Generalised Component Analysis

Neil D. Lawrencef Michael E. Tippingi

neil@dcs.shef.ac.uk mtipping@microsoft.com

23rd May 2003

tDepartment, of Computer Science, Regent Court, 211 Portobello Road, Sheffield, S1 4DP, U.K.
iMicrosoft Research, 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K.

Abstract

Principal component analysis is a well known approach for determining the principal sub-
space of a data-set. Independent component analysis is a widely used technique for recovering
the linearly embedded independent components of a data-set. In this paper we develop an
algorithm that, for super-Gaussian sources, extracts the direction and number of independent
components of a data-set and determines the principal sub-space of the remaining components.
This is achieved through the use of a latent variable model. We refer to the approach as
Generalised Component Analysis and demonstrate its ability to both extract independent
and principal components, as well as to determine the number of independent components,
on toy and real world data-sets.

1 Introduction

In independent component analysis (ICA) [5, 10] we assume that an observed data-point consists

2.

of a d dimensional vector, x,, = ( .,m%d)), that is generated by linear mixing of ¢ source

signals, s, = (sg), PN ngq)),

X, = As, +1,,

where n,, represents additive noise, which we will assume to be Gaussian and isotropic, A is known
as the mixing matrix and we have assumed that the set of all data-points, X, is centred.

The most important characteristic of ICA is that the components of the random variables s%] )
are assumed to have been generated independently:

p(sn) = ﬁp ()

where ¢ is the dimensionality of the latent space. However, if these latent variables are Gaussian,
then it can be shown that recovery of the mixing matrix is only possible to within an arbitrary
rotation [16]. The space spanned by this rotation is known as the principal sub-space. If, on the
other hand, we are interested in recovering the independent components it is necessary to select a
representation for the latent distribution which is non-Gaussian. Common choices are Laplacian
or hyperbolic secant distributions. In this paper we use the Student-¢. The Student-t distribution
is super-Gaussian, in other words it has heavier tails than a Gaussian. This makes it suitable for
determining the independent components of source distributions which are also super-Gaussian,
such as speech and EEG signals.

We describe the structure of our Student-¢ distributed latent variable model in Section 2.
In Section 5 we show how the parameters of the model may be efficiently determined through



variational inference, giving an overview of the implementation details in Section 6. Finally we
demonstrate the algorithm’s ability to automatically estimate the number and direction of the
independent components, as well as the principal components, in Section 7.

2 The Probabilistic Model

A Student-¢ distribution is controlled by a scale parameter, o, and its degrees of freedom, v,

T2 ()
o) = ) Jome? (1 * ug2> ’

where T (+) is the Gamma function. For low degrees of freedom, the distribution is very heavy tailed
and as such it is suitable for determining independent components which are super-Gaussian. In
the limit as the v — oo the Student-¢ tends to a Gaussian with standard deviation . Therefore,
if we can optimise v as part of the model fitting process, we may use the Student-¢ for recovering
source distributions which are both Gaussian and super-Gaussian; in other words a model based
around this distribution can be considered to perform ‘Generalised’ Component Analysis (GCA).

Our GCA model is based on a source distribution that is a Student-t, p(s/ |v;, 0;) = t(s |v;, 0;),
and related to our data by a Gaussian noise model,

T e (=8 s — s (e
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where d is the data dimensionality and mﬁf) represents the ¢th component of data point n. We
have also introduced the inverse noise variance, or precision, 3. We will look to estimate the
parameters of our model through optimisation of an objective function, an obvious choice for
which is the log-likelihood which may be obtained through marginalising the latent variables

(1)
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Unfortunately the required marginalisation is in general non-analytic, in the next section we
therefore consider the ‘noiseless’ case for which a likelihood function may be developed then in
Section 5 we develop a variational approximation which allows us to make progress.

3 The Likelihood Model

For simplicity we first consider the ‘noiseless’ case. For the Student-¢ distribution, this model was
first proposed by [13]. Taking the limit of p (x,|A, 5,s,) as B tends to zero gives

d
p(xn|A, B,8,) = H6 (a?sn — a:Sf)) ,
i=1

where a; is a column vector containing the ith row of the mixing matrix, x%) is the element from

the ith column and nth row of the design matrix and § () is the Dirac-delta function. As is shown
in [13], if ¢ = d the likelihood function may now be written

N
Inp(X|A) = -N|Al+In [ p (A 'xn).

n=1

It is convenient to define W = A~!, and then gradients with repsect to W may be determined as
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where the elements of z,, are
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and s = W X,. The focus of [13] is a covariant algorithm (see also [1]) but also mentioned

is the possibility of optimising the latent distributions through gradient based methods. Whilst
[13] suggests optimisation of both the degrees of freedom parameter and the scale parameter, for

reasons discussed in Section 5.1, we prefer a constrained optimisation, which restricts the variance
2

of each latent distribution to unity. The variance of the Student-¢ distribution is given by %
J
for v; > 2. Tmplementing this constraint through Lagrange multipliers leads us to set % = "’V—_Q
J

(see Appendix), substituting for 0]2- in the log likelihood we obtain
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Implementation of the constraint that v; > 2 could be achieved through the introduction of slack
variables, but we choose simply to take v; = vmin + 'yJ? where v,,;, > 2. Gradients with respect to
v; may then be determined as follows

dlnp (X|A Umin +77 + 1 v+
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where ¢ () = mnTm is the digamma function.

4 Results from the Noiseless Algorithm

A popular application of ICA is in the analysis of ECG data, to illustrate the application of the
noiseless algorithm in this domain we considered a data-set (Figure 1) consisting of the cutaneous
potential recordings of a pregnant woman [11]. The data consists of 2500 points (5 seconds of
data at 500 Hz sampling rate) from five abdominal electrodes and three thoracic electrodes. We
initialised the mixing matrix A through principal component analysis, each v; was initialised as 5
and vpip was set to 2.5. We then optimised the log likelihood through using the gradients given in
eqns (3) and (2) in a scaled conjugate gradient algorithm. The resulting components, ordered by
their ‘Gaussianity’, as determined by degrees of freedom parameters, are shown in Figure 2. The
first six components appear to be non-Gaussian, the last two have very high degrees of freedom and
were therefore assumed to be Gaussian. These two components span a sub-space of data known
as the principal sub-space. They are not uniquely determined, there is a continuum of vectors
which represent the same sub-space. In principal component analysis, to obtain a unique solution,



Figure 1: The five abdominal (top five plots) and three thoracic (bottom three plots) recordings.

these vectors are constrained to be orthogonal to one another. We therefore explored the principal
sub-space spanned by the mixing matrix columns associated with the Gaussian components, Ag.
We projected the sub-space spanned by this matrix onto the eigenvectors of AEA(;. The resulting
matrix Ag was then substituted back into A to give A. The components associated with this
mixing matrix are those shown in Figure 2.

Finally to show the nature of the distributions learned by the model we show the latent
distribution associated with the first independent component (v, = 2.5) in Figure 3 and one of
the latent distributions associated with a Gaussian direction (vg = 832).

5 Variational Inference

A constraint of the model described above is that we may not seek latent representations of the
data with dimensionality ¢ < d. However, by reintroducing the noise, 8 into our likelihood this
limitation can be overcome. We are not the first to propose such a modification to the ‘noiseless’
algorithm. Bell and Sejnowski’s original ICA algorithm was treated with versions which used a
noise model firstly by [3] who proposed a Bayesian version of the algorithm and later by [9] who
focused on its application in overcomplete representations.

Let us decompose the Student-¢ distribution into its hierarchical form which consists of a
Gaussian whose precision (or inverse noise), 7, is sampled from a gamma distribution, thereby
introducing an additional latent variable that represents the source distribution’s precision, 7. We
may write the hierarchical form of the Student-t as

p(sg)hjjao'j) = /P(853)|T£j)>P(Tr(lj)|Vj,Uj) dr)) (4)
where
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Figure 2: The components uncovered by the GCA algorithm ordered according to the ‘Gaussianity’
of the source. The degrees of freedom parameters were 2.5, 2.5, 2.5, 3.57, 3.79, 6.06, 339 and 832.
Components 1, 2, 4 and 5 appear to be associated with the mothers heartbeat, 3 and 6 arise from
the fetus. The data appears to only contain six independent components, the other directions
being Gaussian.

Here we have parameterised the gamma prior over the source precision such that when T,(L]) is
marginalised in eqn (4) we recover eqn (1). We denote this form of parameterisation of the gamma
distribution t—gam(y|v, o). Decomposing the Student-¢ still leaves us with an intractable problem;
the advantage of this step, though, is that it renders our model amenable to the approximating
‘variational inference’ framework.

Decomposition of the Student-¢ leaves us with a model that is composed of distributions which
are all members of the conjugate exponential family. This allows us to implement the machinery
of variational inference without modification [8]. As a result, we are able to obtain a lower bound
on the log-likelihood which may be maximised to estimate the mixing matrix.

Consider the following formulation of the log-likelihood

X,8,Tl9) | p(S,TX,0)

X -
S TCR (5T

where we have introduced the arbitrary distribution ¢(S,T) and have represented the set of all
the models’ parameters by 6. Taking expectations under this distribution leads to

p(X, S, T|6)
lanHZ/qS,TlnideT—KLqp. 5
(X[6) (S,T) 75T (4llp) (5)
where KL(g||p) represents the Kullback Leibler divergence between ¢(S, T) and p(S, T|X,6). The
KL divergence is known to be zero if the two distributions are identical and positive otherwise,
thus the first term of eqn (5) is a lower bound on the likelihood,

(X,S,T|6)

Inp(X|0) > /q(s,T) In? s S = £(0), (6)

the quality of which may be improved by minimising the KL divergence. If we consider all
possible forms for the approximating distribution, we find the bound becomes equality when
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Figure 3: The Student-¢ distribution associated with the first independent component (left) and
that associated with one of the Gaussian directions (right). Also included are histograms of the
actual recovered sources for comparision.

q(S, T) = p(S, T|X). However, in our model, this form of the g-distribution leads to no reduction
in the computational complexity of the inference process. Instead we first of all constrain the
class of our approximating distribution by assuming it separates, ¢(S,T) = ¢(S)q(T), [19]. The
functional form of the approximating distributions, ¢(S) and ¢ (T), which most tighten bound (6)
can then be found [19] by inspection,

q(S) & exp <1np(X) S) T|0)>q(T) )
Q(T) X exp <lnp(X)S)T|0)>q(s) 9

where (-)p(m)represents an expectation under the distribution p(z). Our approximation to the
posterior therefore consists of the following two distributions
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whose parameterisation may be found to be

v = [diag () + BATA] T, (7)
S, = E?/BATXTH (8)
2 (4) 2
n I/j + 1 ’
I?j = v+ 1. (10)

Here we have dropped the subscript for the expectations where the appropriate distribution is
thought to be obvious. The expectations of interest are related to the parameters in the following
manner

) = Sn, (11)
) = 8,5, + X7 (12)
= 97 (13)

() = 6 () —1og (”—5) —log 6407 (14)



We may also obtain an expression for our variational bound on the log likelihood
L) = (np(X|S,A,B)p(S|T)p(T)) + H (¢(S)) + H (¢(T)), (15)

where the first term may be computed using the following results

N
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and the second two terms, which represent the entropies of the variational distributions, can be

found as
H(q(S)) = ;[Nln{ < )} N1n<;>

J
() (%) - B S

H(¢(T)) = Z[ (In27 + 1) + 1n|zg|].

To estimate the parameters, 3, A, v, € 6, we look to optimise the lower bound on the likelihood in
the hope that the true likelihood will also be raised. Through differentiation of (6) with respect
to B and A and setting the result to zero we may obtain the following fixed point equations

—1

A= (S| Yoo 16)
g = Nd<;;<( i) _ g sn)2>> . (17)

Unfortunately, for optimisation with respect to the parameters of the Student-¢ latent distribution,
no fixed point equations may be found. Furthermore, we must consider that there is redundancy in
our representation: variations in scale may be accounted for either through scaling columns of the
mixing matrix or through scaling a factor of the source distribution. To remove this redundancy we
first considered constraining the scale parameters {o;} to unity, the degrees of freedom parameters
may then be found through gradient based optimisations, the gradient of the likelihood bound with
respect to the degrees of freedom being

oL 0
o, v (Inp(T))

- 51 —+1—¢( 1) +1no? + Z(<ln77)> o2 (1))

and used in a scaled conjugate gradient algorithm.



In implementation, however, we found that convergence of this algorithm, as monitored by
the lower bound on the log likelihood, was slow unless particular orderings of the updates were
undertaken. This was considered to be as a result of any change in the degrees of freedom
parameter at each source requiring corresponding changes in a column of the mixing matrix so
that the predictive variances associated with mixtures of that source was conserved. We therefore
implemented a constraint on the source distribution whereby its variance in each direction was
fixed to one.

5.1 Whitening the Source Distribution

2 , therefore the

. This means
that any change in the values of v; can lead to a large change in the predlcted variance for each
output. This change must be counteracted by corresponding changes in the mixing matrix A and
as a result convergence can be very slow. Rather than constraining 0]2- we therefore constrained
the variance associated with the source distribution to unity. As for the noiseless case above this
constraint was implemented through a Lagrange multiplier and through setting v; = vpyin + 7]2
where vmin > 2. The likelihood bound as a function of 4 may then be written

Vmin‘i_'y]2 Vmin+'y]2_2 1 Vmin‘*"y]2
NZ( 5 >1n 5 —NZlnI‘f

j=1 j=1
Vmin + 'Y] N
+Z 7—1 Z<logr”>
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! min 2 — 2 N :
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Differentiating this function with respect to v gives
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This equation may be used in combination with eqn (18) in a line minimiser for determining the
optimum value for each .

6 Algorithm Overview

The updates of parameters and expectations given above are used together to optimise the model,
unfortunately it is not clear in what order these updates should be made. The algorithm can
be viewed as an approximate expectation maximisation (EM) algorithm [6]. In standard EM
algorithms it is common to update the expectations (the E-step) first, eqns (11), (12), (13) and
(14), to tighten the lower bound on the likelihood before an update of the parameters (the M-step)
through eqns (16) and (17). We are not, however, required to stick with this convention to obtain
a convergent algorithm [15]. In our implementation, which is given in Algorithm 1, we chose to
perform the updates in a random order.

The computational complexity of the algorithm is dominated by the matrix inverse in eqn (8)
which must be performed for each data point. Each iteration has, therefore, O (N q3) complexity.
There is, however, scope to reduce this complexity by assuming that the variational posterior
factorises over each latent dimension as is done by [14].



Algorithm 1 The GCA algorithm.
Require: A centred data-set. A minimum value for v;.

2
vj =5 and 07 = Y=,

Initialise A with small random values, § = 3=

Update X7and s, using (7) and (8).
2

Update values of #;and 65 using (10) and (9).
repeat
repeat
Sample without replacement one of the following updates.
Update X"and §, using eqn (7) and eqn (8).
Update values of 7jand &) ’ using eqn (10) and eqn (9).
Update 3 using eqn (17).
Update A according to eqn (16).
Perform a line minimisation for each 7; using eqn (18) and eqn (19).
until All updates have been sampled.
until Change in bound on log-likelihood is less 1 x 107°.

d
e Var(x(i) ) ’

GCA | 1.09 | 1.03 | 1.01 | 0.913 | 0.927 | 0.124 | 0.0626 | 0.0586 | 0.0321 | 0.0354
PPCA | 0.999 | 0.999 | 0.999 | 0.995 | 0.995 | 0.135 | 0.0674 | 0.0580 | 0.0349 | 0.0348

Table 1: Comparision of the norm of the eigenvectors’ projections on the sub-space of the mixing matrix
found by the GCA algorithm. The exact sub-space is not recovered, this is likely to be as a result of a
limited number of data points (1000) in a ten dimensional space.

7 Examples

To demonstrate the efficacy of the variational algorithm we now turn to the study of some artificial
and real world examples.

7.1 Toy Problems

Let us first consider the behaviour of the variational GCA algorithm when presented with data
which is Gaussian in nature, under these conditions we expect the algorithm to estimate the
principal sub-space in the manner of probabilistic PCA (PPCA), [16].

7.1.1 GCA on Gaussian data

A toy Gaussian data-set was obtained by sampling 1000 data points from a ten dimensional
diagonal covariance Gaussian, the elements of which took the following values 10, 9, 8, 7, 6, 5, 4,
3, 2, 1. These samples were then rotated by an orthogonal matrix R and modelled with a GCA
model containing five latent distributions. The model was initialised and optimised as described
in Section 6 above. The norms of the eigenvalues’ projections on to the sub-space of the discovered
mixing matrix were computed. If this matrix spanned the sub-space the results would have been
five ones followed by five zeros. The actual results are summarised in Table 1, for comparison a
set of PPCA results are included with the GCA results.

7.1.2 GCA on non-Gaussian data

The second toy problem involved sampling 1000 points from six Student-¢ distributions with the
following degrees of freedom: 3, 3, 3, 100, 100 and 100. The scale parameter was set to 1 for
each distribution. These samples were then subject to a randomly generated affine transform and
spherical Gaussian noise with a variance of 0.01 was added. The algorithm estimated the following
degrees of freedom parameters: 3.31, 3.70, 3.91, 62.2, 80.2 and 141. The poor estimation of the
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Figure 4: Hinton diagrams of the true independent components (left 3 columns) and those recov-
ered by the algorithm (right 3 columns) for the non-Gaussian toy problem. A Hinton diagram
represents the numbers in a matrix, in this case the mixing matrix, as a set of squares. The
position of the squares corresponds to each number’s position in the matrix and their size and
colour correspond to the magnitude and sign of the number respectively .

last three degrees of freedom is typical of the algorithm, perhaps because in this regime the shape
of the Student-t changes only marginally with large changes in the degrees of freedom parameters.
The recovered independent components (the columns of the mixing matrix associated with the
three non-Gaussian directions) are shown in Figure 4 along with the true values.

7.2 GCA on MEG data

One advantage of the probabilistic formulation of the model is that we may compute an under-
complete representation of our data. This may be useful in situations where the data is of higher
dimensionality. We explored an MEG data-set [18] containing 122 signals, a subset of which are
shown in Figure 5. We constrained ourselves to a twenty second portion of the data-set twenty-four
seconds from the start of the sequence, during which the subject had been asked to blink. The
resulting components, ordered by their ‘Gaussianity’ as determined by degrees of freedom param-
eters, are shown in Figure 6. We considered the first five components to be non-Gaussian. Their
degrees of freedom parameters varied between 2.82 and 14.5. The following two components have
degrees of freedom parameters of 110 and 951. As for the noiseless case we explored the principal
sub-space spanned by the mixing matrix columns associated with the Gaussian components, Ag,
projecting the sub-space onto the eigenvectors of ALAg the resulting matrix Ag again being
substituted back into A to give A. The components associated with this mixing matrix are those
shown in Figure 6.

Once again, to show the nature of the distributions learned by the model we show the latent
distribution associated with the first independent component (v; = 2.82) in Figure 7 and one of
the latent distributions associated with a Gaussian direction (vg = 951).

8 Discussion

We have presented an algorithm that automatically estimates the number of independent compo-
nents in a data-set and explains the remaining data through principal component analysis and a
noise model. This ‘automatic independence determination’ (AID) is a characteristic shared with
other models, [12, 14, 4], but most of them treat the mixing matrix in a Bayesian manner to
achieve this goal. The method uses a latent variable which is Student-¢ distributed and exploits
the distribution’s ability to ‘interpolate’ between a heavy tailed distribution and a Gaussian dis-
tribution. Recall, as noted earlier, that this distribution is appropriate for extracting independent
components that are super-Gaussian, but not sub-Gaussian.

The decomposition of the Student-¢ distribution we use can be viewed as an infinite mixture
of zero mean Gaussians. One alternative representation [2, 14, 12, 7] for the source distribution is

10



Figure 5: Fifeteen of the orginal 122 MEG signals.

that of a finite mixture of Gaussians. This type of source distribution may also be treated tractably
using the variational inference techniques we used and the parameters of the source distributions
can also be optimised by maximising the resulting lower bound on the log-likelihood. However,
these source distributions do not have the attractive quality of the Student-¢ which can interpolate
between the Gaussian distribution and a heavy tailed distribution. Finally, it is straightforwad to
develop a Bayesian version of the algorithm, through the mechanism of variational inference, which
not only extracts the number of independent components but also determines the dimensionality
of the principal sub-space.

Software for running the experiments we’ve described is available at http://www.dcs.shef.
ac.uk/"neil/gca/.
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A Constraining the variance of the latent distribution

In probabilistic principal component analysis, the latent distribution is of fixed variance. Allowing
the variance of the latent distribution to change leads to a redundancy in the models representation.
It therefore seems appropriate to constrain the variance of the latent distribution in our model.
We thus implement the constraint Vj"i2a]2. = 1. When maximising log likelihoods, or lower bounds
on the log likelihoods, with respect to the parameters of the source distribution we develop a

Lagrangian which incorporates this constraint:

L(u,o-2,)\) = F(u,0'2,)\) + <,/.V12032' — 1> , (20)
j

where F'(-) is the original function to be optimised and we have introduced Lagrange multipliers
A;. Differentiating with respect to A, we obtain

0 2 . Vi 2
a—/\/@L(u,a’,A)—( 2)% 1.

Vi —

vy —
vj

2 which we may substitute back into our function F () to impose the constraint.

implying 0% =
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