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Problem Definition

Collaborative filtering is the process of filtering information from
different viewpoints.

A particular use of the approach is the prediction of user tastes.

Type of question to be answer: What does a given user’s quality
rating of one item say about their likely rating for another?

For a data set with N items and D users we store ratings in
Y ∈ <N×D .
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This Talk
Gaussian Processes and Collaborative Filtering

A split for machine learning? (inspired by reflections on NIPS 2005
keynote by Urs Hölzle “Petabyte Processing Made Easy”)

I Data rich: Large amount of data, simpler models.

I Data scarce: Complex models with a lot of prior knowledge encoded
(e.g. Bayesian approaches)

Questions: Where are Gaussian processes in this?

I Cubic scaling of inference from data!
I Range of approaches to encoding prior knowledge in covariance

function.

Question: Where is collaborative filtering in this?

I Netflix: around 100,000,000 ratings.
I Purchase preference data sets are much larger!

This talk: combining Collaborative filtering with Gaussian processes.

I Isn’t that like putting Coca-Cola in malt whisky?
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Collaborative Filtering Existing Approaches
Neighborhood Approach

The neighborhood approach: compute similarity measure between
items.

I For a prediction, use weighted sum of “similar” items’ scores.

Form of prediction:
ŷi ,j = s>:,iy:,j

where s:,i is normalized similarities for item i .
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Neighborhood Approach
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Existing Approaches
Matrix Factorization

The latent factor approach typically involves a low rank
approximation.

I Probabilistic Variants (Salakhutdinov and Mnih, 2008b,a)

Factorize Y into a lower rank form,

Y ≈ U>V

where U ∈ <q×N and V ∈ <q×D .

Least squares fit of all v>:,iu:,j for each user j rating the ith film, yi ,j .

For test prediction from user ` for item k simply compute v>:,ku:,`.

u:,i ith column of U
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Matrix Factorization
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This Talk

State of the Art
I Both approaches perform well.
I Best systems on Netflix use a combination (Koren, 2008).

Our Contribution:
I Relate probabilistic matrix factorization to probabilistic PCA.
I Use GPs to non-linearize giving a probabilistic non-linear matrix

factorization
I The formula for rating test items is very similar to a neighborhood

approach.
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Probabilistic Matrix Factorization (PMF)

Least squares fit has a natural probabilistic interpretation.

p
(
Y|U,V, σ2

)
=

N∏
j=1

D∏
i=1

N
(
yi,:|v>:,iu:,j , σ

2I
)
.

Gaussian over Y with mean, U>V, and independent variance σ2.

Missing values in Y are marginalized and ignored.

In PMF a Gaussian prior is placed over U, and V

p (U) =
N∏

i=1

q∏
j=1

N
(
uj,i |0, α−1

u

)
p (V) =

D∏
i=1

q∏
j=1

N
(
vj,i |0, α−1

v

)
.

Cannot marginalize both U and V — use sampling or MAP (Salakhutdinov
and Mnih, 2008b,a).
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PCA Equivalence
Probabilistic Matrix Factorization is Bayesian PCA

Consider change of notation,

I X ≡ U> ∈ <N×q (latent variables)
I W ≡ V> ∈ <D×q (mapping matrix)
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Probabilistic PCA

Using this notation:

p
(
Y|W,X, σ2

)
=

N∏
i=1

D∏
j=1

N
(
yi,:|w>j,:xi,:, σ

2I
)
,

cf multi-output linear regression

Prior over X,

p (X) =
N∏

i=1

q∏
j=1

N
(
xi,j |0, α−1

x

)
,

gives

p
(
Y|W, σ2, αw

)
=

N∏
i=1

N
(
yi,:|0, α−1

x WW> + σ2I
)
.

Optimize wrt W — absorb αx into W.

Probabilistic PCA (Tipping and Bishop, 1999).
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Dual Probabilistic PCA

Instead take prior over W,

p (W) =
D∏

i=1

q∏
j=1

N
(
wi,j |0, α−1

w

)
cf Bayesian multi-output linear regression

p
(
Y|X, σ2, αx

)
=

D∏
j=1

N
(
y:,j |0, α−1

w XX> + σ2I
)
.

Optimize wrt inputs X — Probabilistic Principal Coordinate Analysis (Dual
PPCA, Lawrence, 2005).
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Bayesian PCA and PMF

Marginalizing both X and W is Bayesian PCA.

Not analytically tractable though we can use approximations.
(Bishop, 1999a,b; Minka, 2001).

PMF suggests marginalizing both U and V.
I Particular priors can be chosen for including information.
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Gaussian Processes
Making the model non-linear

Dual PPCA is Bayesian multi-output linear regression

p
(
Y|X, σ2, αx

)
=

D∏
j=1

N
(
y:,j |0, α−1

w XX> + σ2I
)
.

Or a Gaussian Process with a ‘linear’ covariance function.

p
(
Y|X, σ2, αx

)
=

D∏
j=1

N (y:,j |0,K) .

where K = α−1
w XX> + σ2I.

Make model non-linear with non-linear covariance functions e.g., RBF.

This model is called the Gaussian process Latent Variable Model (GP-LVM).
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Non-Linear Matrix Factorization

GP-LVM approach gives non-linear probabilistic matrix factorization.

Can also be seen as “kernelization” of the algorithm.

Different to kernel PCA.
I Kernel PCA constructs kernel in data space.
I Difficult to deal with missing data.
I GP-LVM constructs kernel in latent space.
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Non-Linear Matrix Factorization

The marginal likelihood of DPPCA is that of a Bayesian linear
regression

p
`
Y|X, σ2, αx

´
=

DY
j=1

N
“

y:,j |0, α−1
w XX> + σ2I

”
.

Replace inner product matrix with covariance function for non-linear
model.
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Missing values

For the product of GPs marginalizing missing values is straightforward.

Let yi be the observed subset of y.

yi ∼ N (µi,Σi,i) ,

For sparse data

p
(
Y|X, σ2, αx

)
=

D∏
j=1

N
(
yij ,j |0,Kij ,ij

)
.
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Stochastic Gradient Descent

Tipping and Bishop (1999) suggest EM for missing values:
I For large D (Netflix is 440,000) EM too expensive.

We suggest stochastic gradient descent.
I Present ratings for each user one at a time.
I Compute gradient for that user and update parameters.

For the jth user we minimize the negative log likelihood

Ej(X) =
Nj

2
log |Cj |+

1

2

(
y>ij ,jC

−1
j yij ,j

)
+ const.,

where Cj is covariance function (kernel) computed for j ’s rated items.
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Stochastic Gradient Descent

Y

users

it
e
m
s

5

4

3
2

4

34

5

5

1

1
4

4

3 5

1

4

5

4

4
3

1

5
2 2

4
5

4

4

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13

3

54

Present data a column at a time.
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Each step updates Xij ,:.
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Stochastic Gradient Descent
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Complexity of GP cubic in Nj not N.
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Stochastic Gradient Descent
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No Sparse GP approximations required.
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Stochastic Gradient Descent
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No Sparse GP approximations required.
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Stochastic Gradient Descent
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No Sparse GP approximations required.
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Stochastic Gradient Descent

Y

1

8

x
1,1

8,28,1

1,2
x

xx
4
3

GP

present
 user 6

users

it
e
m
s

5

4

3
2

4

34

5

5

1

1
4

4

3 5

1

4

5

4

4
3

1

5
2 2

4
5

4

4

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13

3

54

No Sparse GP approximations required.
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Model Prediction
Relation to Neighborhood Approach

Learning: maximize likelihood wrt X and θ.

Predict using standard GP formula:

µ`,j = s>yij ,:,

with s =
(
Kij ,ij + σ2I

)−1
kij ,`.

I Similar predictive form to neighborhood approach.
I Our “similarities” are computed in X space.
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Predictions

For previously unseen users:
I No need to perform new training.
I Learned GP provides the prior and users’ ratings provide the data.

Can also compute variance of prediction:

ς`,j = k`,` + σ2 − k>ij ,`s.
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Covariance Functions Used

We present results with:

k (xi ,:, xj) = θ1e
− 1

2θ2
|xi,:−xj,:|2 + θbias + σ2δi ,j

or
k (xi ,:, xj) = θ1x>i ,:xj ,: + θbias + σ2δi ,j

Bias term is important.
I Each user is being modeled as independent sample from this GP.
I Bias term implies Gaussian prior over user biases.
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Experimental evaluation: Datasets

Followed (Marlin, 2004) in experimental setup for:
I EachMovie: 2.6 million ratings for N = 1, 648 movies and

D = 74, 424 users. Ratings range {1, · · · , 6}.
I 1M Movielens: 1 million ratings for 6, 040 users, and 3, 952 movies,

with ratings ranging {1, · · · , 5}.
Also try 10M Movielens: 10 million ratings for D = 71, 567 users
and N = 10, 681 movies, with ratings ranging {1, 1.5, 2, · · · , 5}.
No Netflix!
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Experimental Setup

Weak generalization: fill in missing values in Y.

Strong generalization: inference on previously unseen columns of Y.

Results in terms of
I Normalized mean absolute error (NMAE).
I Root mean squared error (RMSE).

Selected optimization parameters on Movielens 100k (results not
presented).

Used stochastic gradient descent with momentum 0.9 and learn rate
5e-4.

Initialize X with Gaussian random values, std 1e-3.

Initialize parameters to 1 apart from θbias = 0.11 and σ2 = 5.
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Influence of latent space dimensionality
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Figure: 1M MovieLens: NMAE and RMSE errors as a function of the latent
space dimensionality for different percentages of the database used as training,
i.e., 30-90 %.
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Results EachMovie

Table: EachMovie Best results vs URP and Attitude algorithms of (Marlin,
2004), the MMMF of (Rennie and Srebro, 2005), E-MMMF of DeCoste (2007),
and the Item-based approach of (Park and Pennock, 2007)[Park et al. 07].

Weak NMAE Strong NMAE

URP 0.4422 ± 0.0008 0.4557 ± 0.0008
Attitude 0.4520 ± 0.016 0.4550 ± 0.0023
MMMF 0.4397 ± 0.0006 0.4341 ± 0.0025

Item 0.4382 ± 0.0009 0.4365 ± 0.0024
E-MMMF 0.4287 ± 0.0023 0.4301 ± 0.0035

Ours Linear 0.4209 ± 0.0017 0.4171 ± 0.0054
Ours RBF 0.4179 ± 0.0018 0.4134 ± 0.0049
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Results Movielens

Table: 1M MovieLens data set. Best results vs the URP and Attitude
algorithms of (Marlin, 2004), the MMMF of (Rennie and Srebro, 2005),
E-MMMF of DeCoste (2007), and the Item-based approach of (Park and
Pennock, 2007) when using a non-linear latent space.

Weak NMAE Strong NMAE

URP 0.4341 ± 0.0023 0.4444 ± 0.0032
Attitude 0.4320 ± 0.0055 0.4375 ± 0.0028
MMMF 0.4156 ± 0.0037 0.4203 ± 0.0138

Item 0.4096 ± 0.0029 0.4113 ± 0.104
E-MMMF 0.4029 ± 0.0027 0.4071 ± 0.0093
Ours linear 0.4052 ± 0.0011 0.4071 ± 0.0081
Ours RBF 0.4026 ± 0.0020 0.3994 ± 0.0145

10M Movielens: results in a NMAE of (0.3968 ± 0.0165), and a RMSE of
(0.8740 ± 0.0278) using a 10D latent space.
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Conclusions

Promising approach on standard benchmarks.

Could also make a map of users and do stochastic gradient descent
over items if D > N

Also exploring:
I Side information (film genre etc.).
I Have X represent users rather than items.

F Expect this to be useful when there are more items than users.

I Using EP to model discrete outputs.

Ruslan and Andriy have been looking at similar models on Netflix.
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Variance as indicator of uncertainty
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Figure: GP variance: as a function of the number of movies rated, for a 10D
latent space learned on 1M MovieLens Weak. The variance of the GP is a good
indicator of the uncertainty in the model, its value decreases with the amount of
movies rated.
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Other extensions and results

Adding movie meta-data:

I There might be additional data about the movie that we might want to
include, for example with the 1M MovieLens data, there is information
about the genre of the movie (e.g., comedy and western).

I This can be encoded in a binary vector that defines the genre for each
movie in the database.

I We can include this information in the kernel matrix. If the meta-data
for a particular movie is given in a vector mi,: then a covariance
function can be created from the meta-data,

km (mi,:,mj,:) = αm exp
(
−γm

2
||mi −mj ||2

)
.

I This can be combined with the covariance function defined in x-space
through a tensor product,

ki,j = km (mi,:,mj,:) kx (xi,:, xj,:) .
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Kernel comparison EachMovie
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Figure: EachMovie: NMAE and RMSE errors for different kernels. Note that in
general non-linear latent spaces result in better performance.
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Kernel comparison 1M Movielens
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Figure: 1M MovieLens: NMAE and RMSE errors for different kernels. Note that
in general non-linear latent spaces result in better performance.
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