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• Google: patient data ...



What's Changed (Changing) for Medicine?

• The Red Flag Analogy.

• ... but why I work in Medical data ...



What's Changed (Changing) for Medicine?

• Genotyping.

• Epigenotyping.

• Transcriptome: detailed characterization of phenotype.
• Self-organizing-strati�cations of data.

• Automatic data curation: from curated data to curation of

publicly available data.

• Patient Access:

http://www.patient.co.uk/patient-access.asp

• Open Data: http://www.openstreetmap.org/?lat=53.

38086&lon=-1.48545&zoom=17&layers=M.

• Tescos and Facebook.

http://www.patient.co.uk/patient-access.asp
http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M
http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M
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Missing Data

• If missing at random it can be marginalized.

• As data sets become very large (39 million in EMIS) data

becomes extremely sparse.

• Imputation becomes impractical.



Imputation

• Expectation Maximization (EM) is gold standard imputation

algorithm.

• Exact EM optimizes the log likelihood.

• Approximate EM optimizes a lower bound on log likelihood.
• e.g. variational approximations (VIBES, Infer.net).

• Convergence is guaranteed to a local maxima in log likelihood.



Expectation Maximization

Require: An initial guess for missing data

repeat

Update model parameters
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until convergence
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Imputation is Impractical

• In very sparse data imputation is impractical.

• EMIS: 39 million patients, thousands of tests.

• For most people, most tests are missing.

• M-step becomes confused by poor imputation.



Direct Marginalization is the Answer

• Perhaps we need joint distribution of two test outcomes,

p(y1, y2)

• Obtained through marginalizing over all missing data,

p(y1, y2) =

∫
p(y1, y2, y3, . . . , yp)dy3, . . . dyp

• Where y3, . . . , yp contains:

1 all tests not applied to this patient
2 all tests not yet invented!!



Magical Marginalization in Gaussians

Multi-variate Gaussians

• Given 10 dimensional multivariate Gaussian, y ∼ N (0,C).

• Generate a single correlated sample y = [y1, y2 . . . y10].

• How do we �nd the marginal distribution of y1, y2?



Gaussian Marginalization Property
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Avoid Imputation: Marginalize Directly

• Our approach: Avoid Imputation, Marginalize Directly.

• Explored in context of Collaborative Filtering.

• Similar challenges:
• many users (patients),
• many items (tests),
• sparse data

• Implicitly marginalizes over all future tests too.

Work with Raquel Urtasun (Lawrence and Urtasun, 2009) and recent

submission with Nicoló Fusi.



Methods that Interrelate Covariates

• Need Class of models that interrelates data.

• Common assumption: high dimensional data lies on low

dimensional manifold.

• Want to retain the marginalization property of Gaussians.



Linear Dimensionality Reduction

Linear Latent Variable Model

• Represent data, Y, with a lower dimensional set of latent

variables X.

• Assume a linear relationship of the form

yi,: = Wxi,: + εi,:,

where

εi,: ∼ N
(
0, σ2I

)
.



Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

Y

W

σ2

p (Y|W) =
n∏

i=1

N
(
yi,:|0,WW> + σ2I

)



Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =

n∏
i=1

N (yi,:|0,C) , C = WW> + σ2I

log p (Y|W) = −n
2
log |C| − 1

2
tr
(
C−1Y>Y

)
+ const.

If Uq are �rst q principal eigenvectors of n−1Y>Y and the

corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.



Dealing with Non Gaussian Data

• Marginalization property of Gaussians very attractive.

• How to incorporate non-Gaussian data?
• Data which isn't missing at random.
• Binary data.
• Ordinal categorical data.
• Poisson counts.
• Outliers.



Project Back into Gaussian

• Combine non-Gaussian likelihood with

Gaussian prior.

• Either:
• Project back to Gaussian posterior that

is nearest in KL sense.
• Expectation propagation.

• Or:
• Fit a locally valid Gaussian

approximation.
• Laplace Approximation.

Ongoing work with Ricardo Andrade Pacheco (EP) and Alan Saul

(Laplace) also James Hensman.
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Classi�cation Noise Model

Probit Noise Model
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Figure: The probit model (classi�cation). The plot shows p (yi|fi) for
di�erent values of yi. For yi = 1 we have

p (yi|fi) = φ (fi) =
∫ fi
−∞N (z|0, 1) dz.
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Ordinal Noise Model

Ordered Categories
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Figure: The ordered categorical noise model (ordinal regression). The
plot shows p (yi|fi) for di�erent values of yi. Here we have assumed
three categories.
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Other Challenges

• Spatial Data (workshop in November with Peter Diggle, work

with Ricardo Andrade Pacheco and John Quinn's group).

• Survival Data (work with Alan Saul and Aki Vehtari's group

and HeRC).

• Image Data (work with Teo de Campos, Violet Snell and

imminent arrival of Zhenwen Dai)

• Text Data (planned collaboration with Trevor Cohn)
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http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html?_r=0


http://www.newyorker.com/online/blogs/newsdesk/2012/11/is-deep-learning-a-revolution-in-artificial-intelligence.html


http://www.seroundtable.com/google-hires-geoffrey-hinton-16499.html


http://www.wired.com/wiredenterprise/2013/03/google_hinton/


https://plus.google.com/u/0/102889418997957626067/posts/GWe4AscQdS7
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Structure of Priors

MacKay: NIPS Tutorial 1997 �Have we thrown out the baby with

the bathwater?� (Published as MacKay, 1998) Also noted by

(Wilson et al., 2012)



Deep Models
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Deep Models

y
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x4 Abstract features

More combination

Combination of

low level features

Low level features

Data space



Deep Gaussian Processes

Damianou and Lawrence (2013)

• Deep architectures allow abstraction of features (Bengio, 2009;

Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).

• We use variational approach to stack GP models.
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Stacked GPs
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What Can We Do that Google Can't?

• Google's resources give them access to volumes of data (or

Facebook, or Microsoft, or Amazon).

• Is there anything for Universities to contribute?

• Universities are the right place to deal with sensitive data for

personalized health.

• These methodologies are part of that picture.



Deep Health
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Deep GPs

• Stacking PPCA still leads to a linear latent variable model.

• To stack latent variable models, need a non-linear model.

• The GP-LVM is a non-linear latent variable model.

• Stacking GP-LVM leads to hierarchical GP-LVM.



Bayesian GP-LVM

• Bayesian GP-LVM allows variational marginalization of X and

W.

Y

W X

σ2

• This leads to a Bayesian model where latent dimensionality

can be learnt.



Modeling Multiple `Views'

• Single space to model correlations between two di�erent data
sources, e.g., images & text, image & pose.

• Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al.,

2008b)

Y(1)

X

Y(2)

• E�ective when the `views' are correlated.

• But not all information is shared between both `views'.

• PCA applied to concatenated data vs CCA applied to data.



Shared-Private Factorization

• In real scenarios, the `views' are neither fully independent, nor fully
correlated.

• Shared models

• either allow information relevant to a single view to be mixed
in the shared signal,

• or are unable to model such private information.

• Solution: Model shared and private information (Virtanen et al., 2011;

Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker,

1958)

Z(1)

Y(1)

X

Y(2)

Z(2)

• Probabilistic CCA is case when dimensionality of Z matches Y(i)

(cf Inter Battery Factor Analysis (Tucker, 1958)).



Manifold Relevance Determination

Damianou et al. (2012)
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Shared GP-LVM
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Separate ARD parameters for mappings to Y(1) and Y(2).



Motion Capture

• Revisit 'high �ve' data.

• This time allow model to learn structure, rather than imposing

it.



Deep hierarchies – motion capture 

38 Deep Gaussian processes 



Digits Data Set

• Are deep hierarchies justi�ed for small data sets?

• We can lower bound the evidence for di�erent depths.

• For 150 6s, 0s and 1s from MNIST we found at least 5 layers

are required.



Deep hierarchies – MNIST 

37 Deep Gaussian processes 



Summary

• Gaussian models good for missing data.

• Disparate data types handled with EP and Laplace.

• Deep models allow complex abstract representation of data

sets at higher levels.

• Current limitation is on data set size.

• Addressing this through work by James Hensman on

Stochastic Variational Inference for GPs (recent UAI paper).

• Intention is to deploy these models for assimilating a wide

range of data types in personalized health (text, survival times,

images, genotype, phenotype).

• Requires population scale models with millions of features.
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