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direction for further research.

11.1. HAVE WE THROWN THE BABY OUT WITH THE BATH WATER?

According to the hype of 1987, neural networks were meant to be intelligent
models which discovered features and patterns in data. Gaussian processes
in contrast are simply smoothing devices. How can Gaussian processes pos-
sibly replace neural networks? What is going on?

I think what the work of Williams and Rasmussen (1996) shows is that
many real-world data modelling problems are perfectly well solved by sensi-
ble smoothing methods. The most interesting problems, the task of feature
discovery for example, are not ones which Gaussian processes will solve. But
maybe multilayer perceptrons can’t solve them either. On the other hand,
it may be that the limit of an infinite number of hidden units, to which
(GGaussian processes correspond, was a bad limit to take; maybe we should
backtrack, or modify the prior on neural network parameters, so as to cre-
ate new models more interesting than Gaussian processes. Evidence that
this infinite limit has lost something compared with finite neural networks
comes from the observation that in a finite neural network with more than
one output, there are non—trivial correlations between the outputs (since
they share inputs from common hidden units); but in the limit of an infi-
nite number of hidden units, these correlations vanish. Radford Neal has
suggested the use of non—Gaussian priors in networks with multiple hid-
den layers. Or perhaps a completely fresh start is needed, approaching the
problem of machine learning from a paradigm different from the supervised
feedforward mapping.



Structure of Priors

MacKay: NIPS Tutorial 1997 “Have we thrown out the baby
with the bathwater?” (Published as MacKay, 1998) Also noted
by (Wilson et al., 2012)



Deep Models

» Universal approximator arguments ignore interesting
priors.
» Gaussian process priors are amazing, but still limited.

» Struggle to learn unusual long range correlations
» Makes covariance functions inappropriate for ‘multitask
learning’.



Motivation for Deep Learning

USPS Data Set Handwritten Digit

» 3648 Dimensions

> 64 rows by 57
columns
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Template Model of Digits

» Design a set of ‘latent’ features, which generate the 6.

» Global template: memorize data set.



Latent Variable Model
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Template Matching

v

Each latent node associated with a ‘template” digit.

v

If as many nodes as data then model is like ‘nearest
neighbour’ with a particular distance measure.

\4

If less nodes than data then model is like a mixture of
Bernoulli distributions.

v

What if we allow several nodes to be switched on together?



Templates to Features

» In template matching ith node had an associated set of
probabilities, p;.

» These probabilities can be reshaped into a matrix and
sampled from to see the sixes.

» If the ith node is on the ith vector of probabilities is used.

» What if the ith node and the kth node are on?

» How do we combine p; and py to give probabilities of
pixels?



Squashing Function

» One solution is to first reparameterise p; ; as a squashing
function,
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» For example the sigmoid function.
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Addition Before Squashing

» Example: if latent node 1 and 6 are on.

» Can’tadd p.; to p. to obtain probability that node is on.
» Instead add w.; to w. and push through squashing
function.
» In general for p;. compute Wx; ..
» Thenp;; = a(w]T:xi, /) where o(') is the sigmoid function.
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Localized Receptive Fields

» Model can now fit global model as sum of parts.
» Each latent node associated with local features.

» Structure of model combines local features in products of
experts manner (Hinton, 1999).
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Restricted Boltzmann Machine

» Represent data, Y, through a set of unobserved latent
variables

P(Y) = Y POYIX)P(X).
X

» Data and latent variables are binary.

» Assume latent variables, x; j, are ‘on” with probability 7;.
nq
Xi, s
P =[] -mpt—=
i=1 j=1

» Set 1; = o(b;) where o(-) is the sigmoid function! and b; is a
‘bias’ parameter.



Restricted Boltzmann Machine: Binomial Prior

» Parameterizing in this way means

P(X) ﬁ exp (xb)
i=1

which, because X is binary, is equivalent to

P(X) o< ﬁ exp (x;diag(b)xil:)

i=1



Restricted Boltzmann Machine

» Assume a linear-logistic relationship of the form

P(yi;) = PZ;j(l — piy) )

where p; ; is the probability that y; ; = 1.
» For RBM it is often given by

- Ty. .
pij = a(wj,:xllz + c])
» For convenience we will reparameterize

pij = o (ci[wixi:=1])



Restricted Boltzmann Machine

» Parameterizing in this way implies

n
P(YIX, W) « H exp (y;diag(c) (Wx;. — 1))
i=1
which, because Y is binary can be rewritten? as

P(YIX, W) o< H exp (— (vi: — Wx;) " diag(c) (yi,. — Wxi,:))
i=1



Restricted Boltzman Machine

RBM

» Define linear-logistic
relationship between W
latent variables and
data.

n

4
le w) pr’l(l pz (1 Yij)
i=1 j=1



Restricted Boltzman Machine

RBM

» Define linear-logistic
relationship between W
latent variables and
data.

» Standard Latent
variable approach:

n_ P
pox,w) = [T ]ri7 @ -pipt2
i=1 j=1



Restricted Boltzman Machine

RBM

» Define linear-logistic
relationship between
latent variables and
data.

» Standard Latent
variable approach:

n

4
> Define binomial prior p(YIX, W) = H p%g(l — py )i
i :
over latent space, X. i=1 j=1

n q )
po=[[[]="a-mp">

i=1 j=1



Restricted Boltzman Machine

RBM W

» Define linear-logistic
relationship between
latent variables and
data.

» Standard Latent

variable approach: n
pX,w) = [T[Tr7 @-pipt2

i=1 j=1

=

> Define binomial prior
over latent space, X.

> Integrate out latent o .
variables ... ?? roo=111] (1=

i=1 j=1

P (Y|W) =22



Marginalization of X

P(YIX,W) « H exp (— (vi. — Wx;.)" diag(c) (y;. - Wxi,;))
i=1

P (X) o ﬁ exp (xl.T,:diag (b) Xi,:)

i=1

P(Y|W) = 22



Marginalization of X

P(YIX,W) x H exp (— (vi: — Wxi,;)T diag(c) (yi. — Wx,',;))
i=1

P (X) o< ﬁ exp (x;diag (b) Xi,:)

i=1

P(Y|W) = Z P(Y|X, W)P(X)
X



Model Factorizes Across Data

P (yilxi., W) o< exp (— (yi: — Wx;,) " diag(c) (yi; — Wxi,:))

P(x;.) « exp (x;diag (b) xi,;)

P(yi W) = Y P(yizlxi, W) P (x;.)



Model Factorizes Across Data

P (yi:Ixi;, W) o exp (— (yi: — Wx;,) " diag(c) (yi; — Wxi,:))

P(x;.) oc exp (x;diag (b) xi,;)

P(yiW) = Y P (yi:Ixi., W) P (x;:)

Unfortunately this sum still contains 29 terms.



Linear Dimensionality Reduction

Linear Latent Variable Model

» Represent data, Y, with a lower dimensional set of latent
variables X.

» Assume a linear relationship of the form
Yi. = Wxi,: + €.,

where

€.~ N(O, OZI).



Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

|
G

=

p(YIW) = [ | N (yi.l0, WWT + 571)
i=1



Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YW) = [[ N (1:10,C), C=WWT +%
i=1

logp (YIW) = —g log |C| - %tr (C'lYTY) + const.

If U, are first g principal eigenvectors of 1YY and the
corresponding eigenvalues are A,

W=UJLR", L=(A,- GZI)%

where R is an arbitrary rotation matrix.



Relation between RBM and PCA/FA

» RBM is PCA with latent variables and data variables
restricted binary.

» Binary restriction means latent features combine in a
non-linear way.

» In PCA latent features always combine in a linear way.



PCA and RBM

P (yiIxi., W) o exp (— (yi: — Wxi,) " diag(c) (yi; - Wxi,:))
P(x;.) o< exp (x;diag (b) xi,;)

P(yiW) = Y P(yi:Ixi., W) P (x;:)



PCA and RBM

1
P (3isbeszs W) o exp (= (3 = W) (3 = W)

p(x;, )ocexp(--x xl)

p(yi:W) = N (y;:10, WWT +07I)



Linear Latent Variable Model 111

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between X
latent variables and
data.

«—52

n
p (X W) = [ [V (yi:Wxi., 0%1)
i=1



Linear Latent Variable Model 111

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and
data.

» Novel Latent variable
approach:

«—52

n
p (X W) = [ [V (yi:Wxi., 0%1)

i=1



Linear Latent Variable Model 111

Dual Probabilistic PCA

» Define linear-Gaussian X
relationship between
latent variables and
data. < o’
» Novel Latent variable
approach:
» Define Gaussian prior - 2
(lel W) = N i:lw i:r I
over parameters, W. g g (W 071
p
pW) = [ A (wi.lo,1)

Il
—-

I:



Linear Latent Variable Model 111

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and
data.

» Novel Latent variable
approach:

» Define Gaussian prior
over parameters, W.

» Integrate out
parameters.

< —52

n
p O W) = [T (3 Wi, 01)
i=1

4
pW) =[N (wilo7)

i=1

14
p o) = [ [ AV (3,10, XXT +01)
=1



Computation of the Marginal Likelihood

y.j=Xw+e;, w,;i~N©OI, e:~N(00%)



Computation of the Marginal Likelihood

y.j=Xw+e;, w,;i~N©OI, e:~N(00%)

Xw.; ~ N (0,XX"),



Computation of the Marginal Likelihood

y.j=Xw+e;, w,;i~N©OI, e:~N(00%)

Xw.; ~ N (0,XX"),

Xw.;+ei~N (0, XX + 021)



Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004,
2005)

1‘
-

p
p(YX) = [ AV (3410, XX + 01)
j=1



Linear Latent Variable Model IV
Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p
p) = [[N(y.10.K), K=XXT+0
=1



Linear Latent Variable Model IV
PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p
p) = [[N(y.10.K), K=XXT+0
i=1

logp (YIX) = —g log K| — %tr (K‘lYYT) + const.



Linear Latent Variable Model IV
PPCA Max. Likelihood Soln

P
pX) = [[N(7,00K), K=XXT+0I
j=1

logp (YIX) = —= log K| — —tr (K™'YYT) + const.

If Uy are first g principal eigenvectors of p~lYYT and the
corresponding eigenvalues are A,



Linear Latent Variable Model IV
PPCA Max. Likelihood Soln

P
pX) = [[N(7,00K), K=XXT+0I
j=1

logp (YIX) = —= log K| — —tr (K™'YYT) + const.

If Uy are first g principal eigenvectors of p~lYYT and the
corresponding eigenvalues are A,

NI=

X=UJLR", L=(A;-0%)

where R is an arbitrary rotation matrix.



Linear Latent Variable Model IV

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p
p(YIX) = H N(y:10,K), K=XXT+0
j=1

logp (YIX) = —-% log K| - —tr( _1YYT) + const.

If Uy are first g principal eigenvectors of p~lYYT and the
corresponding eigenvalues are A,

X=ULR", L=(A- UZI)%

where R is an arbitrary rotation matrix.



Linear Latent Variable Model IV

PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YW) = [[ N (3:10,C), C=WWT +%
i=1

logp (YIW) = —g log|C| - %tr (C_lYTY) + const.

If U, are first g principal eigenvectors of n7'Y"Y and the
corresponding eigenvalues are A,

W=UJLR", L=(A,- UZI)%

where R is an arbitrary rotation matrix.



Equivalence of Formulations

The Eigenvalue Problems are equivalent

» Solution for Probabilistic PCA (solves for the mapping)

Y'YU,=U,A, W=U,LR"

» Solution for Dual Probabilistic PCA (solves for the latent
positions)
YYTU; = U;Aq X= U{;LRT

» Equivalence is from

-1
U, =YTUA,?



Deep Models

Data space
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Deep Models

Latent layer 4

Latent layer 3

Latent layer 2

Latent layer 1

Data space



Deep Models

@ Abstract features

More com-
bination

Combination

e of low level

features
a Low level
features

° Data space



Probabilistic Function Composition Perspective

» Deep models are merely function composition.

y=£(x)

becomes

y = f1 (f2 (f4 (f3 (x))))
Where for deep RBM & deep GPs £.(:) is a probabilistic
process and in a deep neural network it is a function.

» From a probabilistic programming language perspective,
deep models are functional composition.



Deep Gaussian Processes

Damianou and Lawrence (2013)

» Deep architectures allow abstraction of features (Bengio, 2009;
Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).

» We use variational approach to stack GP models.



Stacked PCA

Latent layer 4
Latent layer 3
Latent layer 2
Latent layer 1

Data space



Stacked PCA
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Stacked PCA
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Stacked PCA
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Stacked PCA

0 Data space
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Stacked PCA
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Stacked PCA
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Stacked GPs
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Stacked GPs
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Stacked GPs
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Stacked GPs
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Stacked GPs
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Deep GPs

\4

Stacking PPCA still leads to a linear latent variable model.

v

To stack latent variable models, need a non-linear model.
The GP-LVM is a non-linear latent variable model.
Stacking GP-LVM leads to hierarchical GP-LVM.

v

v



Hierarchical GP-LVM

(Lawrence and Moore, 2007)

Stacking Gaussian Processes

» Regressive dynamics provides a simple hierarchy.
» The input space of the GP is governed by another GP.

» By stacking GPs we can consider more complex
hierarchies.

» Ideally we should marginalise latent spaces

» In practice we seek MAP solutions.



Two Correlated Subjects

(Lawrence and Moore, 2007)
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Figure: Hierarchical model of a "high five’.



Within Subject Hierarchy
(Lawrence and Moore, 2007)

Decomposition of Body

PN

N

head

aht abdomen
ri arm
left arm g leftleg right leg

Figure: Decomposition of a subject.



Single Subject Run/Walk

(Lawrence and Moore, 2007)
' :XX A B c
e 5| e §
S - <§ $ 1\
D E F

Figure: Hierarchical model of a walk and a run.




Bayesian GP-LVM

» Bayesian GP-LVM allows variational marginalization of X
and W.

< —52

» This leads to a Bayesian model where latent
dimensionality can be learnt.



Selecting Data Dimensionality

v

GP-LVM Provides probabilistic non-linear dimensionality
reduction.

v

How to select the dimensionality?

v

Need to estimate marginal likelihood.

v

In standard GP-LVM it increases with increasing 4.



Variational Latent Variables

» Variational marginalizing of X is also analytic.
» Need to assume Gaussian g(X).

» Compute expectations of (X) then analytically marginalize
p(u) as before. (Titsias and Lawrence, 2010; Hensman et al., 2012)

» Requires expectations of K¢, and K¢, Ky .



Automatic dimensionality detection

* Achieved by employing an Automatic Relevance Determination
(ARD) covariance function for the prior on the GP mapping

« [~ GP(0,kf) with
2
ky(xi, %)) = 0% exp (—%25:1 Wy (Tig — Tj,q) )

Example

1
0
=t i

Deep Gaussian processes 26



Gaussian Process Dynamical Systems

2011)

7

(Damianou et al.




Gaussian Process over Latent Space

» Assume a GP prior for p(X).
» Input to the process is time, p(X|t).



Gaussian Process over Latent Space

» Allows to interpret high dimensional video.

» Examples: Missa and Dog Generation.



Modeling Multiple ‘Views’

» Single space to model correlations between two different data
sources, e.g., images & text, image & pose.

» Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al.,

2008b)

» Effective when the ‘views’ are correlated.
» But not all information is shared between both “views’.

» PCA applied to concatenated data vs CCA applied to data.



Shared-Private Factorization

> In real scenarios, the ‘views’ are neither fully independent, nor
fully correlated.

» Shared models

» either allow information relevant to a single view to be
mixed in the shared signal,
» or are unable to model such private information.

» Solution: Model shared and private information (Virtanen et al.,
2011; Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker,

@ X @
o)

» Probabilistic CCA is case when dimensionality of Z matches Y?
(cf Inter Battery Factor Analysis (Tucker, 1958)).



Manifold Relevance Determination

Damianou et al. (2012)
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Shared GP-LVM

~
WA
(210
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W7
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Separate ARD parameters for mappings to Y and Y®.



Example: Yale faces

* Dataset Y: 3 persons under all illumination conditions
* Dataset Z: As above for 3 different persons

* Align datapoints x,,and z, only based on the lighting direction

Deep Gaussian processes 29



Results

XY.Z

* Latent space X initialised with
14 dimensions

XZ
* Weights define a segmentation // ‘ \\\

of X

1283|4567 891011121314

/Xi\

12 3|4567 891011121314 Y
w

w?
*Video / demo...




Potential applications..?

70
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30
20

A

Deep Gaussian processes
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Face Demo



Motion Capture

» Revisit "high five’ data.
» This time allow model to learn structure, rather than
imposing it.



Deep hierarchies — motion capture

Y(l)

Deep Gaussian processes 38



Digits Data Set

» Are deep hierarchies justified for small data sets?
» We can lower bound the evidence for different depths.

» For 150 6s, Os and 1s from MNIST we found at least 5
layers are required.



Deep hierarchies — MNIST

Optimised
weights

R S

Outputs obtained
after sampling
from (certain nodes)
of layers 5,4,2,1

X Generic
P EEMANMNIN
1 encoding

’1‘4 A [A [A [A [A [&) [&)

X: [MAAIArArAMA

Local

:}Xl mmmmm@@ feature

N4 encoding

Deep Gaussian processes 37



What Can We Do that Google Can’t?

» Google’s resources give them access to volumes of data (or
Facebook, or Microsoft, or Amazon).

» Is there anything for Universities to contribute?

» Assimilation of multiple views of the patient: each perhaps
from a different patient.

» This may be done by small companies (with support of
Universities).

» A Facebook app for your personalised health.

» These methodologies are part of that picture.



Deep Health
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Summary

» Deep models allow abstract representation of data sets at
higher levels.

» Deep GPs allow structure learning.
» Current limitation is on data set size.

» Addressing this through work by James Hensman on
Stochastic Variational Inference for GPs (Hensman et al., 2013).

» Intention is to deploy these models for assimilating a wide
range of data types in personalized health (text, survival
times, images, genotype, phenotype).

» Requires population scale models with millions of features.



References 1

Y. Bengio. Learning Deep Architectures for Al. Found. Trends Mach. Learn., 2(1):1-127, Jan. 2009. ISSN 1935-8237.
[DOT].

A. Damianou, C. H. Ek, M. K. Titsias, and N. D. Lawrence. Manifold relevance determination. In Langford and
Pineau (2012). [PDF].

A. Damianou and N. D. Lawrence. Deep Gaussian processes. In C. Carvalho and P. Ravikumar, editors, Proceedings
of the Sixteenth International Workshop on Artificial Intelligence and Statistics, volume 31, AZ, USA, 2013. JMLR
W&CP 31. [PDF].

A. Damianou, M. K. Titsias, and N. D. Lawrence. Variational Gaussian process dynamical systems. In P. Bartlett,
F. Peirrera, C. Williams, and J. Lafferty, editors, Advances in Neural Information Processing Systems, volume 24,
Cambridge, MA, 2011. MIT Press. [PDF].

C. H. Ek, J. Rihan, P. Torr, G. Rogez, and N. D. Lawrence. Ambiguity modeling in latent spaces. In A. Popescu-Belis
and R. Stiefelhagen, editors, Machine Learning for Multimodal Interaction (MLMI 2008), LNCS, pages 62-73.
Springer-Verlag, 28-30 June 2008a. [PDF].

C. H. Ek, P. H. Torr, and N. D. Lawrence. Gaussian process latent variable models for human pose estimation. In
A. Popescu-Belis, S. Renals, and H. Bourlard, editors, Machine Learning for Multimodal Interaction (MLMI 2007),
volume 4892 of LNCS, pages 132-143, Brno, Czech Republic, 2008b. Springer-Verlag. [PDF].

Z. Ghahramani, editor. Proceedings of the International Conference in Machine Learning, volume 24, 2007. Omnipress.
[Google Books] .

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In A. Nicholson and P. Smyth, editors,
Uncertainty in Artificial Intelligence, volume 29. AUAI Press, 2013.

J. Hensman, M. Rattray, and N. D. Lawrence. Fast variational inference in the conjugate exponential family. In P. L.
Bartlett, F. C. N. Pereira, C.J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systens, volume 25, Cambridge, MA, 2012. [PDF].

G. E. Hinton. Products of experts. In ICANN 99: Ninth international conference on artificial neural networks, volume 1,
pages 1-6. IEE Press, 1999.

G. E. Hinton and S. Osindero. A fast learning algorithm for deep belief nets. Neural Computation, 18:2006, 2006.
A. Klami and S. Kaski. Local dependent components analysis. In Ghahramani (2007). [Google Books] .


http://dx.doi.org/10.1561/2200000006
ftp://ftp.dcs.shef.ac.uk/home/neil/mrdICML2012.pdf
ftp://ftp.dcs.shef.ac.uk/home/neil/deepGPsAISTATS.pdf
ftp://ftp.dcs.shef.ac.uk/home/neil/VGPDS_Nips11.pdf
ftp://ftp.dcs.shef.ac.uk/home/neil/mlmi2008.pdf
ftp://ftp.dcs.shef.ac.uk/home/neil/mlmi.pdf
http://books.google.com/books?as_isbn=1-59593-793-3
http://books.nips.cc/papers/files/nips25/NIPS2012_1314.pdf
http://books.google.com/books?as_isbn=1-59593-793-3

References II

A. Klami and S. Kaski. Probabilistic approach to detecting dependencies between data sets. Neurocomputing, 72:
39-46, 2008.

J. Langford and J. Pineau, editors. Proceedings of the International Conference in Machine Learning, volume 29, San
Francisco, CA, 2012. Morgan Kauffman.

N. D. Lawrence. Gaussian process models for visualisation of high dimensional data. In S. Thrun, L. Saul, and
B. Scholkopf, editors, Advances in Neural Information Processing Systems, volume 16, pages 329-336, Cambridge,
MA, 2004. MIT Press.

N. D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable
models. Journal of Machine Learning Research, 6:1783-1816, 11 2005.

N. D. Lawrence and A. J. Moore. Hierarchical Gaussian process latent variable models. In Ghahramani (2007), pages
481-488. [Google Books] . [PDF].

G. Leen and C. Fyfe. A Gaussian process latent variable model formulation of canonical correlation analysis. Bruges
(Belgium), 26-28 April 2006 2006.

D.J. C. MacKay. Introduction to Gaussian Processes. In C. M. Bishop, editor, Neural Networks and Machine Learning,
volume 168 of Series F: Computer and Systems Sciences, pages 133-166. Springer-Verlag, Berlin, 1998.

R. Navaratnam, A. Fitzgibbon, and R. Cipolla. The joint manifold model for semi-supervised multi-valued
regression. In IEEE International Conference on Computer Vision (ICCV). IEEE Computer Society Press, 2007.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. In S. Roweis and
A. McCallum, editors, Proceedings of the International Conference in Machine Learning, volume 25, pages 872-879.
Omnipress, 2008.

A. P. Shon, K. Grochow, A. Hertzmann, and R. P. N. Rao. Learning shared latent structure for image synthesis and
robotic imitation. In Y. Weiss, B. Scholkopf, and J. C. Platt, editors, Advances in Neural Information Processing
Systems, volume 18, Cambridge, MA, 2006. MIT Press.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society, B, 6
(3):611-622, 1999. [PDF]. [DOI].

M. K. Titsias and N. D. Lawrence. Bayesian Gaussian process latent variable model. In Y. W. Teh and D. M.
Titterington, editors, Proceedings of the Thirteenth International Workshop on Artificial Intelligence and Statistics,
volume 9, pages 844-851, Chia Laguna Resort, Sardinia, Italy, 13-16 May 2010. JMLR W&CP 9. [PDF].

L. R. Tucker. An inter-battery method of factor analysis. Psychometrika, 23(2):111-136, 1958.

S. Virtanen, A. Klami, and S. Kaski. Bayesian CCA via group sparsity. In L. Getoor and T. Scheffer, editors,
Proceedings of the International Conference in Machine Learning, volume 28, 2011.

A. G. Wilson, D. A. Knowles, and Z. Ghahramani. Gaussian process regression networks. In Langford and Pineau
(2012).


http://books.google.com/books?as_isbn=1-59593-793-3
ftp://ftp.dcs.shef.ac.uk/home/neil/hgplvm.pdf
http://www.robots.ox.ac.uk/~cvrg/hilary2006/ppca.pdf
http://dx.doi.org/doi:10.1111/1467-9868.00196
http://jmlr.csail.mit.edu/proceedings/papers/v9/titsias10a/titsias10a.pdf

	Conclusions
	Summary


