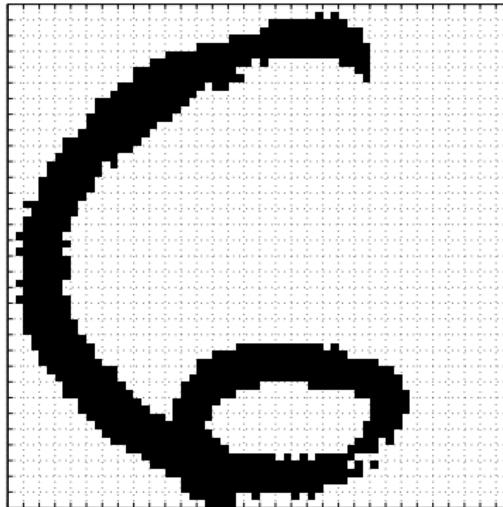
Simple Model of Digit

- Rotate a 'Prototype'



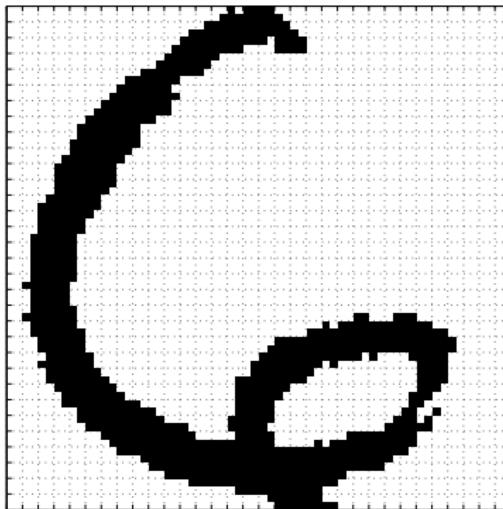
Simple Model of Digit

- Rotate a 'Prototype'



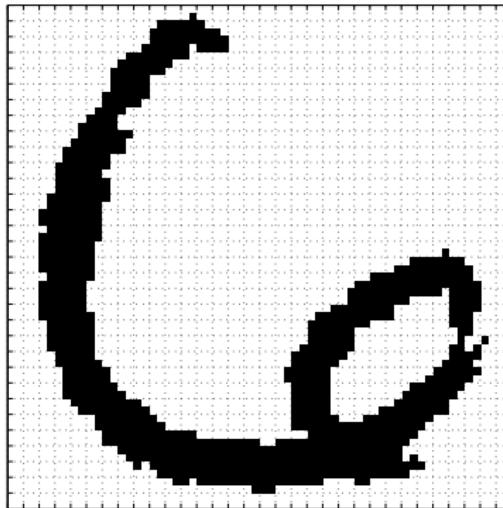
Simple Model of Digit

- Rotate a 'Prototype'



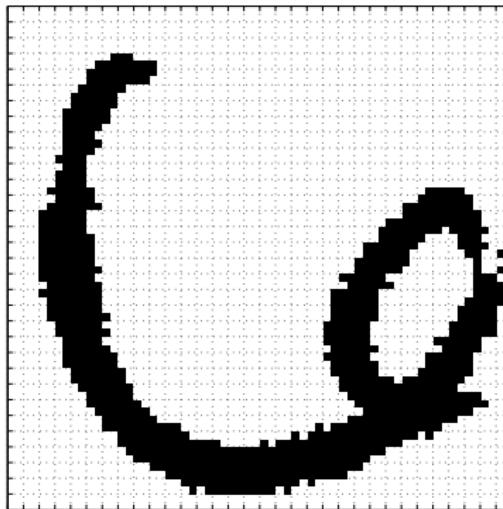
Simple Model of Digit

- Rotate a 'Prototype'



Simple Model of Digit

- Rotate a 'Prototype'

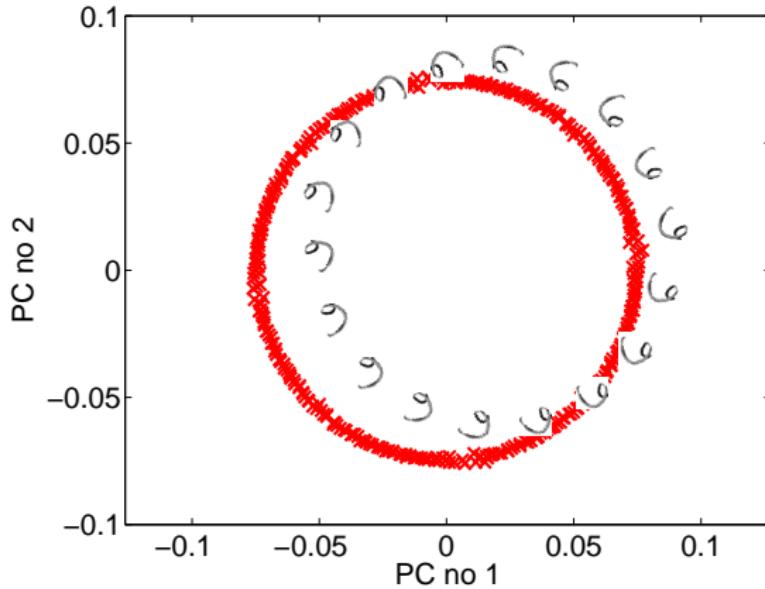


MATLAB Demo

```
demDigitsManifold([1 2], 'all')
```

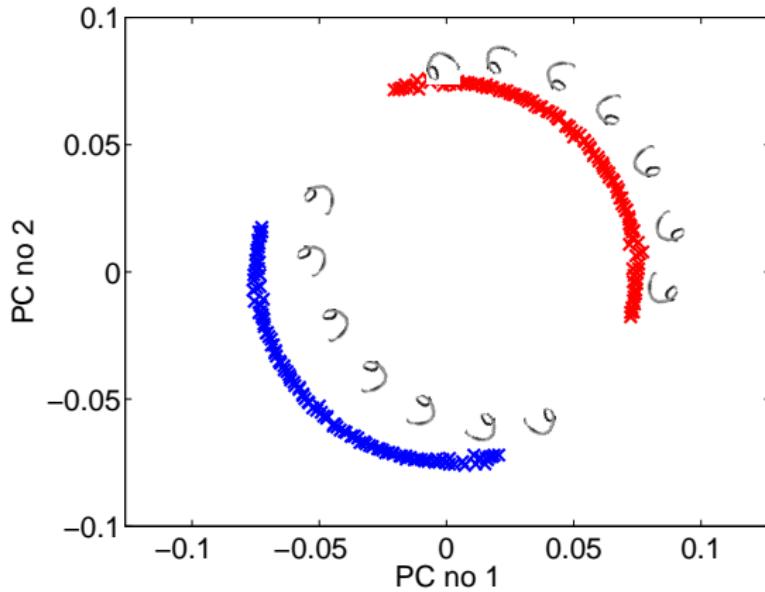
MATLAB Demo

```
demDigitsManifold([1 2], 'all')
```



MATLAB Demo

```
demDigitsManifold([1 2], 'sixnine')
```



Pure Rotation is too Simple

- In practice the data may undergo several distortions.
 - ▶ e.g. digits undergo 'thinning', translation and rotation.
- For data with 'structure':
- we expect fewer distortions than dimensions;
- we therefore expect the data to live on a lower dimensional manifold.
- Conclusion: deal with high dimensional data by looking for lower dimensional non-linear embedding.

Outline

- 1 Motivation
- 2 Background
- 3 Distance Matching
- 4 Distances along the Manifold
- 5 Model Selection
- 6 Conclusions

Notation

q — dimension of latent/embedded space

D — dimension of data space

N — number of data points

data matrix, $\mathbf{Y} = [\mathbf{y}_{1,:}, \dots, \mathbf{y}_{N,:}]^T = [\mathbf{y}_{:,1}, \dots, \mathbf{y}_{:,D}] \in \Re^{N \times D}$

latent variables, $\mathbf{X} = [\mathbf{x}_{1,:}, \dots, \mathbf{x}_{N,:}]^T = [\mathbf{x}_{:,1}, \dots, \mathbf{x}_{:,q}] \in \Re^{N \times q}$

mapping matrix, $\mathbf{W} \in \Re^{D \times q}$

centering matrix, $\mathbf{H} = \mathbf{I} - N^{-1}\mathbf{1}\mathbf{1}^T \in \Re^{N \times N}$

Reading Notation

- $\mathbf{a}_{i,:}$ is a vector from the i th row of a given matrix \mathbf{A} .
- $\mathbf{a}_{:j}$ is a vector from the j th row of a given matrix \mathbf{A} .
- \mathbf{X} and \mathbf{Y} are *design matrices*.
- Centred data matrix given by $\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$. [► Background](#)
- Sample covariance given by $\mathbf{S} = N^{-1}\hat{\mathbf{Y}}^T\hat{\mathbf{Y}}$.
- Centred inner product matrix given by $\mathbf{K} = \hat{\mathbf{Y}}\hat{\mathbf{Y}}^T$.

Outline

- 1 Motivation
- 2 Background
- 3 Distance Matching
- 4 Distances along the Manifold
- 5 Model Selection
- 6 Conclusions

Data Representation

- Classical statistical approach: represent via proximities. [Mardia, 1972]
- Proximity data: similarities or dissimilarities.
- Example of a dissimilarity matrix: a *distance matrix*.

$$d_{i,j} = \|\mathbf{y}_{i,:} - \mathbf{y}_{j,:}\|_2 = \sqrt{(\mathbf{y}_{i,:} - \mathbf{y}_{j,:})^T (\mathbf{y}_{i,:} - \mathbf{y}_{j,:})}$$

- For a data set can display as a matrix.

Interpoint Distances for Rotated Sixes

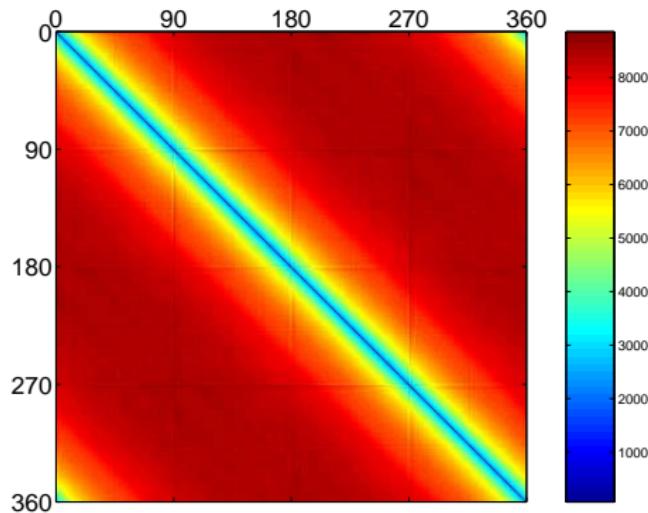


Figure: Interpoint distances for the rotated digits data.

Multidimensional Scaling

- Find a configuration of points, \mathbf{X} , such that each

$$\delta_{i,j} = \|\mathbf{x}_{i,:} - \mathbf{x}_{j,:}\|_2$$

closely matches the corresponding $d_{i,j}$ in the distance matrix.

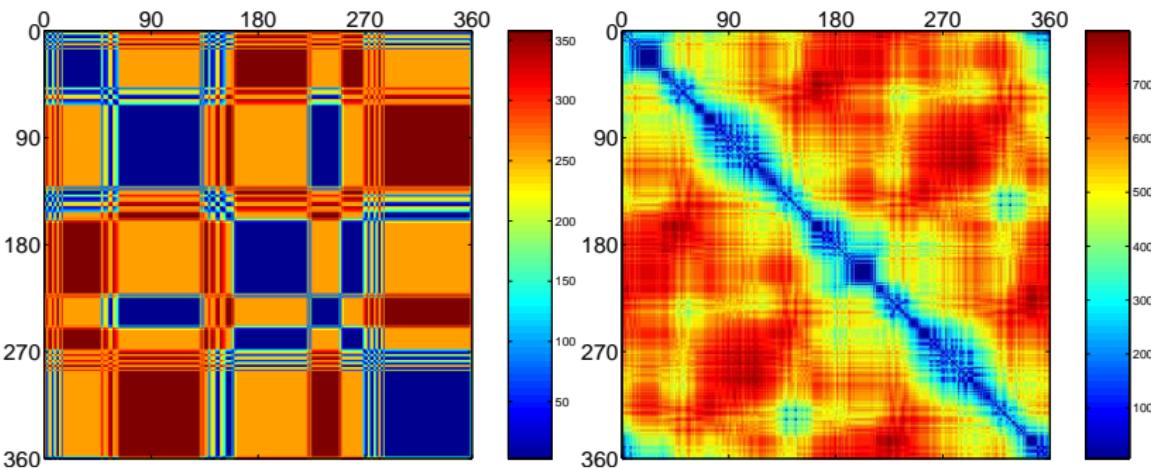
- Need an objective function for matching $\Delta = (\delta_{i,j})_{i,j}$ to $\mathbf{D} = (d_{i,j})_{i,j}$.

- An entrywise L_1 norm on difference between squared distances

$$E(\mathbf{X}) = \sum_{i=1}^N \sum_{j=1}^N |d_{ij}^2 - \delta_{ij}^2|.$$

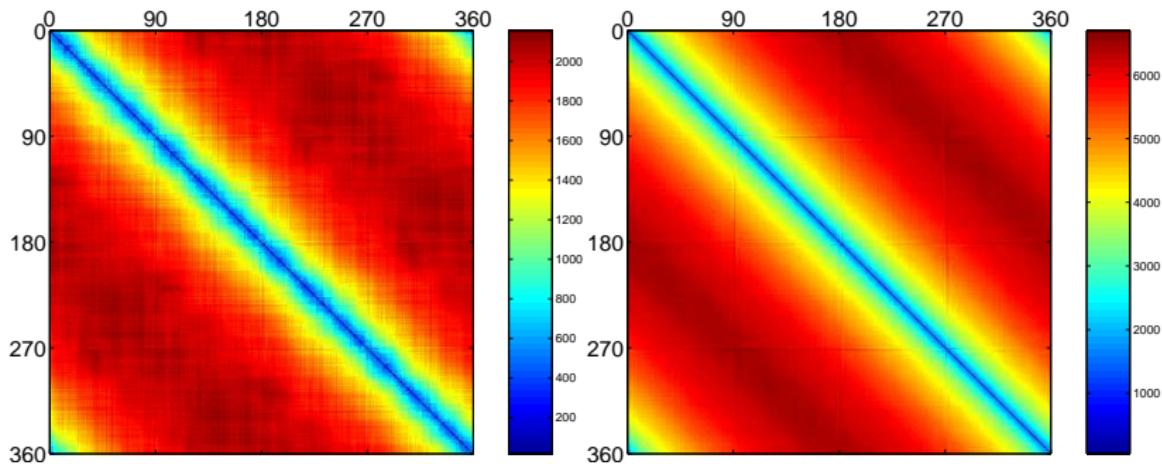
- Reduce dimension by selecting features from data set.
- Select for \mathbf{X} , in turn, the column from \mathbf{Y} that most reduces this error until we have the desired q .
- To minimise $E(\mathbf{Y})$ we compose \mathbf{X} by extracting the columns of \mathbf{Y} which have the largest variance. ▶ Derive Algorithm

Reconstruction from Latent Space



Left: distances reconstructed with two dimensions. *Right:* distances reconstructed with 10 dimensions.

Reconstruction from Latent Space



Left: distances reconstructed with 100 dimensions. *Right:* distances reconstructed with 1000 dimensions.

Feature Selection

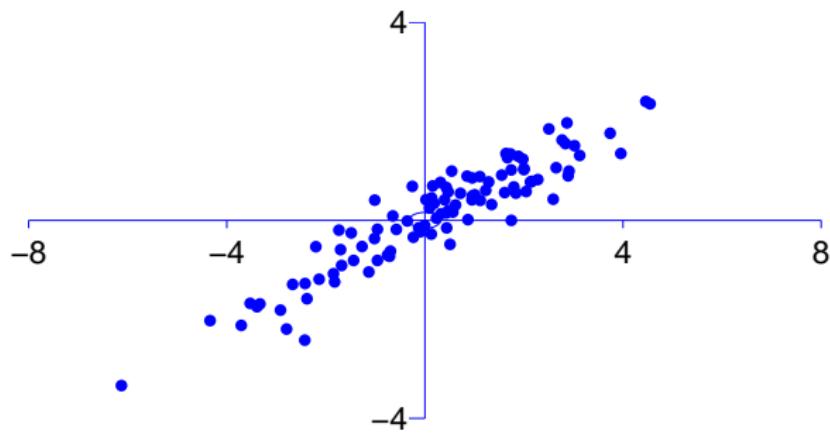


Figure: `demRotationDist`. Feature selection via distance preservation.

Feature Selection

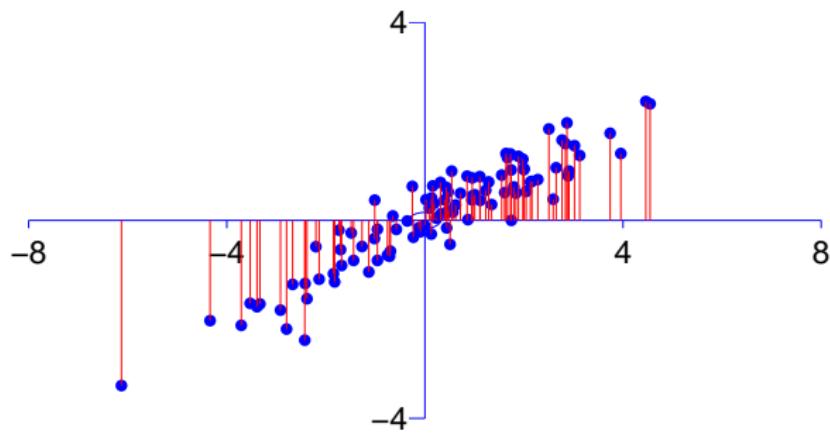


Figure: `demRotationDist`. Feature selection via distance preservation.

Feature Selection

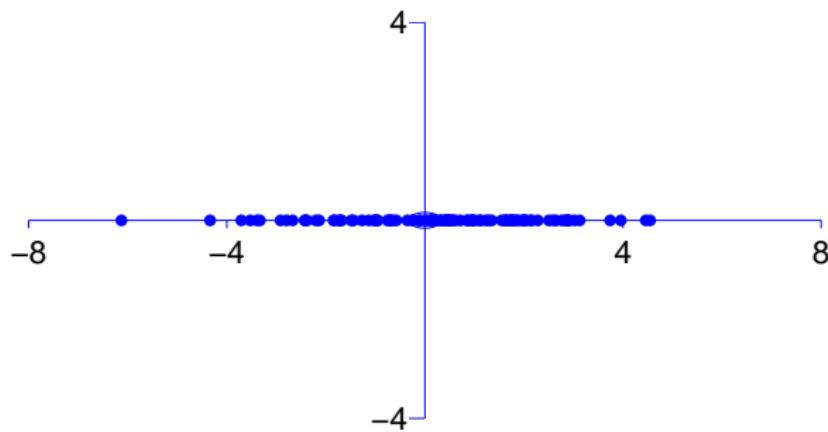


Figure: `demRotationDist`. Feature selection via distance preservation.

Feature Extraction

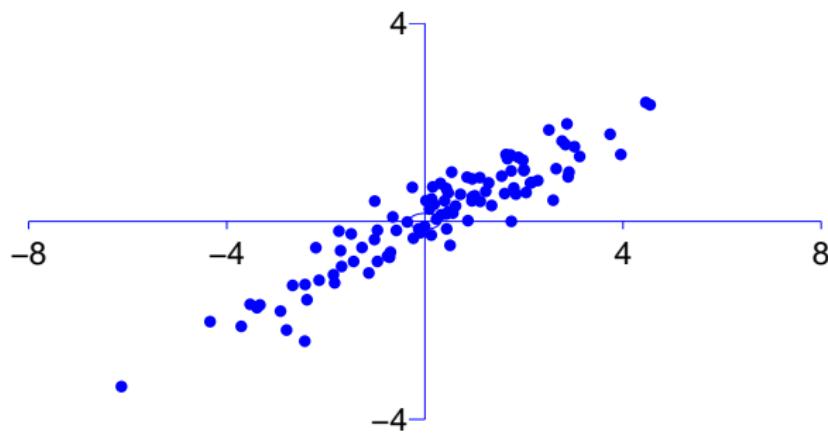


Figure: `demRotationDist`. Rotation preserves interpoint distances. .

Feature Extraction

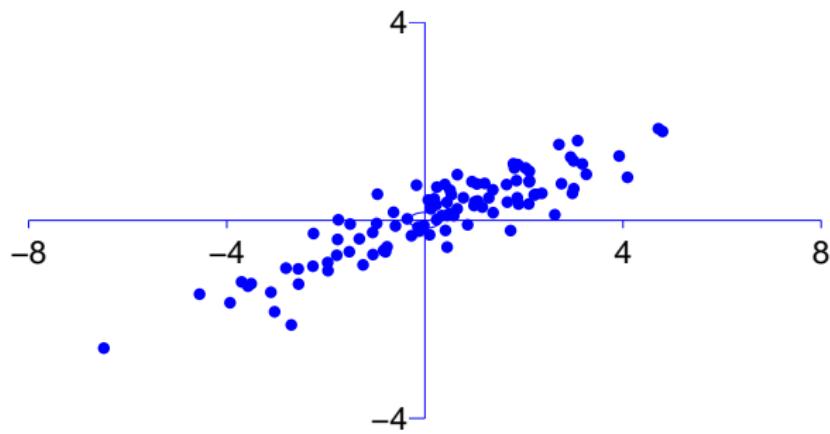


Figure: `demRotationDist`. Rotation preserves interpoint distances. .

Feature Extraction

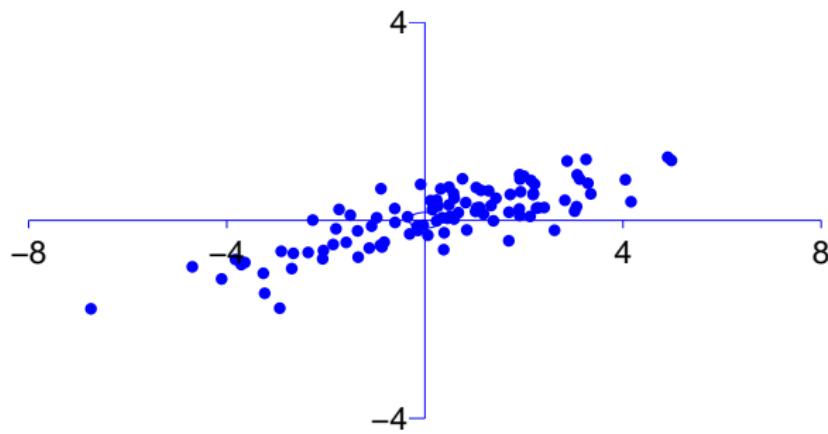


Figure: `demRotationDist`. Rotation preserves interpoint distances. .

Feature Extraction

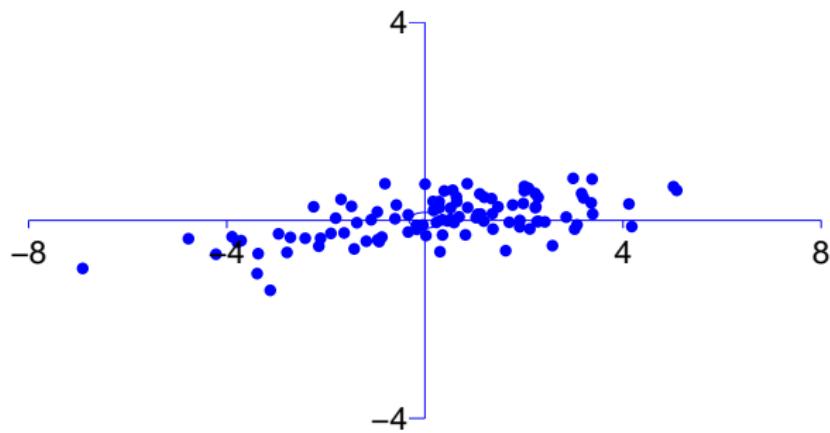


Figure: `demRotationDist`. Rotation preserves interpoint distances. .

Feature Extraction

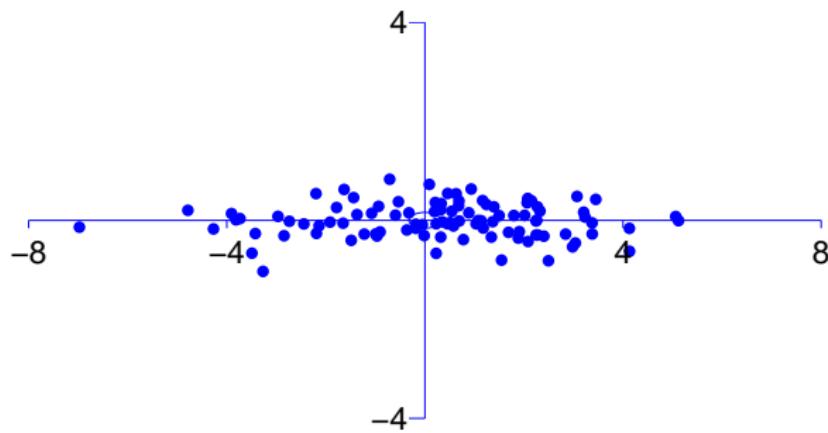


Figure: `demRotationDist`. Rotation preserves interpoint distances. .

Feature Extraction

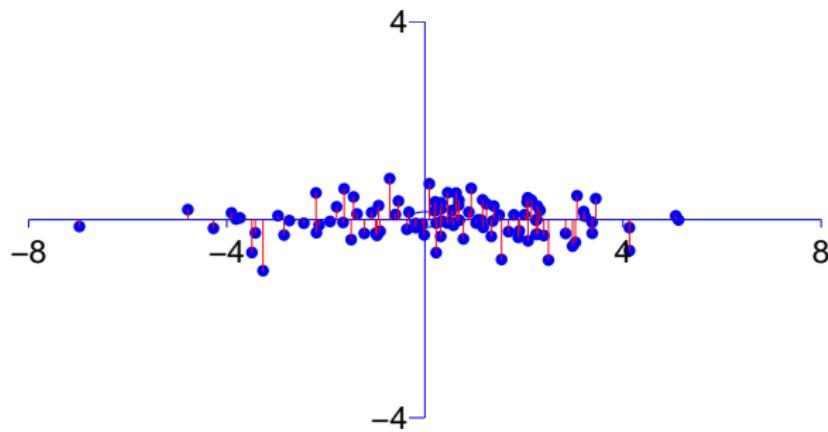


Figure: `demRotationDist`. Rotation preserves interpoint distances. Residuals are much reduced.

Feature Extraction

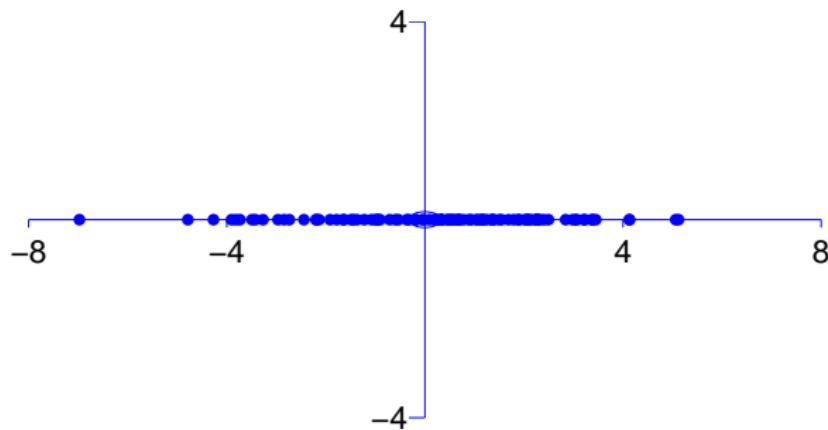


Figure: `demRotationDist`. Rotation preserves interpoint distances. Residuals are much reduced.

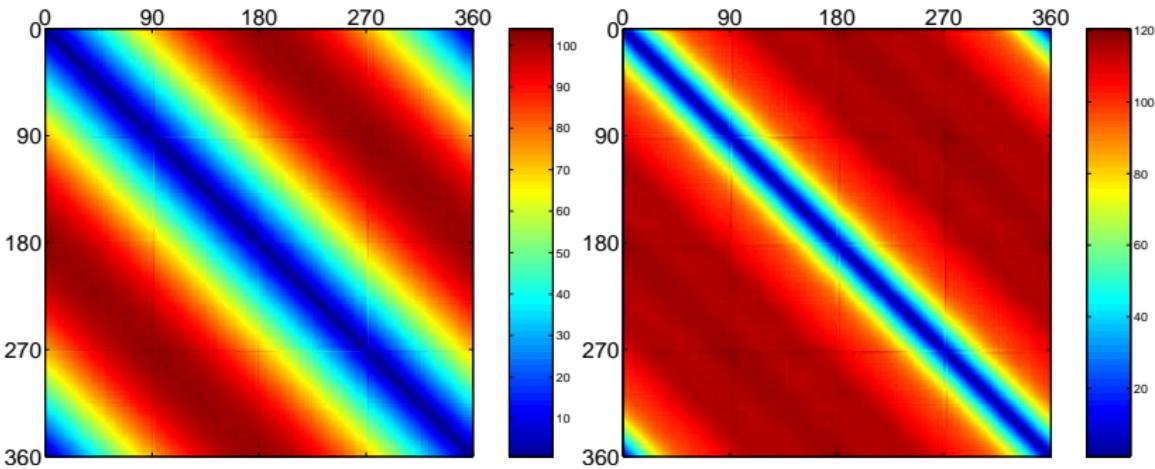
Which Rotation?

- We need the rotation that will minimise residual error.
- We already derived an algorithm for discarding directions.
- Discard direction with *maximum variance*.
- Error is then given by the sum of residual variances.

$$E(\mathbf{X}) = 2N^2 \sum_{k=q+1}^D \sigma_k^2.$$

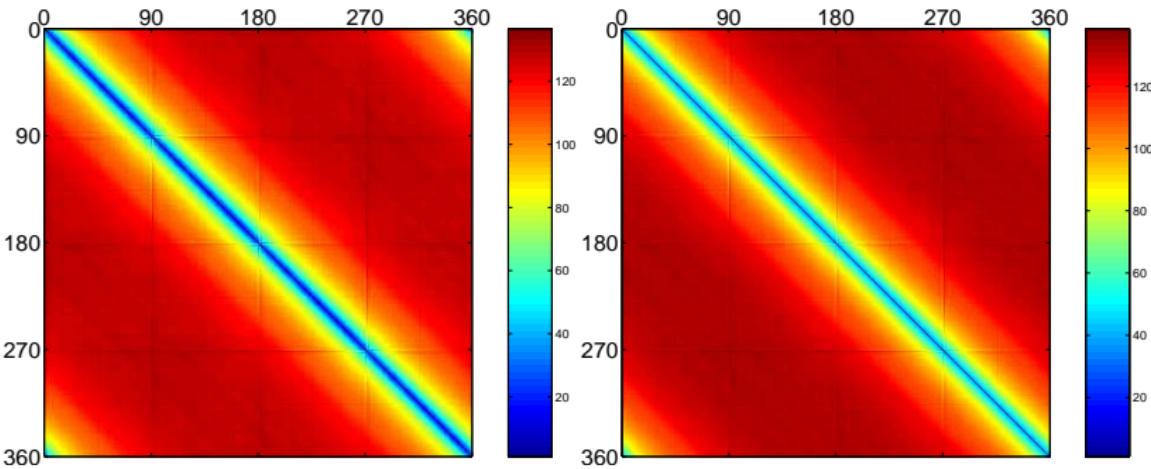
- Rotations of data matrix *do not* effect this analysis.

Rotation Reconstruction from Latent Space



Left: distances reconstructed with two dimensions. *Right:* distances reconstructed with 10 dimensions.

Rotation Reconstruction from Latent Space



Left: distances reconstructed with 100 dimensions. *Right:* distances reconstructed with 360 dimensions.

Reminder: Principal Component Analysis

- How do we find these directions?
- Find directions in data with maximal variance.
 - ▶ That's what PCA does!
- **PCA**: rotate data to extract these directions.
- **PCA**: work on the sample covariance matrix $\mathbf{S} = N^{-1}\hat{\mathbf{Y}}^T\hat{\mathbf{Y}}$.

Principal Component Analysis

- Find a direction in the data, $\mathbf{x}_{:,1} = \hat{\mathbf{Y}}\mathbf{r}_1$, for which variance is maximised.

$$\mathbf{r}_1 = \operatorname{argmax}_{\mathbf{r}_1} \operatorname{var}(\hat{\mathbf{Y}}\mathbf{r}_1)$$

$$\text{subject to : } \mathbf{r}_1^T \mathbf{r}_1 = 1$$

- Can rewrite in terms of sample covariance

-

$$\operatorname{var}(\mathbf{x}_{:,1}) = N^{-1} (\hat{\mathbf{Y}}\mathbf{r}_1)^T \hat{\mathbf{Y}}\mathbf{r}_1 = \mathbf{r}_1^T \underbrace{\left(N^{-1} \hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \right)}_{\text{sample covariance}} \mathbf{r}_1 = \mathbf{r}_1^T \mathbf{S} \mathbf{r}_1$$

Lagrangian

- Solution via constrained optimisation:

$$L(\mathbf{r}_1, \lambda_1) = \mathbf{r}_1^T \mathbf{S} \mathbf{r}_1 + \lambda_1 (1 - \mathbf{r}_1^T \mathbf{r}_1)$$

- Gradient with respect to \mathbf{r}_1

$$\frac{dL(\mathbf{r}_1, \lambda_1)}{d\mathbf{r}_1} = 2\mathbf{S}\mathbf{r}_1 - 2\lambda_1\mathbf{r}_1$$

rearrange to form

$$\mathbf{S}\mathbf{r}_1 = \lambda_1\mathbf{r}_1.$$

Which is recognised as an eigenvalue problem.

Lagrange Multiplier

- Recall the gradient,

$$\frac{dL(\mathbf{r}_1, \lambda_1)}{d\mathbf{r}_1} = 2\mathbf{S}\mathbf{r}_1 - 2\lambda_1\mathbf{r}_1 \quad (1)$$

to find λ_1 premultiply (1) by \mathbf{r}_1^T and rearrange giving

$$\lambda_1 = \mathbf{r}_1^T \mathbf{S} \mathbf{r}_1.$$

- Maximum variance is therefore *necessarily* the maximum eigenvalue of \mathbf{S} .
- This is the *first principal component*.

Further Directions

- Find orthogonal directions to earlier extracted directions with maximal variance.
- Orthogonality constraints, for $j < k$ we have

$$\mathbf{r}_j^T \mathbf{r}_k = \mathbf{0} \quad \mathbf{r}_k^T \mathbf{r}_k = 1$$

- Lagrangian

$$L(\mathbf{r}_k, \lambda_k, \gamma) = \mathbf{r}_k^T \mathbf{S} \mathbf{r}_k + \lambda_k (1 - \mathbf{r}_k^T \mathbf{r}_k) + \sum_{j=1}^{k-1} \gamma_j \mathbf{r}_j^T \mathbf{r}_k$$

$$\frac{dL(\mathbf{r}_k, \lambda_k)}{d\mathbf{r}_k} = 2\mathbf{S}\mathbf{r}_k - 2\lambda_k \mathbf{r}_k + \sum_{j=1}^{k-1} \gamma_j \mathbf{r}_j$$

Further Eigenvectors

- Gradient of Lagrangian:

$$\frac{dL(\mathbf{r}_k, \lambda_k)}{d\mathbf{r}_k} = 2\mathbf{S}\mathbf{r}_k - 2\lambda_k\mathbf{r}_k + \sum_{j=1}^{k-1} \gamma_j \mathbf{r}_j \quad (2)$$

- Premultiplying (2) by \mathbf{r}_i with $i < k$ implies

$$\gamma_i = 0$$

which allows us to write

$$\mathbf{S}\mathbf{r}_k = \lambda_k \mathbf{r}_k.$$

- Premultiplying (2) by \mathbf{r}_k implies

$$\lambda_k = \mathbf{r}_k^T \mathbf{S} \mathbf{r}_k.$$

- This is the k th *principal component*.

Principal Coordinates Analysis

- The rotation which finds directions of maximum variance is the eigenvectors of the covariance matrix.
- The variance in each direction is given by the eigenvalues.
- **Problem:** working directly with the sample covariance, \mathbf{S} , may be impossible.
- For example: perhaps we are given distances between data points, but not absolute locations.
 - ▶ No access to absolute positions: cannot compute original sample covariance.

An Alternative Formalism

- Matrix representation of eigenvalue problem for first q eigenvectors.

$$\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \mathbf{R}_q = \mathbf{R}_q \Lambda_q \quad \mathbf{R}_q \in \mathbb{R}^{D \times q} \quad (3)$$

- Premultiply by $\hat{\mathbf{Y}}$:

$$\hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \mathbf{R}_q = \hat{\mathbf{Y}} \mathbf{R}_q \Lambda_q$$

- Postmultiply by $\Lambda_q^{-\frac{1}{2}}$

$$\hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \mathbf{R}_q \Lambda_q^{-\frac{1}{2}} = \hat{\mathbf{Y}} \mathbf{R}_q \Lambda_q \Lambda_q^{-\frac{1}{2}}$$

An Alternative Formalism

- Matrix representation of eigenvalue problem for first q eigenvectors.

$$\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \mathbf{R}_q = \mathbf{R}_q \Lambda_q \quad \mathbf{R}_q \in \mathbb{R}^{D \times q} \quad (3)$$

- Premultiply by $\hat{\mathbf{Y}}$:

$$\hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \mathbf{R}_q = \hat{\mathbf{Y}} \mathbf{R}_q \Lambda_q$$

- Postmultiply by $\Lambda_q^{-\frac{1}{2}}$

$$\hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \mathbf{R}_q \Lambda_q^{-\frac{1}{2}} = \hat{\mathbf{Y}} \mathbf{R}_q \Lambda_q^{-\frac{1}{2}} \Lambda_q$$

An Alternative Formalism

- Matrix representation of eigenvalue problem for first q eigenvectors.

$$\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \mathbf{R}_q = \mathbf{R}_q \Lambda_q \quad \mathbf{R}_q \in \mathbb{R}^{D \times q} \quad (3)$$

- Premultiply by $\hat{\mathbf{Y}}$:

$$\hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \mathbf{R}_q = \hat{\mathbf{Y}} \mathbf{R}_q \Lambda_q$$

- Postmultiply by $\Lambda_q^{-\frac{1}{2}}$

$$\hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \mathbf{U}_q = \mathbf{U}_q \Lambda_q \quad \mathbf{U}_q = \hat{\mathbf{Y}} \mathbf{R}_q \Lambda_q^{-\frac{1}{2}}$$

\mathbf{U}_q Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_q are eigenvectors of inner product matrix.

$$\mathbf{U}_q^T \hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \mathbf{U}_q = \Lambda_q^{-\frac{1}{2}} \mathbf{R}_q^T \hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \mathbf{R}_q \Lambda_q^{-\frac{1}{2}}$$

- Full eigendecomposition of sample covariance

$$\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} = \mathbf{R} \Lambda \mathbf{R}^T$$

- Implies that

$$(\hat{\mathbf{Y}}^T \hat{\mathbf{Y}})^2 = \mathbf{R} \Lambda \mathbf{R}^T \mathbf{R} \Lambda \mathbf{R}^T = \mathbf{R} \Lambda^2 \mathbf{R}^T.$$

\mathbf{U}_q Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_q are eigenvectors of inner product matrix.

$$\mathbf{U}_q^T \hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \mathbf{U}_q = \mathbf{\Lambda}_q^{-\frac{1}{2}} \mathbf{R}_q^T \left(\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \right)^2 \mathbf{R}_q \mathbf{\Lambda}_q^{-\frac{1}{2}}$$

- Full eigendecomposition of sample covariance

$$\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} = \mathbf{R} \mathbf{\Lambda} \mathbf{R}^T$$

- Implies that

$$\left(\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \right)^2 = \mathbf{R} \mathbf{\Lambda} \mathbf{R}^T \mathbf{R} \mathbf{\Lambda} \mathbf{R}^T = \mathbf{R} \mathbf{\Lambda}^2 \mathbf{R}^T.$$

\mathbf{U}_q Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_q are eigenvectors of inner product matrix.

$$\mathbf{U}_q^T \hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \mathbf{U}_q = \mathbf{\Lambda}_q^{-\frac{1}{2}} \mathbf{R}_q^T \left(\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \right)^2 \mathbf{R}_q \mathbf{\Lambda}_q^{-\frac{1}{2}}$$

- Full eigendecomposition of sample covariance

$$\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} = \mathbf{R} \mathbf{\Lambda} \mathbf{R}^T$$

- Implies that

$$\left(\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \right)^2 = \mathbf{R} \mathbf{\Lambda} \mathbf{R}^T \mathbf{R} \mathbf{\Lambda} \mathbf{R}^T = \mathbf{R} \mathbf{\Lambda}^2 \mathbf{R}^T.$$

\mathbf{U}_q Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_q are eigenvectors of inner product matrix.

$$\mathbf{U}_q^T \hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \mathbf{U}_q = \mathbf{\Lambda}_q^{-\frac{1}{2}} \mathbf{R}_q^T \left(\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \right)^2 \mathbf{R}_q \mathbf{\Lambda}_q^{-\frac{1}{2}}$$

- Full eigendecomposition of sample covariance

$$\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} = \mathbf{R} \mathbf{\Lambda} \mathbf{R}^T$$

- Implies that

$$\left(\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} \right)^2 = \mathbf{R} \mathbf{\Lambda} \mathbf{R}^T \mathbf{R} \mathbf{\Lambda} \mathbf{R}^T = \mathbf{R} \mathbf{\Lambda}^2 \mathbf{R}^T.$$

\mathbf{U}_q Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_q are eigenvectors of inner product matrix.

$$\mathbf{U}_q^T \hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \mathbf{U}_q = \mathbf{\Lambda}_q^{-\frac{1}{2}} \mathbf{R}_q^T \mathbf{R} \mathbf{\Lambda}^2 \mathbf{R}^T \mathbf{R}_q \mathbf{\Lambda}_q^{-\frac{1}{2}}$$

- Full eigendecomposition of sample covariance

$$\hat{\mathbf{Y}}^T \hat{\mathbf{Y}} = \mathbf{R} \mathbf{\Lambda} \mathbf{R}^T$$

- Implies that

$$(\hat{\mathbf{Y}}^T \hat{\mathbf{Y}})^2 = \mathbf{R} \mathbf{\Lambda} \mathbf{R}^T \mathbf{R} \mathbf{\Lambda} \mathbf{R}^T = \mathbf{R} \mathbf{\Lambda}^2 \mathbf{R}^T.$$

\mathbf{U}_q Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_q are eigenvectors of inner product matrix.

$$\mathbf{U}_q^T \hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \mathbf{U}_q = \Lambda_q^{-\frac{1}{2}} \mathbf{R}_q^T \mathbf{R} \Lambda^2 \mathbf{R}^T \mathbf{R}_q \Lambda_q^{-\frac{1}{2}}$$

- Product of the first q eigenvectors with the rest,

$$\mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \mathbf{I}_q \\ \mathbf{0} \end{bmatrix} \in \mathfrak{R}^{D \times q}$$

where we have used \mathbf{I}_q to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

$$\Lambda \mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \Lambda_q \\ \mathbf{0} \end{bmatrix}$$

- Multiplying by self transpose gives

\mathbf{U}_q Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_q are eigenvectors of inner product matrix.

$$\mathbf{U}_q^T \hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \mathbf{U}_q = \Lambda_q^{-\frac{1}{2}} \mathbf{R}_q^T \mathbf{R} \Lambda^2 \mathbf{R}^T \mathbf{R}_q \Lambda_q^{-\frac{1}{2}}$$

- Product of the first q eigenvectors with the rest,

$$\mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \mathbf{I}_q \\ \mathbf{0} \end{bmatrix} \in \mathfrak{R}^{D \times q}$$

where we have used \mathbf{I}_q to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

$$\Lambda \mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \Lambda_q \\ \mathbf{0} \end{bmatrix}$$

- Multiplying by self transpose gives

\mathbf{U}_q Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_q are eigenvectors of inner product matrix.

$$\mathbf{U}_q^T \hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \mathbf{U}_q = \Lambda_q^{-\frac{1}{2}} \mathbf{R}_q^T \mathbf{R} \Lambda^2 \mathbf{R}^T \mathbf{R}_q \Lambda_q^{-\frac{1}{2}}$$

- Product of the first q eigenvectors with the rest,

$$\mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \mathbf{I}_q \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{D \times q}$$

where we have used \mathbf{I}_q to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

$$\Lambda \mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \Lambda_q \\ \mathbf{0} \end{bmatrix}$$

- Multiplying by self transpose gives

$$\mathbf{R}_q^T \mathbf{R} \Lambda^2 \mathbf{R}^T \mathbf{R}_q = \Lambda_q^2$$

\mathbf{U}_q Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_q are eigenvectors of inner product matrix.

$$\mathbf{U}_q^T \hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \mathbf{U}_q = \Lambda_q^{-\frac{1}{2}} [\mathbf{R}_q^T \mathbf{R} \Lambda^2 \mathbf{R}^T \mathbf{R}_q] \Lambda_q^{-\frac{1}{2}}$$

- Product of the first q eigenvectors with the rest,

$$\mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \mathbf{I}_q \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{D \times q}$$

where we have used \mathbf{I}_q to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

$$\Lambda \mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \Lambda_q \\ \mathbf{0} \end{bmatrix}$$

- Multiplying by self transpose gives

$$\mathbf{R}_q^T \mathbf{R} \Lambda^2 \mathbf{R}^T \mathbf{R}_q = \Lambda_q^2$$

\mathbf{U}_q Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_q are eigenvectors of inner product matrix.

$$\mathbf{U}_q^T \hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \mathbf{U}_q = \Lambda_q^{-\frac{1}{2}} [\mathbf{R}_q^T \mathbf{R} \Lambda^2 \mathbf{R}^T \mathbf{R}_q] \Lambda_q^{-\frac{1}{2}}$$

- Product of the first q eigenvectors with the rest,

$$\mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \mathbf{I}_q \\ \mathbf{0} \end{bmatrix} \in \mathfrak{R}^{D \times q}$$

where we have used \mathbf{I}_q to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

$$\Lambda \mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \Lambda_q \\ \mathbf{0} \end{bmatrix}$$

- Multiplying by self transpose gives

$$\mathbf{R}_q^T \mathbf{R} \Lambda^2 \mathbf{R}^T \mathbf{R}_q = \Lambda_q^2$$

\mathbf{U}_q Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_q are eigenvectors of inner product matrix.

$$\mathbf{U}_q^T \hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \mathbf{U}_q = \boldsymbol{\Lambda}_q^{-\frac{1}{2}} \boldsymbol{\Lambda}_q^2 \boldsymbol{\Lambda}_q^{-\frac{1}{2}}$$

- Product of the first q eigenvectors with the rest,

$$\mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \mathbf{I}_q \\ \mathbf{0} \end{bmatrix} \in \mathfrak{R}^{D \times q}$$

where we have used \mathbf{I}_q to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

$$\boldsymbol{\Lambda} \mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \boldsymbol{\Lambda}_q \\ \mathbf{0} \end{bmatrix}$$

- Multiplying by self transpose gives

$$\mathbf{R}_q^T \mathbf{R} \boldsymbol{\Lambda}^2 \mathbf{R}^T \mathbf{R}_q = \boldsymbol{\Lambda}_q^2$$

\mathbf{U}_q Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_q are eigenvectors of inner product matrix.

$$\mathbf{U}_q^T \hat{\mathbf{Y}} \hat{\mathbf{Y}}^T \mathbf{U}_q = \Lambda_q$$

- Product of the first q eigenvectors with the rest,

$$\mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \mathbf{I}_q \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{D \times q}$$

where we have used \mathbf{I}_q to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

$$\Lambda \mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \Lambda_q \\ \mathbf{0} \end{bmatrix}$$

- Multiplying by self transpose gives

$$\mathbf{R}_q^T \mathbf{R} \Lambda^2 \mathbf{R}^T \mathbf{R}_q = \Lambda_q^2$$

\mathbf{U}_q Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_q are eigenvectors of inner product matrix.

$$\hat{\mathbf{Y}}\hat{\mathbf{Y}}^T \mathbf{U}_q = \mathbf{U}_q \Lambda_q$$

- Product of the first q eigenvectors with the rest,

$$\mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \mathbf{I}_q \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{D \times q}$$

where we have used \mathbf{I}_q to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

$$\Lambda \mathbf{R}^T \mathbf{R}_q = \begin{bmatrix} \Lambda_q \\ \mathbf{0} \end{bmatrix}$$

- Multiplying by self transpose gives

$$\mathbf{R}_q^T \mathbf{R} \Lambda^2 \mathbf{R}^T \mathbf{R}_q = \Lambda_q^2$$

Equivalent Eigenvalue Problems

- Two eigenvalue problems are equivalent. One solves for the rotation, the other solves for the location of the rotated points.
- When $D < N$ it is easier to solve for the rotation, \mathbf{R}_q . But when $D > N$ we solve for the embedding (principal coordinate analysis).
- In MDS we may not know \mathbf{Y} , cannot compute $\hat{\mathbf{Y}}^T \hat{\mathbf{Y}}$ from distance matrix.
- Can we compute $\hat{\mathbf{Y}} \hat{\mathbf{Y}}^T$ instead?

The Covariance Interpretation

- $N^{-1}\hat{\mathbf{Y}}^T\hat{\mathbf{Y}}$ is the data covariance.
- $\hat{\mathbf{Y}}\hat{\mathbf{Y}}^T$ is a centred inner product matrix.
 - ▶ Also has an interpretation as a covariance matrix (Gaussian processes).
 - ▶ It expresses correlation and anti correlation between *data points*.
 - ▶ Standard covariance expresses correlation and anti correlation between *data dimensions*.

Distance to Similarity: A Gaussian Covariance Interpretation

- Translate between covariance and distance.
 - ▶ Consider a vector sampled from a zero mean Gaussian distribution,

$$\mathbf{z} \sim N(\mathbf{0}, \mathbf{K}).$$

- ▶ Expected square distance between two elements of this vector is

$$d_{i,j}^2 = \langle (z_i - z_j)^2 \rangle$$

$$d_{i,j}^2 = \langle z_i^2 \rangle + \langle z_j^2 \rangle - 2 \langle z_i z_j \rangle$$

under a zero mean Gaussian with covariance given by \mathbf{K} this is

$$d_{i,j}^2 = k_{i,i} + k_{j,j} - 2k_{i,j}.$$

Take the distance to be square root of this,

$$d_{i,j} = (k_{i,i} + k_{j,j} - 2k_{i,j})^{\frac{1}{2}}.$$

Standard Transformation

- This transformation is known as the *standard transformation* between a similarity and a distance [Mardia et al., 1979, pg 402].
- If the covariance is of the form $\mathbf{K} = \hat{\mathbf{Y}}\hat{\mathbf{Y}}^T$ then $k_{i,j} = \mathbf{y}_{i,:}^T \mathbf{y}_{j,:}$ and

$$d_{i,j} = (\mathbf{y}_{i,:}^T \mathbf{y}_{i,:} + \mathbf{y}_{j,:}^T \mathbf{y}_{j,:} - 2\mathbf{y}_{i,:}^T \mathbf{y}_{j,:})^{\frac{1}{2}} = \|\mathbf{y}_{i,:} - \mathbf{y}_{j,:}\|_2.$$

- For other distance matrices this gives us an approach to convert to a similarity matrix or kernel matrix so we can perform classical MDS.

Example: Road Distances with Classical MDS

- Classical example: redraw a map from road distances (see e.g. Mardia et al. 1979).
- Here we use distances across Europe.
 - ▶ Between each city we have road distance.
 - ▶ Enter these in a distance matrix.
 - ▶ Convert to a similarity matrix using the covariance interpretation.
 - ▶ Perform eigendecomposition.
- See <http://www.cs.man.ac.uk/~neill/dimred> for the data we used.

Distance Matrix

Convert distances to similarities using “covariance interpretation”.

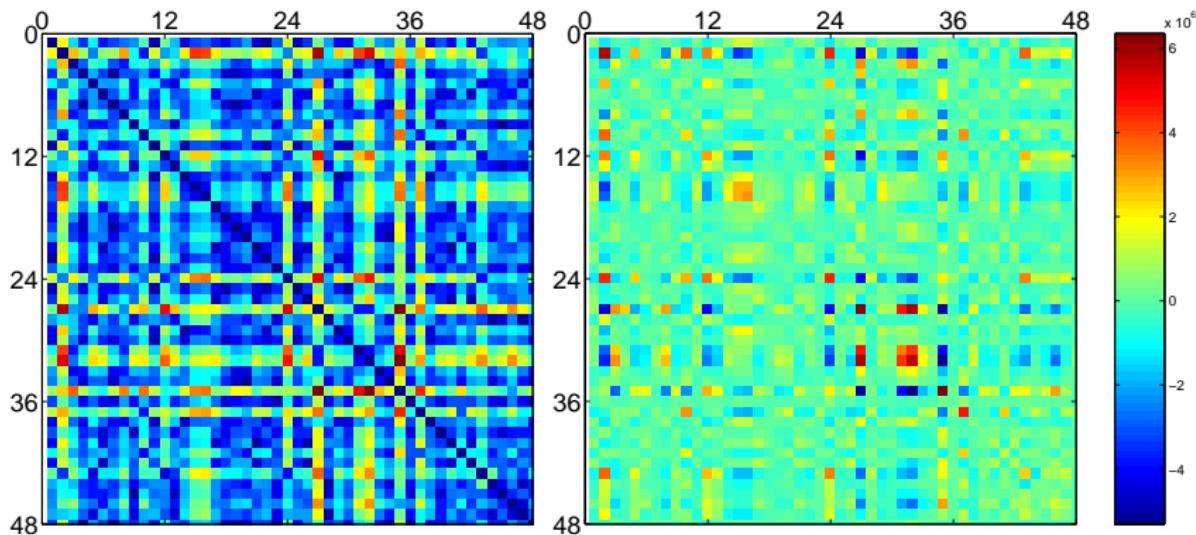


Figure: *Left:* road distances between European cities visualised as a matrix.
Right: similarity matrix derived from these distances. If this matrix is a covariance matrix, then expected distance between samples from this covariance is given on the *left*.

Example: Road Distances with Classical MDS

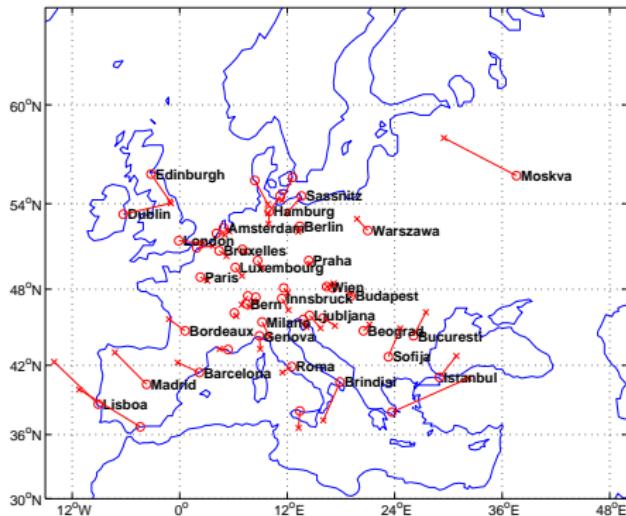


Figure: `demCmdsRoadData`. Reconstructed locations projected onto true map using Procrustes rotations.

Beware Negative Eigenvalues

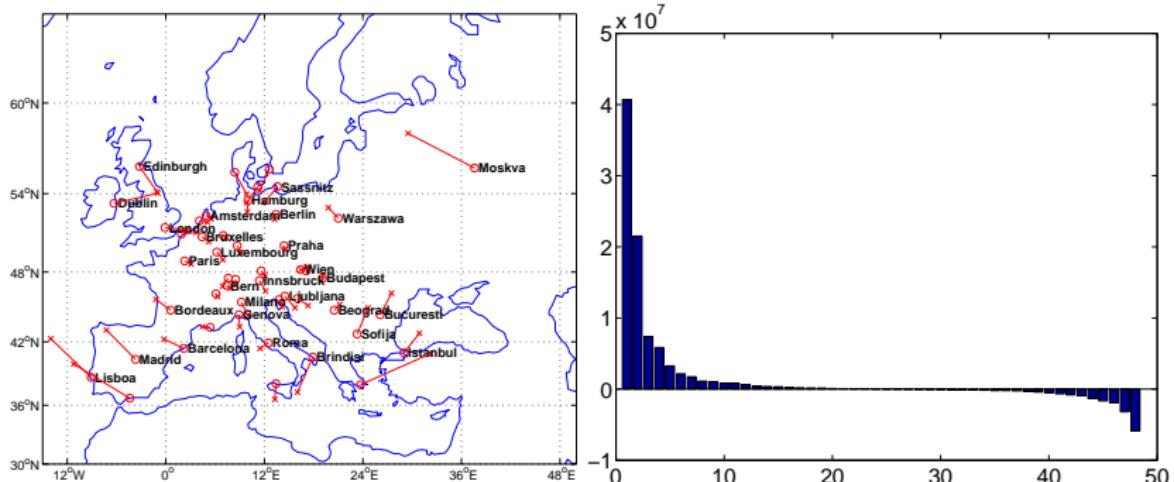


Figure: Eigenvalues of the similarity matrix are negative in this case.

European Cities Distance Matrices

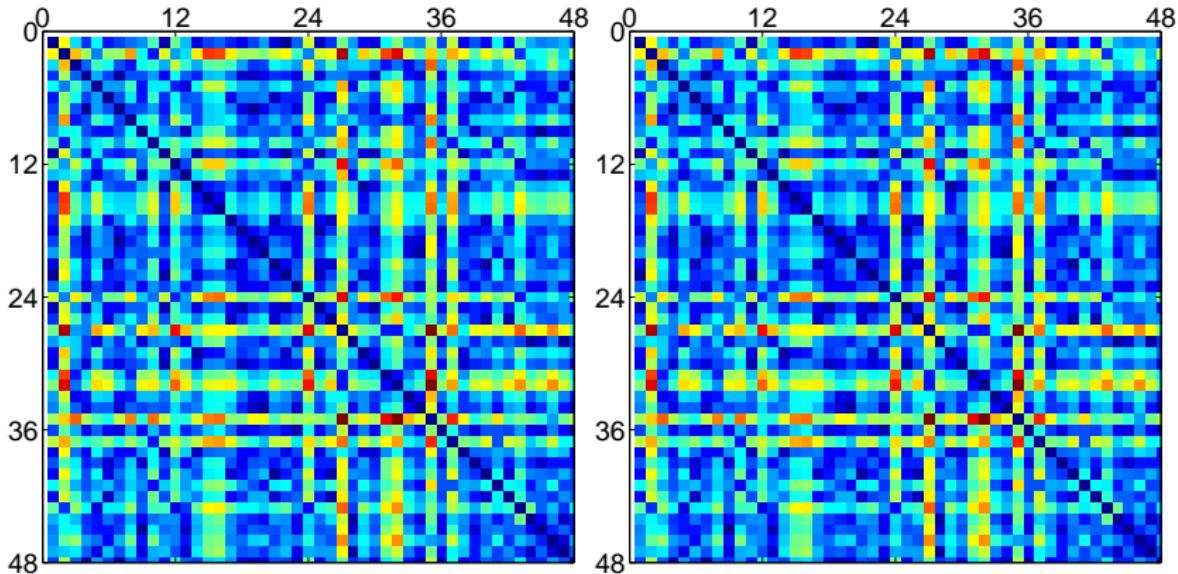


Figure: *Left:* the original distance matrix. *Right:* the reconstructed distance matrix.

Other Distance Similarity Measures

- Can use similarity/distance of your choice.
- Beware though!
 - ▶ The similarity must be positive semi definite for the distance to be Euclidean.
 - ▶ Why? Can immediately see positive definite is sufficient from the “covariance interpretation”.
 - ▶ For more details see [Mardia et al., 1979, Theorem 14.2.2].

A Class of Similarities for Vector Data

- All Mercer kernels are positive semi definite.
- Example, squared exponential (also known as RBF or Gaussian)

$$k_{i,j} = \exp\left(-\frac{\|\mathbf{y}_{i,:} - \mathbf{y}_{j,:}\|^2}{2l^2}\right).$$

This leads to a kernel eigenvalue problem.

- This is known as Kernel PCA Schölkopf et al. 1998.

Implied Distance Matrix

- What is the equivalent distance $d_{i,j}$?

$$d_{i,j} = \sqrt{k_{i,i} + k_{j,j} - 2k_{i,j}}$$

- If point separation is large, $k_{i,j} \rightarrow 0$. $k_{i,i} = 1$ and $k_{j,j} = 1$.

$$d_{i,j} = \sqrt{2}$$

- Kernel with RBF kernel projects along axes PCA can produce poor results.
- Uses many dimensions to keep dissimilar objects a constant amount apart.

Implied Distances on Rotated Sixes

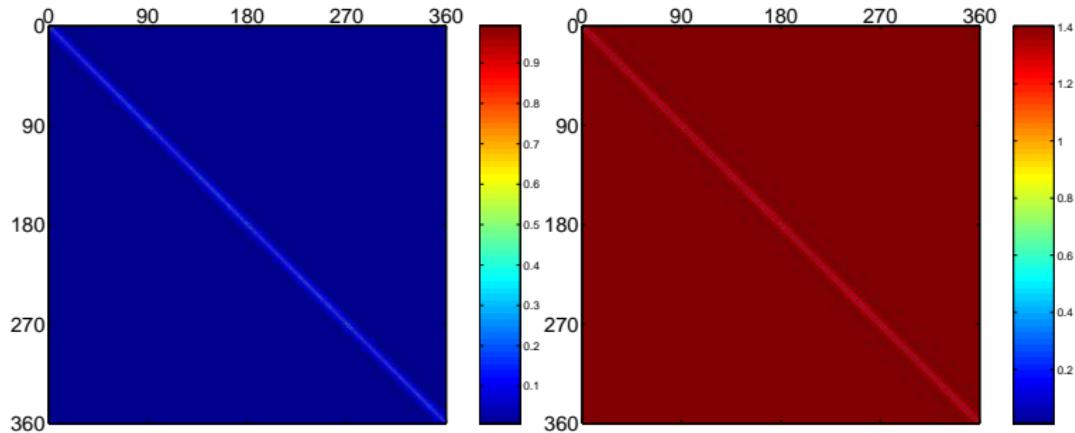


Figure: *Left:* similarity matrix for RBF kernel on rotated sixes. *Right:* implied distance matrix for kernel on rotated sixes. Note that most of the distances are set to $\sqrt{2} \approx 1.41$.

Kernel PCA on Rotated Sixes

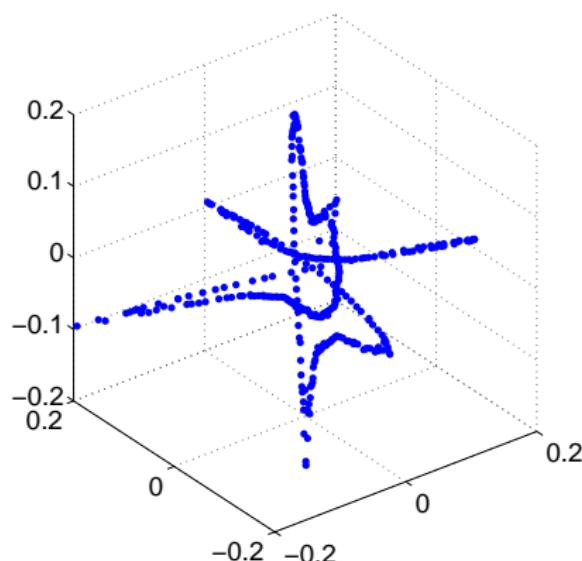


Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space for kernel PCA. Points spread out along axes so that dissimilar points are always $\sqrt{2}$ apart.

Kernel PCA on Rotated Sixes

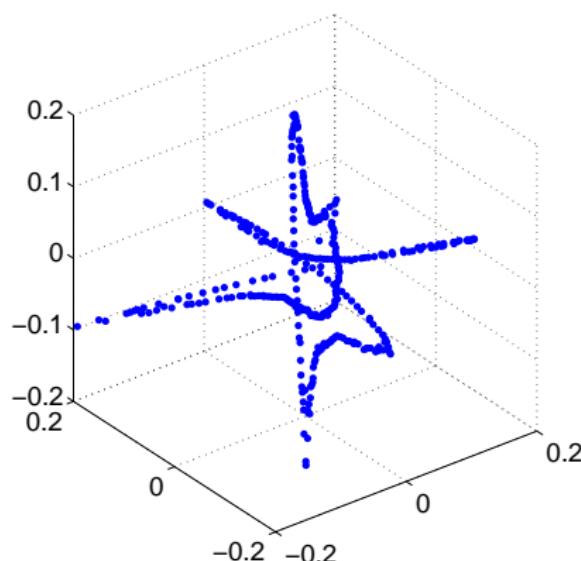


Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space for kernel PCA. Points spread out along axes so that dissimilar points are always $\sqrt{2}$ apart.

Kernel PCA on Rotated Sixes

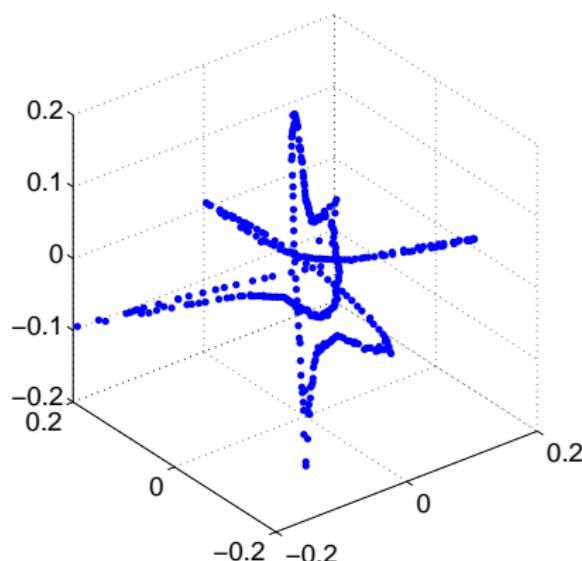


Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space for kernel PCA. Points spread out along axes so that dissimilar points are always $\sqrt{2}$ apart.

Kernel PCA on Rotated Sixes

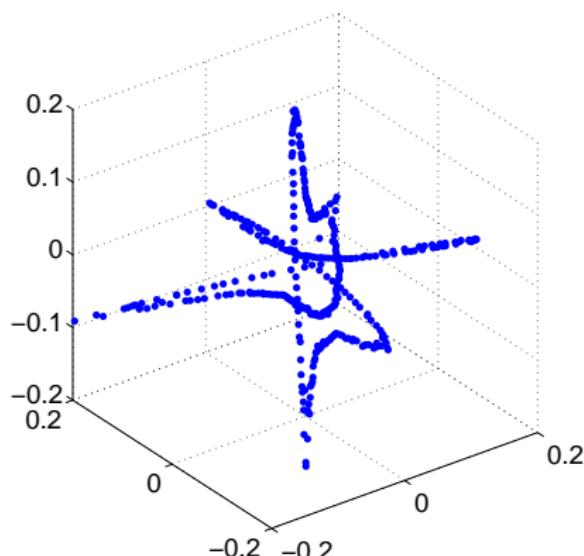


Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space for kernel PCA. Points spread out along axes so that dissimilar points are always $\sqrt{2}$ apart.

Kernel PCA on Rotated Sixes

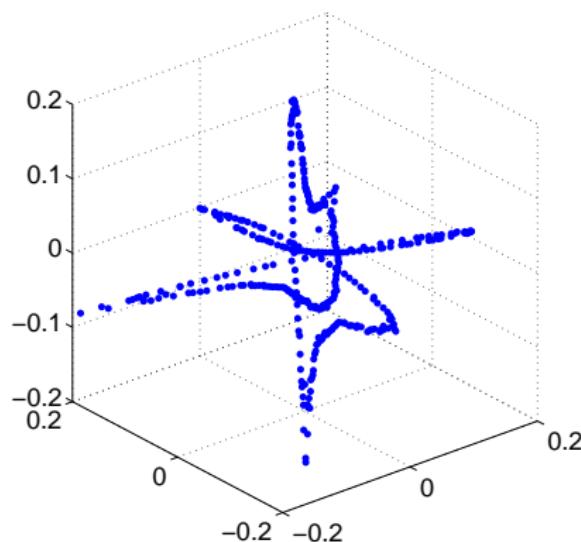


Figure: `demSixKpca`. The fifth, sixth and seventh dimensions of the latent space for kernel PCA. Points spread out along axes so that dissimilar points are always $\sqrt{2}$ apart.

Kernel PCA on Rotated Sixes

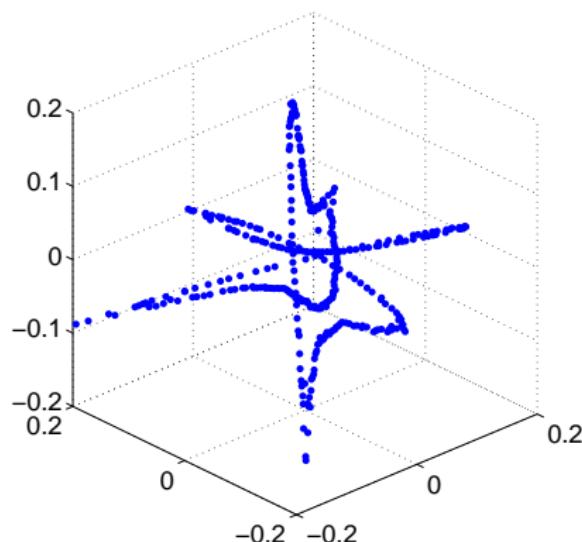


Figure: `demSixKpca`. The fifth, sixth and seventh dimensions of the latent space for kernel PCA. Points spread out along axes so that dissimilar points are always $\sqrt{2}$ apart.

MDS Conclusions

- Multidimensional scaling: preserve a distance matrix.
- Classical MDS
 - ▶ a particular objective function
 - ▶ for Classical MDS distance matching is equivalent to maximum variance
 - ▶ spectral decomposition of the similarity matrix
- For Euclidean distances in \mathbb{Y} space classical MDS is equivalent to PCA.
 - ▶ known as principal coordinate analysis (PCO)
- Haven't discussed choice of distance matrix.

Outline

- 1 Motivation
- 2 Background
- 3 Distance Matching
- 4 Distances along the Manifold
- 5 Model Selection
- 6 Conclusions

Data

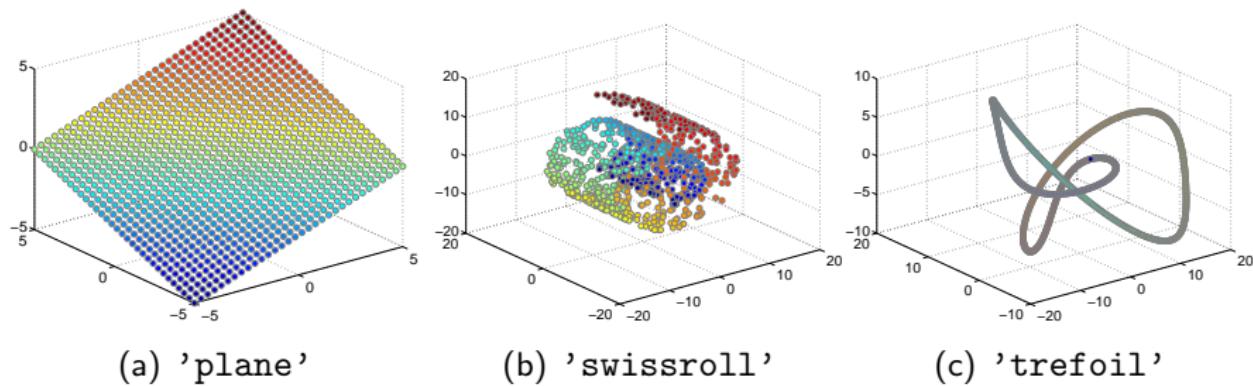


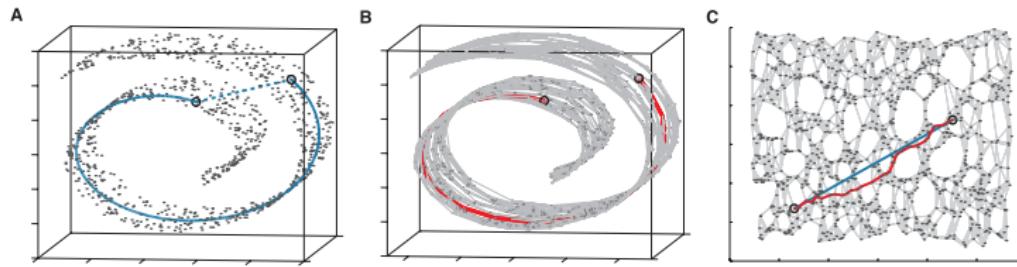
Figure: Illustrative data sets for the talk. Each data set is generated by calling `generateManifoldData(dataType)`. The `dataType` argument is given below each plot.

Isomap

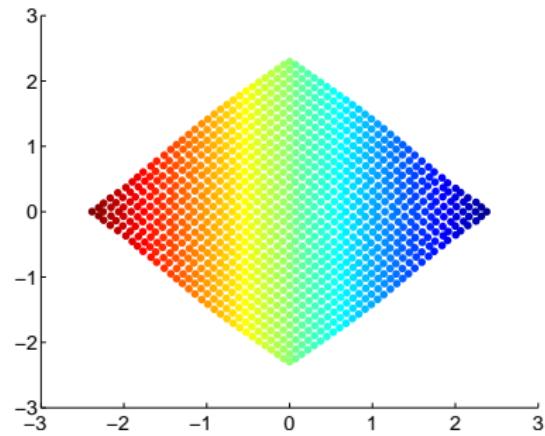
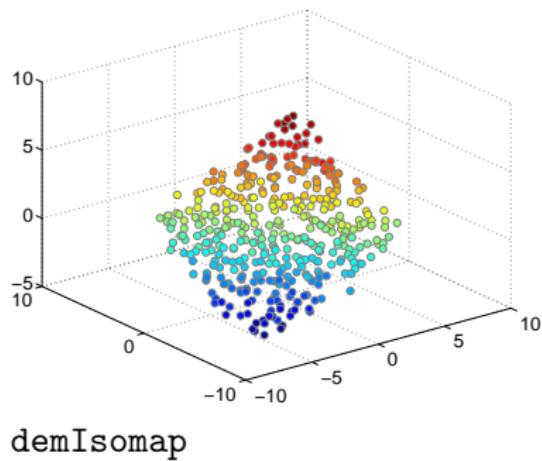
- *Tenenbaum et al. 2000*
- MDS finds geometric configuration preserving distances
- MDS applied to Manifold distance
- Geodesic Distance = Manifold Distance
- Cannot compute geodesic distance without knowing manifold

Isomap

- Isomap: define neighbours and compute distances between neighbours.
- Geodesic Distance approximated by shortest path through adjacency matrix.



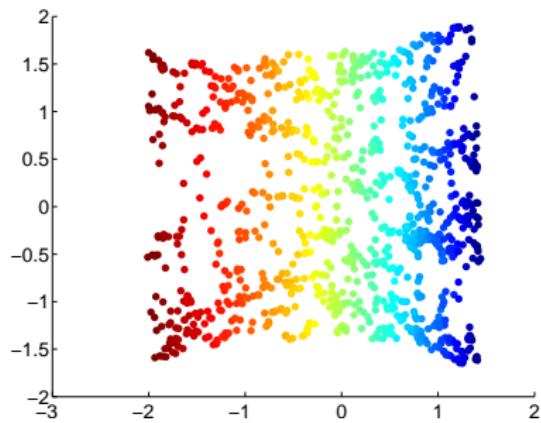
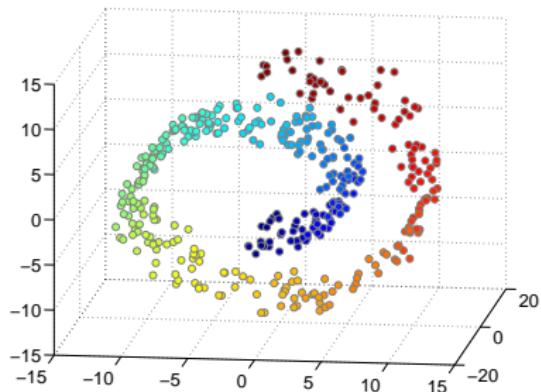
Isomap Examples¹



demIsomap

¹Data generation Carl Henrik Ek

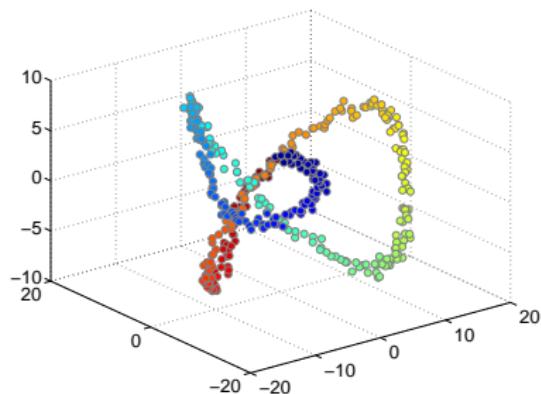
Isomap Examples¹



demIsomap

¹Data generation Carl Henrik Ek

Isomap Examples¹



¹Data generation Carl Henrik Ek

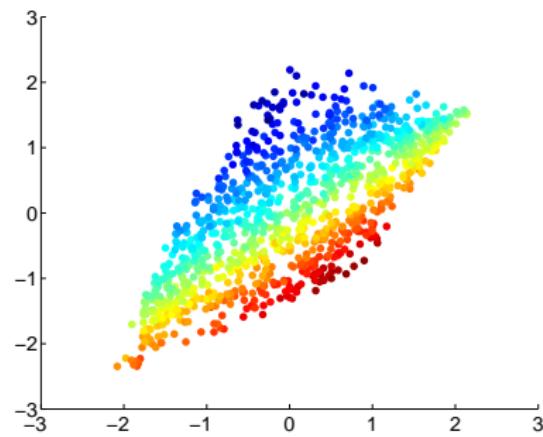
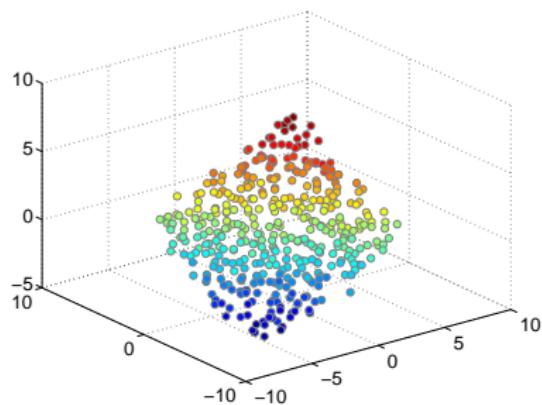
Isomap: Summary

- MDS on shortest path approximation of manifold distance
- + Simple
- + Intrinsic dimension from eigen spectra
- Solves a very large eigenvalue problem
- Cannot handle holes or non-convex manifold
- Sensitive to “short circuit”

Inverse Covariance

- From the “covariance interpretation” we think of the similarity matrix as a covariance.
- Each element of the covariance is a function of two data points.
- Another option is to specify the inverse covariance.
If the inverse covariance between two points is zero. Those points are independent given all other points.
 - ▶ This is a *conditional independence*.
 - ▶ Describes how points are connected.
- Laplacian Eigenmaps and LLE can both be seen as specifying the inverse covariance.

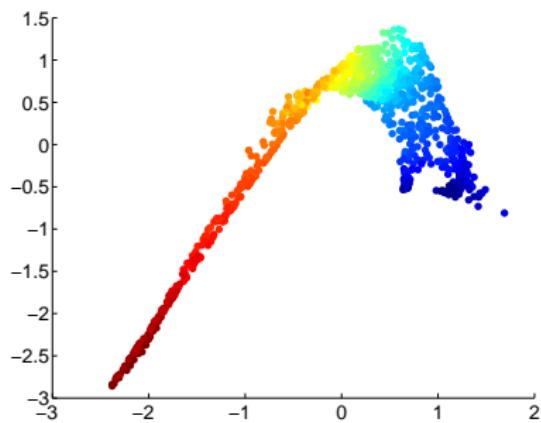
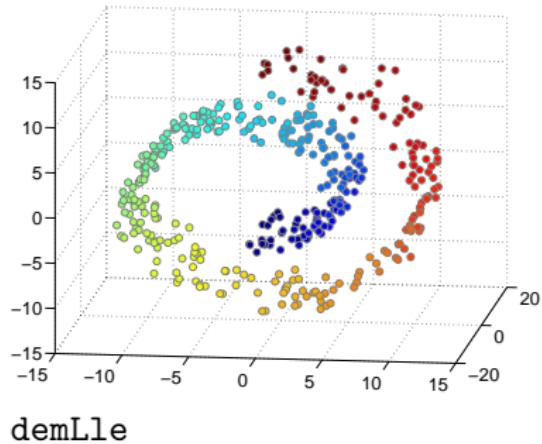
LLE Examples²



demLle

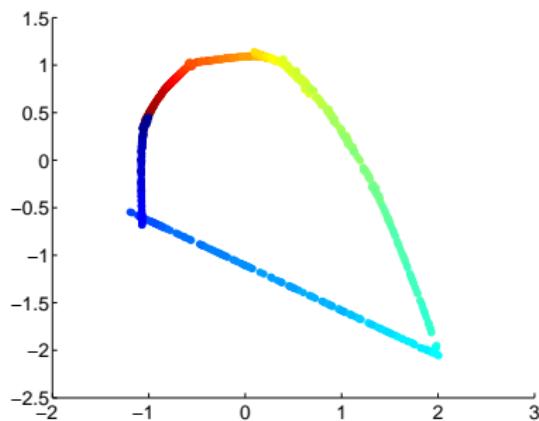
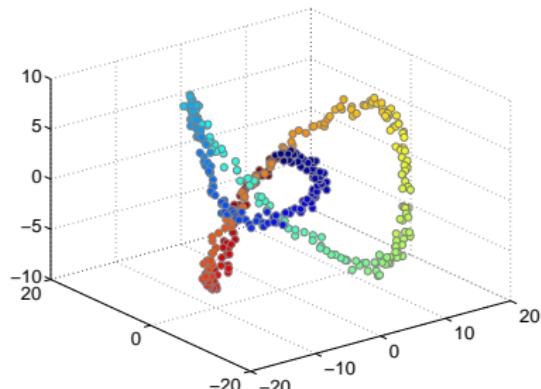
²7 neighbours used. No playing with settings.

LLE Examples²



²7 neighbours used. No playing with settings.

LLE Examples²



demLle

²7 neighbours used. No playing with settings.

- Observed data have been sampled from manifold
- Spectral methods start in the “wrong” end
- *“It’s a lot easier to make a mess than to clean it up!”*
 - ▶ Things break or disappear
- How to model observation “generation”?

- Observed data have been sampled from manifold
- Spectral methods start in the “wrong” end
- *“It’s a lot easier to make a mess than to clean it up!”*
 - ▶ Things break or disappear
- How to model observation “generation”?

- Observed data have been sampled from manifold
- Spectral methods start in the “wrong” end
- *“It’s a lot easier to make a mess than to clean it up!”*
 - ▶ Things break or disappear
- How to model observation “generation”?

- Observed data have been sampled from manifold
- Spectral methods start in the “wrong” end
- *“It’s a lot easier to make a mess than to clean it up!”*
 - ▶ Things break or disappear
- How to model observation “generation”?

Outline

- 1 Motivation
- 2 Background
- 3 Distance Matching
- 4 Distances along the Manifold
- 5 Model Selection
- 6 Conclusions

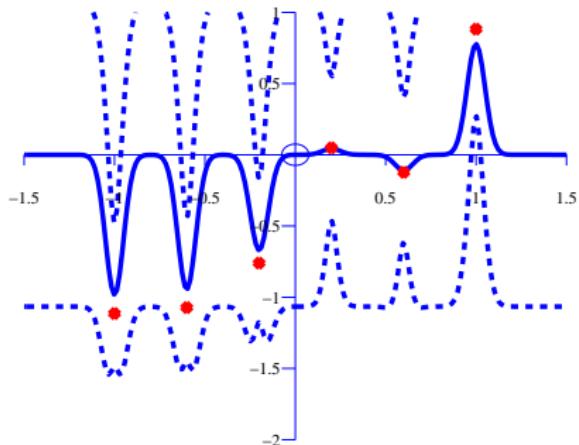
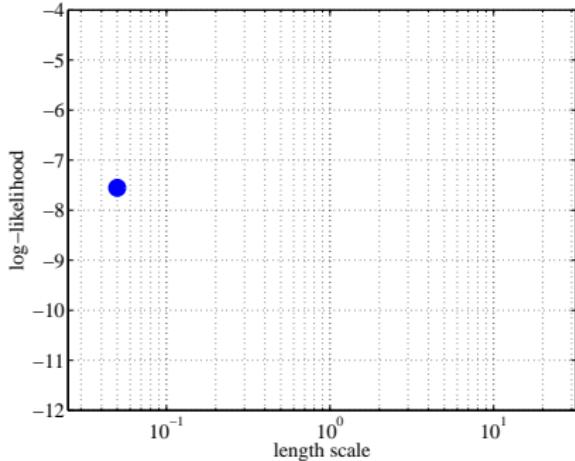
- Observed data have been sampled from low dimensional manifold
- $\mathbf{y} = f(\mathbf{x})$
- Idea: Model f rank embedding according to
 - ① Data fit of f
 - ② Complexity of f
- How to model f ?
 - ① Making as few assumptions about f as possible?
 - ② Allowing f from as “rich” class as possible?

Gaussian Processes

- Generalisation of Gaussian Distribution over **infinite** index sets
- Can be used specify distributions over functions
- Regression

$$\begin{aligned}\mathbf{y} &= f(\mathbf{x}) + \boldsymbol{\epsilon} \\ p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\Phi}) &= \int p(\mathbf{Y}|f, \mathbf{X}, \boldsymbol{\Phi})p(f|\mathbf{X}, \boldsymbol{\Phi})df \\ p(f|\mathbf{X}, \boldsymbol{\Phi}) &= \mathcal{N}(\mathbf{0}, \mathbf{K}) \\ \hat{\boldsymbol{\Phi}} &= \operatorname{argmax}_{\boldsymbol{\Phi}} p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\Phi})\end{aligned}$$

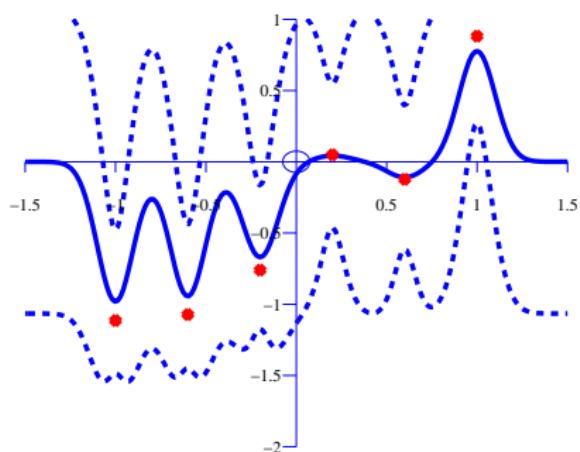
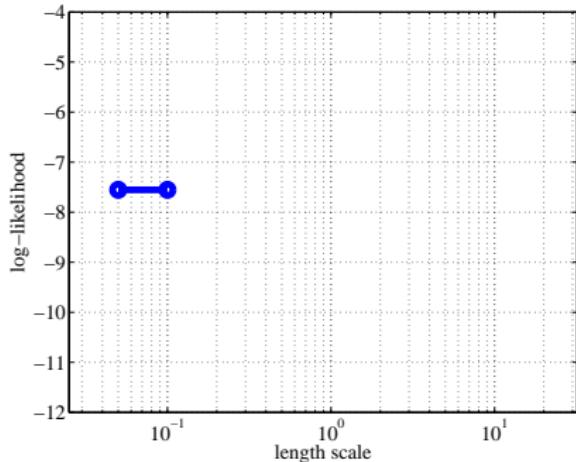
Gaussian Processes³



$$\log p(\mathbf{Y}|\mathbf{X}) = \underbrace{-\frac{1}{2} \mathbf{Y}^T (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{Y} -}_{data-fit} \underbrace{\frac{1}{2} \log \det(\mathbf{K} + \beta^{-1} \mathbf{I}) - \frac{N}{2} \log 2\pi}_{complexity}$$

³Images: N.D. Lawrence

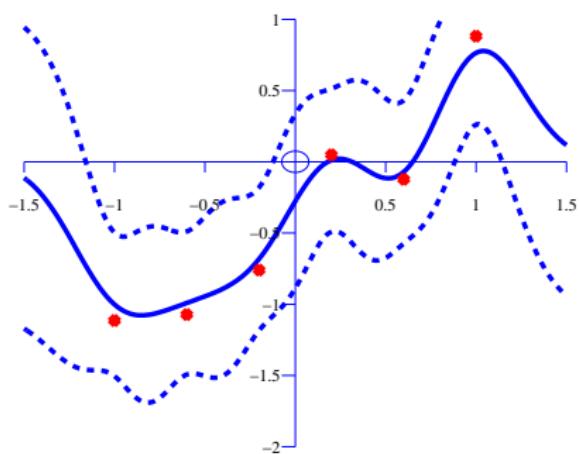
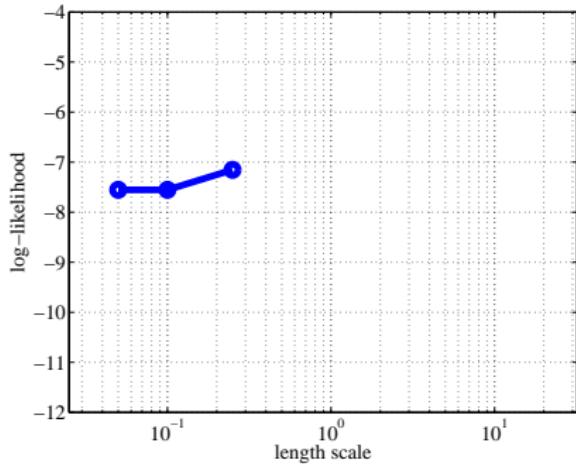
Gaussian Processes³



$$\log p(\mathbf{Y}|\mathbf{X}) = \underbrace{-\frac{1}{2} \mathbf{Y}^T (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{Y} -}_{data-fit} \underbrace{\frac{1}{2} \log \det(\mathbf{K} + \beta^{-1} \mathbf{I}) - \frac{N}{2} \log 2\pi}_{complexity}$$

³Images: N.D. Lawrence

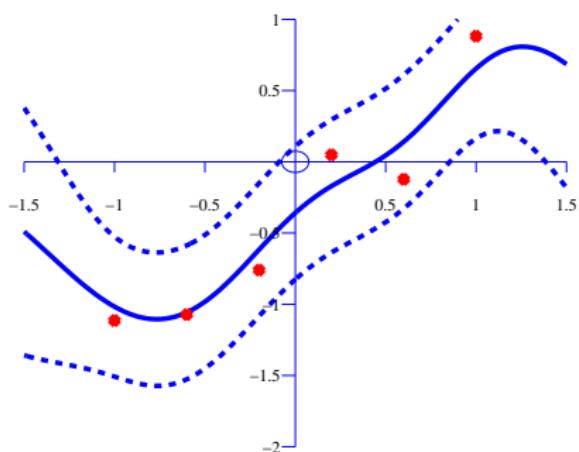
Gaussian Processes³



$$\log p(\mathbf{Y}|\mathbf{X}) = \underbrace{-\frac{1}{2} \mathbf{Y}^T (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{Y} -}_{data-fit} \underbrace{\frac{1}{2} \log \det(\mathbf{K} + \beta^{-1} \mathbf{I}) - \frac{N}{2} \log 2\pi}_{complexity}$$

³Images: N.D. Lawrence

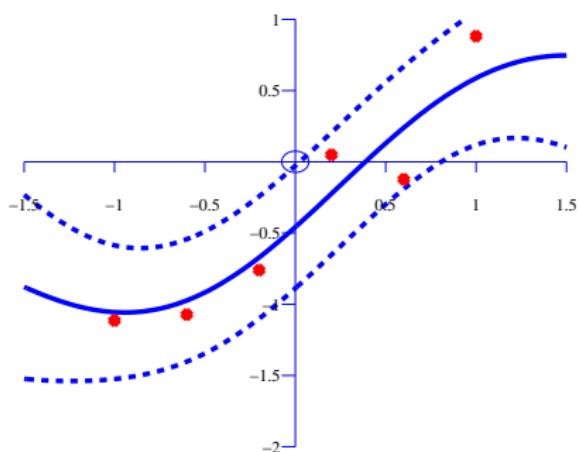
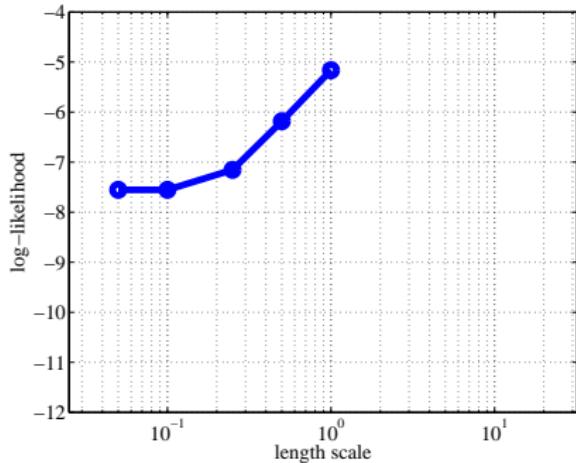
Gaussian Processes³



$$\log p(\mathbf{Y}|\mathbf{X}) = \underbrace{-\frac{1}{2} \mathbf{Y}^T (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{Y} -}_{data-fit} \underbrace{\frac{1}{2} \log \det(\mathbf{K} + \beta^{-1} \mathbf{I}) - \frac{N}{2} \log 2\pi}_{complexity}$$

³Images: N.D. Lawrence

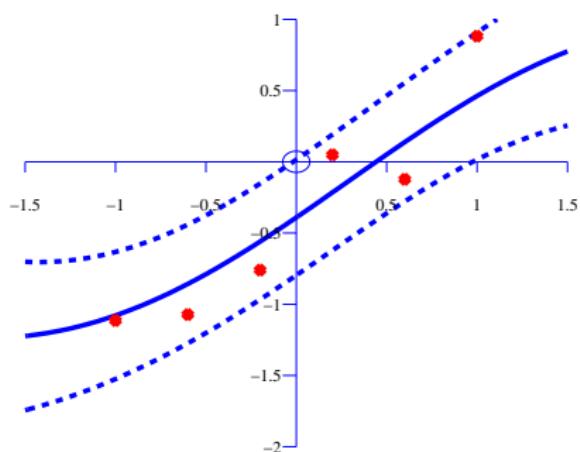
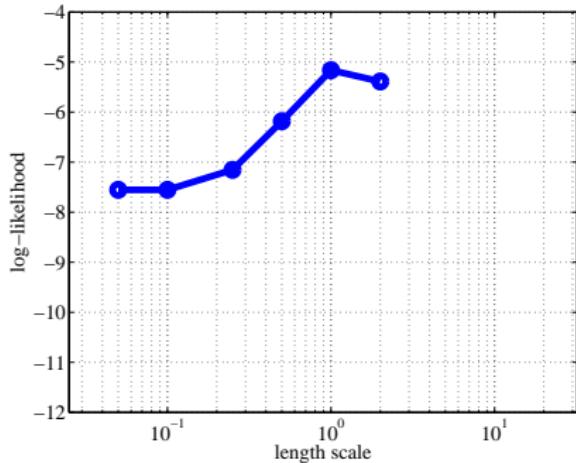
Gaussian Processes³



$$\log p(\mathbf{Y}|\mathbf{X}) = \underbrace{-\frac{1}{2} \mathbf{Y}^T (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{Y} -}_{data-fit} \underbrace{\frac{1}{2} \log \det(\mathbf{K} + \beta^{-1} \mathbf{I}) - \frac{N}{2} \log 2\pi}_{complexity}$$

³Images: N.D. Lawrence

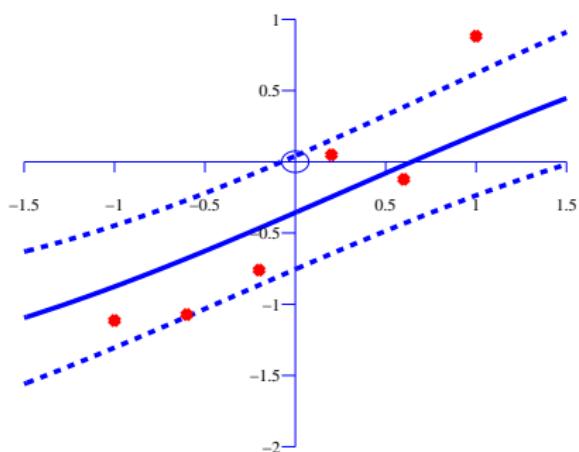
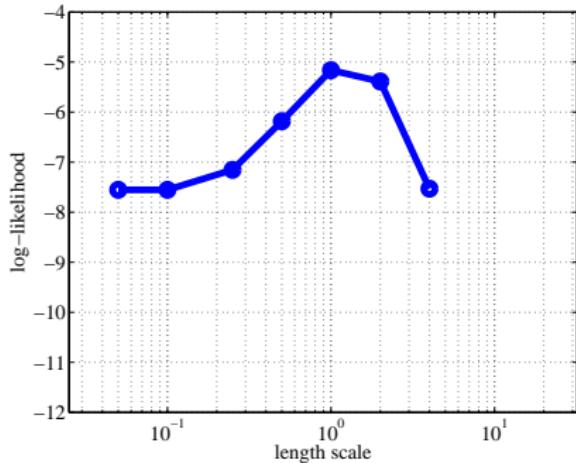
Gaussian Processes³



$$\log p(\mathbf{Y}|\mathbf{X}) = \underbrace{-\frac{1}{2} \mathbf{Y}^T (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{Y} -}_{data-fit} \underbrace{\frac{1}{2} \log \det(\mathbf{K} + \beta^{-1} \mathbf{I}) - \frac{N}{2} \log 2\pi}_{complexity}$$

³Images: N.D. Lawrence

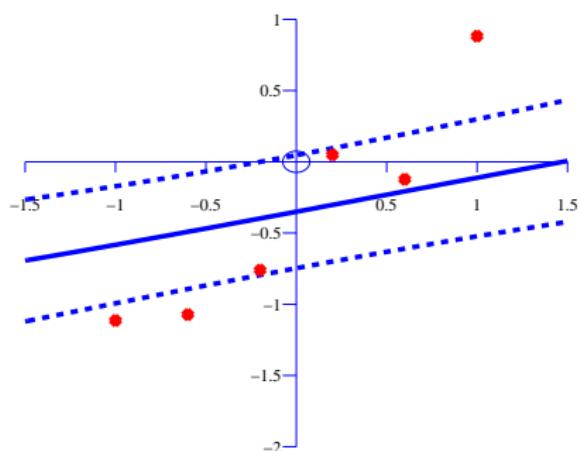
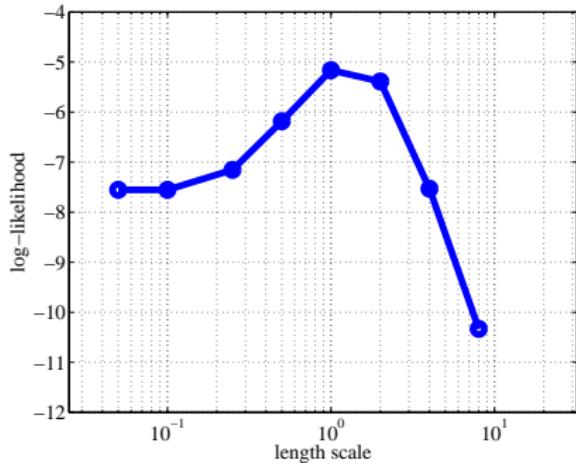
Gaussian Processes³



$$\log p(\mathbf{Y}|\mathbf{X}) = \underbrace{-\frac{1}{2} \mathbf{Y}^T (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{Y} -}_{data-fit} \underbrace{\frac{1}{2} \log \det(\mathbf{K} + \beta^{-1} \mathbf{I}) - \frac{N}{2} \log 2\pi}_{complexity}$$

³Images: N.D. Lawrence

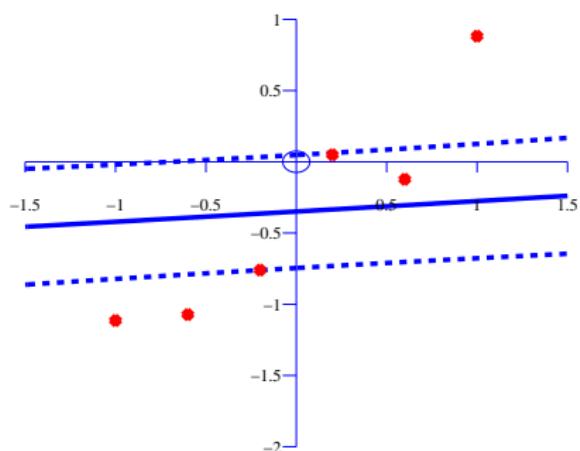
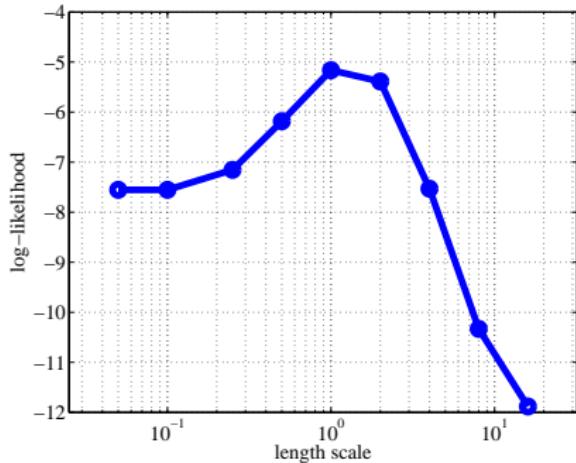
Gaussian Processes³



$$\log p(\mathbf{Y}|\mathbf{X}) = \underbrace{-\frac{1}{2} \mathbf{Y}^T (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{Y} -}_{data-fit} \underbrace{\frac{1}{2} \log \det(\mathbf{K} + \beta^{-1} \mathbf{I}) - \frac{N}{2} \log 2\pi}_{complexity}$$

³Images: N.D. Lawrence

Gaussian Processes³



$$\log p(\mathbf{Y}|\mathbf{X}) = \underbrace{-\frac{1}{2} \mathbf{Y}^T (\mathbf{K} + \beta^{-1} \mathbf{I})^{-1} \mathbf{Y} -}_{data-fit} \underbrace{\frac{1}{2} \log \det(\mathbf{K} + \beta^{-1} \mathbf{I}) - \frac{N}{2} \log 2\pi}_{complexity}$$

³Images: N.D. Lawrence

Gaussian Process Latent Variable Models

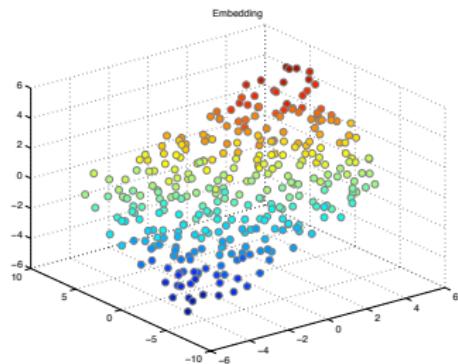
- GP-LVM models sampling process

$$\begin{aligned}\mathbf{y} &= f(\mathbf{x}) + \epsilon \\ p(\mathbf{Y}|\mathbf{X}, \Phi) &= \int p(\mathbf{Y}|f, \mathbf{X}, \Phi)p(f|\mathbf{X}, \Phi)df \\ p(f|\mathbf{X}, \Phi) &= \mathcal{N}(\mathbf{0}, \mathbf{K}) \\ \{\hat{\mathbf{X}}, \hat{\Phi}\} &= \operatorname{argmax}_{\mathbf{X}, \Phi} p(\mathbf{Y}|\mathbf{X}, \Phi)\end{aligned}$$

- Linear: Closed form solution
- Non-Linear: Gradient based solution

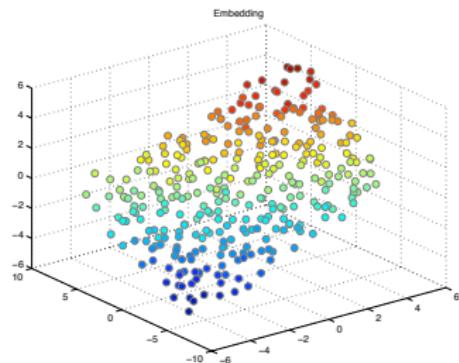
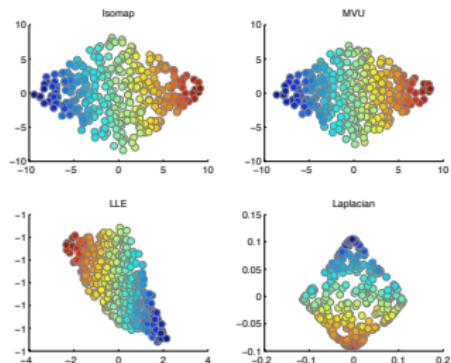
- *Lawrence* - 2003 suggested the use of Spectral algorithms to initialise the latent space \mathbf{Y}
- *Harmeling* - 2007 evaluated the use of GP-LVM objective for model selection
 - ▶ Comparisons between **Procrustes** score to ground truth and GP-LVM objective

Model Selection: Results⁴



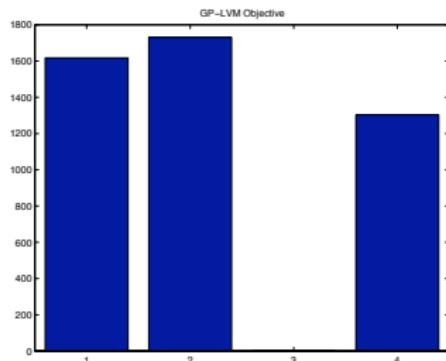
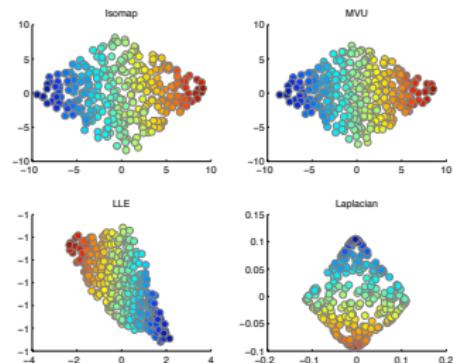
⁴Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results⁴



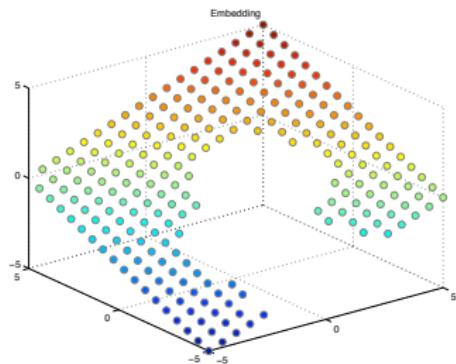
⁴Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results⁴



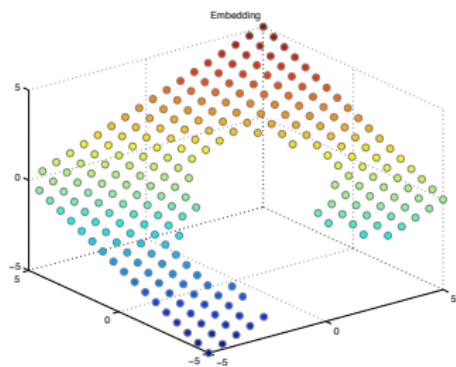
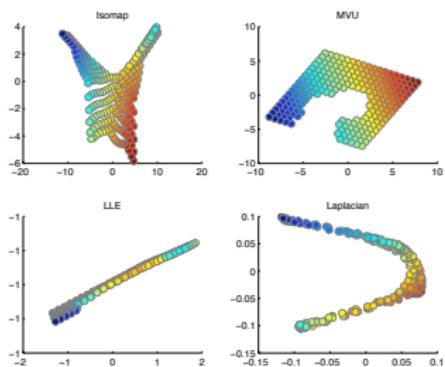
⁴Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results⁴



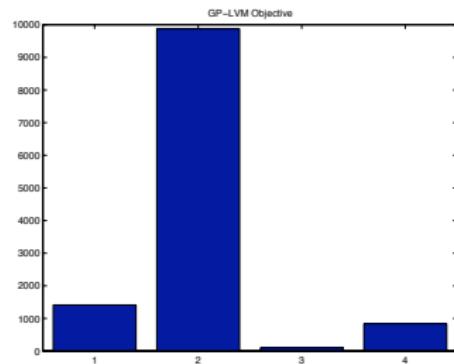
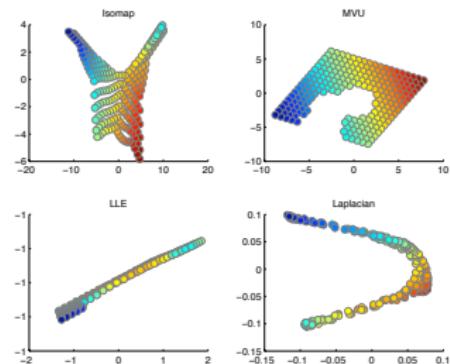
⁴Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results⁴



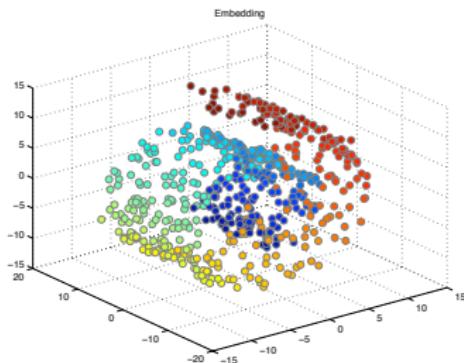
⁴Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results⁴



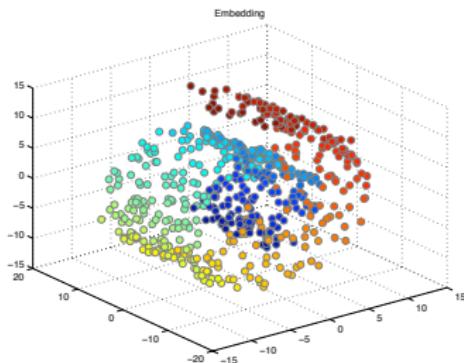
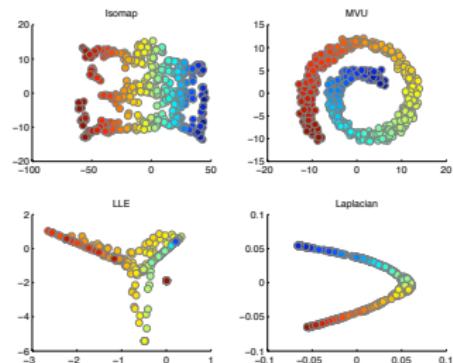
⁴Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results⁴



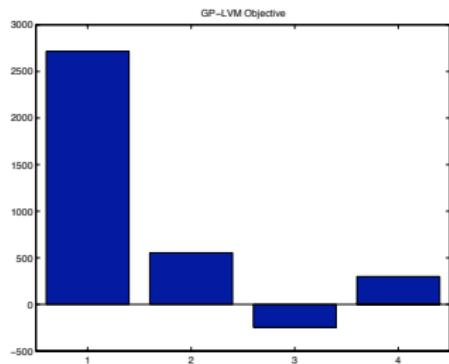
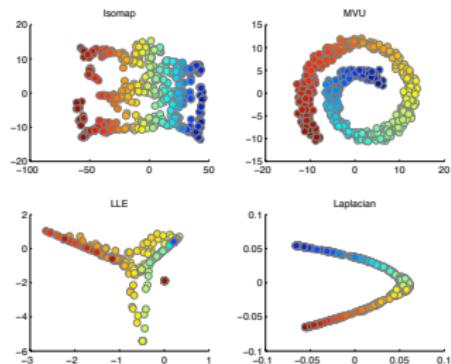
⁴Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results⁴



⁴Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results⁴



⁴Model selection results kindly provided by Carl Henrik Ek.

Conclusion

- Assume “local” structure contains enough “characteristics” to unravel global structure
- + Intuitive
 - Hard to set parameters without knowing manifold
 - Learns embeddings not mappings *i.e. Visualisations*
 - Models problem “wrong” way around
 - Sensitive to noise
- + Currently best strategy to initialise generative models

References I

K. V. Mardia. *Statistics of Directional Data*. Academic Press, London, 1972.

K. V. Mardia, J. T. Kent, and J. M. Bibby. *Multivariate analysis*. Academic Press, London, 1979.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. *Neural Computation*, 10:1299–1319, 1998.

J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. *Science*, 290(5500):2319–2323, 2000. doi: 10.1126/science.290.5500.2319.

- Acknowledgement: Carl Henrik Ek for GP log likelihood examples.
- My examples given here
<http://www.cs.man.ac.uk/~neill/dimred/>
- This talk
<http://www.cs.man.ac.uk/~neill/>

Outline

- Distance Matching

Centering Matrix

If $\hat{\mathbf{Y}}$ is a version of \mathbf{Y} with the mean removed then:

$$\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$$

$$\begin{aligned}\hat{\mathbf{Y}} &= (\mathbf{I} - N^{-1}\mathbf{1}\mathbf{1}^T)\mathbf{Y} \\ &= \mathbf{Y} - \mathbf{1}(N^{-1}\mathbf{1}^T\mathbf{Y}) \\ &= \mathbf{Y} - \mathbf{1}\left(\frac{1}{N}\sum_{i=1}^N \mathbf{y}_{i,:}\right)^T \\ &= \mathbf{Y} - \begin{bmatrix} \bar{\mathbf{y}}_{\cdot,:} \\ \bar{\mathbf{y}}_{\cdot,:} \\ \vdots \\ \bar{\mathbf{y}}_{\cdot,:} \end{bmatrix}\end{aligned}$$

[◀ Return](#)

Feature Selection Derivation

- Squared distance can be re-expressed as

$$d_{ij}^2 = \sum_{k=1}^D (y_{i,k} - y_{j,k})^2.$$

- Can re-order the columns of \mathbf{Y} without affecting the distances.
 - ▶ Choose ordering: first q columns of \mathbf{Y} are the those that will best represent the distance matrix.
 - ▶ Substitution $\mathbf{x}_{:,k} = \mathbf{y}_{:,k}$ for $k = 1 \dots q$.
- Distance in latent space is given by:

$$\delta_{ij}^2 = \sum_{k=1}^q (x_{i,k} - x_{j,k})^2 = \sum_{k=1}^q (y_{i,k} - y_{j,k})^2$$

Feature Selection Derivation II

- Can rewrite

$$E(\mathbf{X}) = \sum_{i=1}^N \sum_{j=1}^N |d_{ij}^2 - \delta_{ij}^2|.$$

as

$$E(\mathbf{X}) = \sum_{i=1}^N \sum_{j=1}^N \sum_{k=q+1}^D (y_{i,k} - y_{j,k})^2.$$

- Introduce mean of each dimension, $\bar{y}_k = \frac{1}{N} \sum_{i=1}^N y_{i,k}$,

$$E(\mathbf{X}) = \sum_{i=1}^N \sum_{j=1}^N \sum_{k=q+1}^D ((y_{i,k} - \bar{y}_k) - (y_{j,k} - \bar{y}_k))^2$$

- Expand brackets

$$E(\mathbf{X}) = \sum_{i=1}^N \sum_{j=1}^N \sum_{k=q+1}^D (y_{i,k} - \bar{y}_k)^2 + (y_{j,k} - \bar{y}_k)^2 - 2(y_{j,k} - \bar{y}_k)(y_{i,k} - \bar{y}_k)$$

Feature Selection Derivation III

- Expand brackets

$$E(\mathbf{X}) = \sum_{i=1}^N \sum_{j=1}^N \sum_{k=q+1}^D (y_{i,k} - \bar{y}_k)^2 + (y_{j,k} - \bar{y}_k)^2 - 2(y_{j,k} - \bar{y}_k)(y_{i,k} - \bar{y}_k)$$

Bring sums in

$$E(\mathbf{X}) = \sum_{k=q+1}^D \left(N \sum_{i=1}^N (y_{i,k} - \bar{y}_k)^2 + N \sum_{j=1}^N (y_{j,k} - \bar{y}_k)^2 - 2 \sum_{j=1}^N (y_{j,k} - \bar{y}_k) \sum_{i=1}^N (y_{i,k} - \bar{y}_k) \right)$$

- Recognise as the sum of the variances discarded columns of \mathbf{Y} ,

$$E(\mathbf{X}) = 2N^2 \sum_{k=q+1}^D \sigma_k^2.$$

- We should compose \mathbf{X} by extracting the columns of \mathbf{Y} which have the largest variance.

[◀ Return Selection](#)

[◀ Return Rotation](#)