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Structure of Priors

MacKay: NIPS Tutorial 1997 “Have we thrown out the baby
with the bathwater?” (Published as MacKay, 1998) Also noted
by (Wilson et al., 2012)



Deep Models

I Universal approximator arguments ignore interesting
priors.

I Gaussian process priors are amazing, but still limited.
I Struggle to learn unusual long range correlations
I Makes covariance functions inappropriate for ‘multitask

learning’.



Motivation for Deep Learning

USPS Data Set Handwritten Digit

I 3648 Dimensions
I 64 rows by 57

columns

I Space contains more
than just this digit.

I Even if we sample
every nanosecond
from now until the
end of the universe,
you won’t see the
original six!
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Template Model of Digits

I Design a set of ‘latent’ features, which generate the 6.
I Global template: memorize data set.



Latent Variable Model

latent
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Template Matching

I Each latent node associated with a ‘template’ digit.
I If as many nodes as data then model is like ‘nearest

neighbour’ with a particular distance measure.
I If less nodes than data then model is like a mixture of

Bernoulli distributions.
I What if we allow several nodes to be switched on together?



Templates to Features

I In template matching ith node had an associated set of
probabilities, pi.

I These probabilities can be reshaped into a matrix and
sampled from to see the sixes.

I If the ith node is on the ith vector of probabilities is used.
I What if the ith node and the kth node are on?

I How do we combine pi and pk to give probabilities of
pixels?



Squashing Function

I One solution is to first reparameterise pi, j as a squashing
function,
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Addition Before Squashing

I Example: if latent node 1 and 6 are on.
I Can’t add p:,1 to p:,6 to obtain probability that node is on.
I Instead add w:,1 to w:,6 and push through squashing

function.
I In general for pi,: compute Wxi,:.
I Then pi, j = σ(w>j,:xi, j) where σ(·) is the sigmoid function.
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Localized Receptive Fields

I Model can now fit global model as sum of parts.
I Each latent node associated with local features.
I Structure of model combines local features in products of

experts manner (Hinton, 1999).
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Restricted Boltzmann Machine

I Represent data, Y, through a set of unobserved latent
variables

P(Y) =
∑

X

P(Y|X)P(X).

I Data and latent variables are binary.
I Assume latent variables, xi, j, are ‘on’ with probability π j.

P(X) =

n∏
i=1

q∏
j=1

π
xi, j

j (1 − π j)(1−xi, j)

I Set π j = σ(bi) where σ(·) is the sigmoid function1 and bi is a
‘bias’ parameter.



Restricted Boltzmann Machine: Binomial Prior

I Parameterizing in this way means

P(X) ∝
n∏

i=1

exp
(
x>i,:b

)
which, because X is binary, is equivalent to

P(X) ∝
n∏

i=1

exp
(
x>i,:diag(b)xi,:

)



Restricted Boltzmann Machine

I Assume a linear-logistic relationship of the form

P(yi, j) = p
yi, j

i, j (1 − pi, j)(1−yi, j)

where pi, j is the probability that yi, j = 1.
I For RBM it is often given by

pi, j = σ
(
w>j,:xi,: + c j

)
I For convenience we will reparameterize

pi, j = σ
(
c j

[
w>j,:xi,: − 1

])



Restricted Boltzmann Machine

I Parameterizing in this way implies

P(Y|X,W) ∝
n∏

i=1

exp
(
y>i,:diag(c)

(
Wxi,: − 1

))
which, because Y is binary can be rewritten2 as

P(Y|X,W) ∝
n∏

i=1

exp
(
−

(
yi,: −Wxi,:

)> diag(c)
(
yi,: −Wxi,:

))



Restricted Boltzman Machine

RBM
I Define linear-logistic

relationship between
latent variables and
data.

I Standard Latent
variable approach:

I Define binomial prior
over latent space, X.

I Integrate out latent
variables ... ??

Y

W X

p (Y|X,W) =

n∏
i=1

p∏
j=1

p
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Restricted Boltzman Machine

RBM
I Define linear-logistic

relationship between
latent variables and
data.

I Standard Latent
variable approach:
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over latent space, X.
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Marginalization of X
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Model Factorizes Across Data
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Model Factorizes Across Data

Y

W X

P
(
yi,:|xi,:,W

)
∝ exp

(
−

(
yi,: −Wxi,:

)> diag(c)
(
yi,: −Wxi,:

))
P
(
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)
∝ exp

(
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)
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)
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P
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P
(
xi,:
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Unfortunately this sum still contains 2q terms.



Linear Dimensionality Reduction

Linear Latent Variable Model

I Represent data, Y, with a lower dimensional set of latent
variables X.

I Assume a linear relationship of the form

yi,: = Wxi,: + εi,:,

where
εi,: ∼ N

(
0, σ2I

)
.



Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

Y

W

σ2

p (Y|W) =
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i=1

N

(
yi,:|0,WW> + σ2I

)



Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =

n∏
i=1

N
(
yi,:|0,C

)
, C = WW> + σ2I

log p (Y|W) = −
n
2

log |C| −
1
2

tr
(
C−1Y>Y

)
+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.



Relation between RBM and PCA/FA

I RBM is PCA with latent variables and data variables
restricted binary.

I Binary restriction means latent features combine in a
non-linear way.

I In PCA latent features always combine in a linear way.



PCA and RBM
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PCA and RBM

Y

W X

p
(
yi,:|xi,:,W

)
∝ exp

(
−

1
2σ2

(
yi,: −Wxi,:

)> (
yi,: −Wxi,:

))

p
(
xi,:

)
∝ exp

(
−

1
2

x>i,:xi,:

)
p
(
yi,:|W

)
= N
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yi,:|0,WW> + σ2I

)



Linear Latent Variable Model III

Dual Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and
data.

I Novel Latent variable
approach:

I Define Gaussian prior
over parameters, W.

I Integrate out
parameters.
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Dual Probabilistic PCA
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Computation of the Marginal Likelihood
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004,

2005)

Y

X

σ2

p (Y|X) =

p∏
j=1

N

(
y:, j|0,XX> + σ2I

)



Linear Latent Variable Model IV

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)
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where R is an arbitrary rotation matrix.
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Linear Latent Variable Model IV
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Linear Latent Variable Model IV
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Equivalence of Formulations

The Eigenvalue Problems are equivalent

I Solution for Probabilistic PCA (solves for the mapping)

Y>YUq = UqΛq W = UqLR>

I Solution for Dual Probabilistic PCA (solves for the latent
positions)

YY>U′q = U′qΛq X = U′qLR>

I Equivalence is from

Uq = Y>U′qΛ
−

1
2

q



Deep Models
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Probabilistic Function Composition Perspective

I Deep models are merely function composition.

y = f (x)

becomes
y = f1 (f2 (f4 (f3 (x))))

Where for deep RBM & deep GPs f·(·) is a probabilistic
process and in a deep neural network it is a function.

I From a probabilistic programming language perspective,
deep models are functional composition.



Deep Gaussian Processes

Damianou and Lawrence (2013)

I Deep architectures allow abstraction of features (Bengio, 2009;

Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).
I We use variational approach to stack GP models.



Stacked PCA

y

x1

x2

x3

x4 Latent layer 4

Latent layer 3

Latent layer 2

Latent layer 1

Data space



Stacked PCA

y

x4 Latent layer 4

Data space



Stacked PCA

y

x1

x2

x3

x4 Latent layer 4

Latent layer 3

Latent layer 2

Latent layer 1

Data space



Stacked PCA

y

x4 Latent layer 4

Data space



Stacked PCA

y

x1

x2

x3

x4 Latent layer 4

Latent layer 3

Latent layer 2

Latent layer 1

Data space



Stacked PCA

y

x4 Latent layer 4

Data space



Stacked PCA

y

x1

x2

x3

x4 Latent layer 4

Latent layer 3

Latent layer 2

Latent layer 1

Data space



Stacked PCA

y

x4 Latent layer 4

Data space



Stacked PCA

y

x1

x2

x3

x4 Latent layer 4

Latent layer 3

Latent layer 2

Latent layer 1

Data space



Stacked PCA

y

x4 Latent layer 4

Data space



Stacked GPs
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Deep GPs

I Stacking PPCA still leads to a linear latent variable model.
I To stack latent variable models, need a non-linear model.
I The GP-LVM is a non-linear latent variable model.
I Stacking GP-LVM leads to hierarchical GP-LVM.



Hierarchical GP-LVM

(Lawrence and Moore, 2007)

Stacking Gaussian Processes

I Regressive dynamics provides a simple hierarchy.
I The input space of the GP is governed by another GP.

I By stacking GPs we can consider more complex
hierarchies.

I Ideally we should marginalise latent spaces
I In practice we seek MAP solutions.



Two Correlated Subjects

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a ’high five’.



Within Subject Hierarchy

(Lawrence and Moore, 2007)

Decomposition of Body

Figure: Decomposition of a subject.



Single Subject Run/Walk

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a walk and a run.

Return



Bayesian GP-LVM

I Bayesian GP-LVM allows variational marginalization of X
and W.

Y

W X

σ2

I This leads to a Bayesian model where latent
dimensionality can be learnt.



Selecting Data Dimensionality

I GP-LVM Provides probabilistic non-linear dimensionality
reduction.

I How to select the dimensionality?
I Need to estimate marginal likelihood.
I In standard GP-LVM it increases with increasing q.



Variational Latent Variables

I Variational marginalizing of X is also analytic.
I Need to assume Gaussian q(X).
I Compute expectations of q(X) then analytically marginalize

p(u) as before. (Titsias and Lawrence, 2010; Hensman et al., 2012)

I Requires expectations of Kf,u and Kf,uKu,f.



Automatic dimensionality detection 

• Achieved by employing an Automatic Relevance Determination 
(ARD) covariance function for the prior on the GP mapping 
 

•                                 with  

 

 

• Example 
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Gaussian Process Dynamical Systems

(Damianou et al., 2011)

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6

t

latent
space

time

data
space



Gaussian Process over Latent Space

I Assume a GP prior for p(X).
I Input to the process is time, p(X|t).



Gaussian Process over Latent Space

I Allows to interpret high dimensional video.
I Examples: Missa and Dog Generation.



Modeling Multiple ‘Views’

I Single space to model correlations between two different data
sources, e.g., images & text, image & pose.

I Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al.,
2008b)

Y(1)

X

Y(2)

I Effective when the ‘views’ are correlated.

I But not all information is shared between both ‘views’.

I PCA applied to concatenated data vs CCA applied to data.



Shared-Private Factorization

I In real scenarios, the ‘views’ are neither fully independent, nor
fully correlated.

I Shared models
I either allow information relevant to a single view to be

mixed in the shared signal,
I or are unable to model such private information.

I Solution: Model shared and private information (Virtanen et al.,
2011; Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker,
1958)

Z(1)

Y(1)

X

Y(2)

Z(2)

I Probabilistic CCA is case when dimensionality of Z matches Y(i)

(cf Inter Battery Factor Analysis (Tucker, 1958)).



Manifold Relevance Determination

Damianou et al. (2012)

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6
Latent
space

Data
space



Shared GP-LVM

y(1)
1 y(1)

2 y(1)
3 y(1)

4 y(2)
1 y(2)

2 y(2)
3 y(2)

4

x1 x2 x3 x4 x5 x6
Latent
space

Data
space

Separate ARD parameters for mappings to Y(1) and Y(2).



Example: Yale faces 
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• Dataset Y: 3 persons under all illumination conditions 

• Dataset Z: As above for 3 different persons 

• Align datapoints xn and zn only based on the lighting direction 

Deep Gaussian processes 



Results 
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• Latent space X initialised with 
14 dimensions 
 
 

• Weights define a segmentation 
of X 
 

• Video / demo… 

Deep Gaussian processes 

[Damianou et al. ‘12] 



Potential applications..? 
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Face Demo



Motion Capture

I Revisit ’high five’ data.
I This time allow model to learn structure, rather than

imposing it.



Deep hierarchies – motion capture 
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Digits Data Set

I Are deep hierarchies justified for small data sets?
I We can lower bound the evidence for different depths.
I For 150 6s, 0s and 1s from MNIST we found at least 5

layers are required.



Deep hierarchies – MNIST 
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What Can We Do that Google Can’t?

I Google’s resources give them access to volumes of data (or
Facebook, or Microsoft, or Amazon).

I Is there anything for Universities to contribute?
I Assimilation of multiple views of the patient: each perhaps

from a different patient.
I This may be done by small companies (with support of

Universities).
I A Facebook app for your personalised health.
I These methodologies are part of that picture.



Deep Health

I1I2

x1
1 x1

2 x1
3 x1

4 x1
5

y2 y3y4

x2
1 x2

2 x2
3 x2

4
y1y5

x3
1 x3

2 x3
3 x3

4

G E EG

latent representation
of disease stratification

survival
analysis

gene ex-
pression

clinical mea-
surements

and treatment

clinical
notes

X-raybiopsy

environment epigenotypegenotype



Summary

I Deep models allow abstract representation of data sets at
higher levels.

I Deep GPs allow structure learning.
I Current limitation is on data set size.
I Addressing this through work by James Hensman on

Stochastic Variational Inference for GPs (Hensman et al., 2013).
I Intention is to deploy these models for assimilating a wide

range of data types in personalized health (text, survival
times, images, genotype, phenotype).

I Requires population scale models with millions of features.
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