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What's Changed (Changing) for Medicine?

e The Red Flag Analogy.
e ... but why | work in Medical data ...




What's Changed (Changing) for Medicine?

Genotyping.

Epigenotyping.
Transcriptome: detailed characterization of phenotype.

o Self-organizing-stratifications of data.
Automatic data curation: from curated data to curation of
publicly available data.
Patient Access:
http://www.patient.co.uk/patient-access.asp
Open Data: http://www.openstreetmap.org/7lat=53.
38086&1lon=-1.4854b5&zoom=17&layers=M.

Tescos and Facebook.


http://www.patient.co.uk/patient-access.asp
http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M
http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M

Outline

Health

Data Heterogenity

Deep Learning




Missing Data

e If missing at random it can be marginalized.

o As data sets become very large (39 million in EMIS) data
becomes extremely sparse.

e Imputation becomes impractical.



Imputation

Expectation Maximization (EM) is gold standard imputation

algorithm.

Exact EM optimizes the log likelihood.

Approximate EM optimizes a lower bound on log likelihood.
e e.g. variational approximations (VIBES, Infer.net).

Convergence is guaranteed to a local maxima in log likelihood.



Expectation Maximization

Require: An initial guess for missing data
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Require: An initial guess for missing data
repeat
Update model parameters

.. M-st
Update guess of missing data (isten)

(E-step)



Expectation Maximization

Require: An initial guess for missing data
repeat
Update model parameters
Update guess of missing data
until convergence

(M-step)
(E-step)



Imputation is Impractical

In very sparse data imputation is impractical.
EMIS: 39 million patients, thousands of tests.
For most people, most tests are missing.

M-step becomes confused by poor imputation.



Direct Marginalization is the Answer

e Perhaps we need joint distribution of two test outcomes,

p(y1,y2)
e Obtained through marginalizing over all missing data,
p(y1,y2) = /p(yl,ymyg,---,yp)dysv--.dyp
e Where y3,...,y, contains:

@ all tests not applied to this patient
@ all tests not yet invented!!



Magical Marginalization in Gaussians

Multi-variate Gaussians
e Given 10 dimensional multivariate Gaussian, y ~ N (0, C).
e Generate a single correlated sample y = [y1,¥2 ... y10]-

e How do we find the marginal distribution of y1,y2?



Gaussian Marginalization Property
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(a) A 10 dimepsional sample (b) colormap showing covariance be-
tween dimensions.

Figure: A sample from a 10 dimensional correlated Gaussian distribution.
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(a) A 10 dimepsional sample (b) colormap showing covariance be-
tween dimensions.

Figure: A sample from a 10 dimensional correlated Gaussian distribution.
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(a) A 10 dimepsional sample (b) covariance between y1 and ys.

Figure: A sample from a 10 dimensional correlated Gaussian distribution.
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(a) A 10 dimepsional sample (b) correlation between y;1 and y..

Figure: A sample from a 10 dimensional correlated Gaussian distribution.



Avoid Imputation: Marginalize Directly

'z

e Our approach: Avoid Imputation, Marginalize Directly.
e Explored in context of Collaborative Filtering.

e Similar challenges:

e many users (patients),
e many items (tests),
e sparse data

e Implicitly marginalizes over all future tests too.

Work with Raquel Urtasun (Lawrence and Urtasun, 2009) and recent
submission with Nicolé Fusi.



Methods that Interrelate Covariates

e Need Class of models that interrelates data.

e Common assumption: high dimensional data lies on low
dimensional manifold.
e Want to retain the marginalization property of Gaussians.



Linear Dimensionality Reduction

Linear Latent Variable Model
e Represent data, Y, with a lower dimensional set of latent
variables X.
e Assume a linear relationship of the form

Yi: = Wxi,: + €.,

where

€.~N (0,0’21) ;



Linear Latent Variable Model Il

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)
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Linear Latent Variable Model Il

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YIW) =[]V (3:.0,C), C=WWT' +0%1
=1

1
logp (Y|W) = —g log |C| — Etr (CleTY> + const.

If U, are first ¢ principal eigenvectors of n=Y 'Y and the
corresponding eigenvalues are A,

[NIE

W=U/LR', L= (A,— ")

where R is an arbitrary rotation matrix.



Dealing with Non Gaussian Data

e Marginalization property of Gaussians very attractive.
e How to incorporate non-Gaussian data?

e Data which isn't missing at random.

e Binary data.

o Ordinal categorical data.

o Poisson counts.

o Outliers.



Project Back into Gaussian

e Combine non-Gaussian likelihood with
Gaussian prior.
e Either:
e Project back to Gaussian posterior that

is nearest in KL sense.
o Expectation propagation.

e Or:
e Fit a locally valid Gaussian
approximation.
o Laplace Approximation.

Ongoing work with Ricardo Andrade Pacheco (EP) and Alan Saul
(Laplace) also James Hensman.



Gaussian Noise
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Classification Noise Model

Probit Noise Model
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Figure: The probit model (classification). The plot shows p (y;|f;) for
different values of y;. For yz = 1 we have

(yz|fz — ffl |0 1 dz.



Classification
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Classification
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Ordinal Noise Model

Ordered Categories
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Figure: The ordered categorical noiséimodel (ordinal regression). The
plot shows p (y;|f;) for different values of y;. Here we have assumed
three categories.



Ordinal Regression

p(f*|X,X*,Y)




Ordinal Regression
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Ordinal Regression

p(f*|X7X*7Y)
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Ordinal Regression
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Other Challenges

Spatial Data (workshop in November with Peter Diggle, work
with Ricardo Andrade Pacheco and John Quinn's group).

Survival Data (work with Alan Saul and Aki Vehtari's group
and HeRC).

Image Data (work with Teo de Campos, Violet Snell and
imminent arrival of Zhenwen Dai)

Text Data (planned collaboration with Trevor Cohn)
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irection for further research.

11.1. HAVE WE THROWN THE BABY OUT WITH THE BATH WATER?

According to the hype of 1987, neural networks were meant to be intelligent
models which discovered features and patterns in data. Gaussian processes
in contrast are simply smoothing devices. How can Gaussian processes pos-
sibly replace neural networks? What is going on?

I think what the work of Williams and Rasmussen (1996) shows is that
many real-world data modelling problems are perfectly well solved by sensi-
ble smoothing methods. The most interesting problems, the task of feature
discovery for example, are not ones which Gaussian processes will solve. But
maybe multilayer perceptrons can’t solve them either. On the other hand,
it may be that the limit of an infinite number of hidden units, to which
(GGaussian processes correspond, was a bad limit to take; maybe we should
backtrack, or modify the prior on neural network parameters, so as to cre-
ate new models more interesting than Gaussian processes. Evidence that
this infinite limit has lost something compared with finite neural networks
comes from the observation that in a finite neural network with more than
one output, there are non—trivial correlations between the outputs (since
they share inputs from common hidden units); but in the limit of an infi-
nite number of hidden units, these correlations vanish. Radford Neal has
suggested the use of non—Gaussian priors in networks with multiple hid-
den layers. Or perhaps a completely fresh start is needed, approaching the
problem of machine learning from a paradigm different from the supervised
feedforward mapping.




Structure of Priors

MacKay: NIPS Tutorial 1997 “Have we thrown out the baby with
the bathwater?” (Published as MacKay, 1998) Also noted by
(Wilson et al., 2012)
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Deep Gaussian Processes

A

Damianou and Lawrence (2013)

e Deep architectures allow abstraction of features (Bengio, 2009;
Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).

e We use variational approach to stack GP models.



Stacked PCA
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Stacked GPs
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What Can We Do that Google Can't?

Google's resources give them access to volumes of data (or
Facebook, or Microsoft, or Amazon).

Is there anything for Universities to contribute?

Universities are the right place to deal with sensitive data for
personalized health.

These methodologies are part of that picture.
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Deep GPs

Stacking PPCA still leads to a linear latent variable model.
To stack latent variable models, need a non-linear model.
The GP-LVM is a non-linear latent variable model.
Stacking GP-LVM leads to hierarchical GP-LVM.



Bayesian GP-LVM

e Bayesian GP-LVM allows variational marginalization of X and
W.

< —2

e This leads to a Bayesian model where latent dimensionality
can be learnt.



Modeling Multiple "Views'

Single space to model correlations between two different data
sources, e.g., images & text, image & pose.

Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al.,
2008b)

Effective when the ‘views' are correlated.
But not all information is shared between both ‘views'.

PCA applied to concatenated data vs CCA applied to data.



Shared-Private Factorization

In real scenarios, the ‘views' are neither fully independent, nor fully
correlated.
Shared models

o either allow information relevant to a single view to be mixed
in the shared signal,
e or are unable to model such private information.

Solution: Model shared and private information (Virtanen et al., 2011;
Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker,

1958)

Probabilistic CCA is case when dimensionality of Z matches Y (?)
(cf Inter Battery Factor Analysis (Tucker, 1958)).



Manifold Relevance Determination

Damianou et al. (2012)

space



Shared GP-LVM
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Motion Capture

e Revisit 'high five' data.

o This time allow model to learn structure, rather than imposing
it.




Deep hierarchies — motion capture

Y(l)




Digits Data Set

o Are deep hierarchies justified for small data sets?
e We can lower bound the evidence for different depths.

e For 150 6s, Os and 1s from MNIST we found at least 5 layers
are required.



Deep hierarchies — MNIST
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Summary

Gaussian models good for missing data.
Disparate data types handled with EP and Laplace.

Deep models allow complex abstract representation of data
sets at higher levels.

Current limitation is on data set size.

Addressing this through work by James Hensman on
Stochastic Variational Inference for GPs (recent UAI paper).
Intention is to deploy these models for assimilating a wide
range of data types in personalized health (text, survival times,
images, genotype, phenotype).

Requires population scale models with millions of features.
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