

Advanced Use of Gaussian Processes

Neil D. Lawrence

University of Siena

7th April 2011

Outline

Dimensionality Reduction

GP-LVM

GP-LVM Extensions

Mechanistic Modeling

GPs and Differential Equations

Outline

Dimensionality Reduction

GP-LVM

GP-LVM Extensions

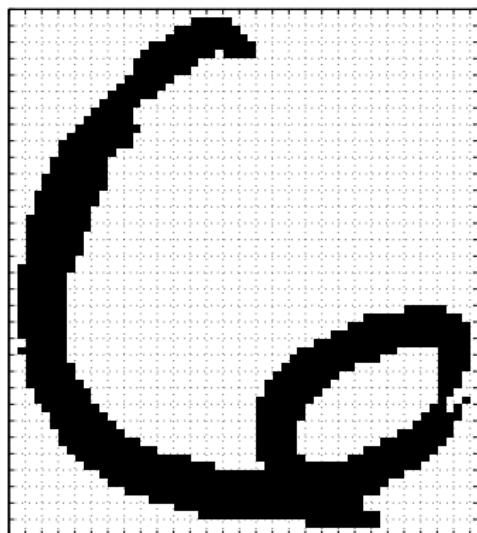
Mechanistic Modeling

GPs and Differential Equations

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- ▶ 3648 Dimensions
 - ▶ 64 rows by 57 columns
 - ▶ Space contains more than just this digit.
 - ▶ Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!



Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- ▶ 3648 Dimensions
 - ▶ 64 rows by 57 columns
 - ▶ Space contains more than just this digit.
 - ▶ Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!

Motivation for Non-Linear Dimensionality Reduction

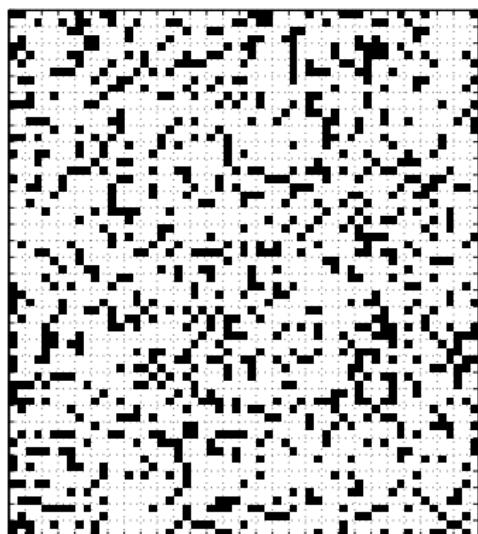
USPS Data Set Handwritten Digit

- ▶ 3648 Dimensions
 - ▶ 64 rows by 57 columns
 - ▶ Space contains more than just this digit.
 - ▶ Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!

Motivation for Non-Linear Dimensionality Reduction

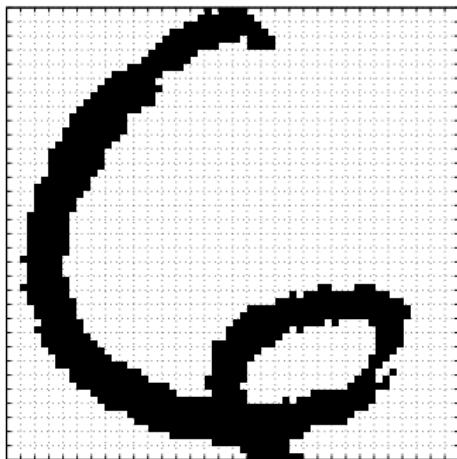
USPS Data Set Handwritten Digit

- ▶ 3648 Dimensions
 - ▶ 64 rows by 57 columns
 - ▶ Space contains more than just this digit.
 - ▶ Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!



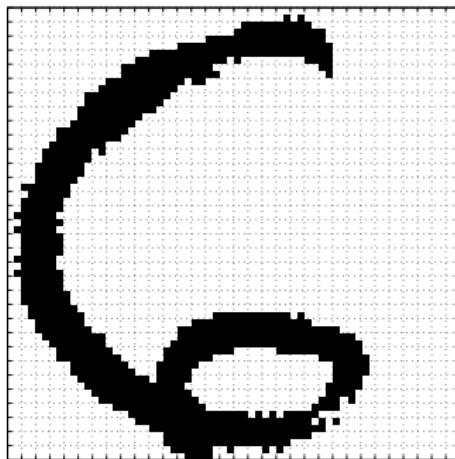
Simple Model of Digit

Rotate a 'Prototype'



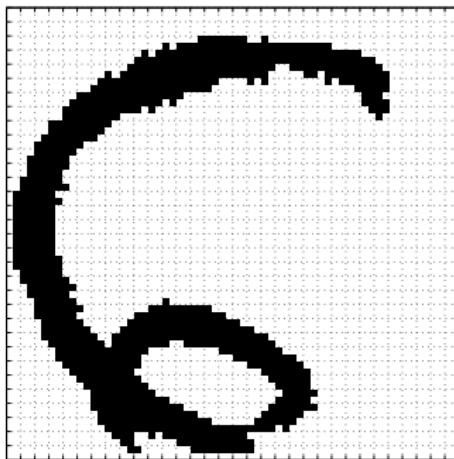
Simple Model of Digit

Rotate a 'Prototype'



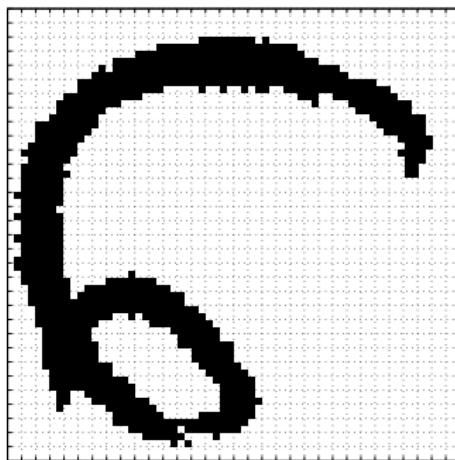
Simple Model of Digit

Rotate a 'Prototype'



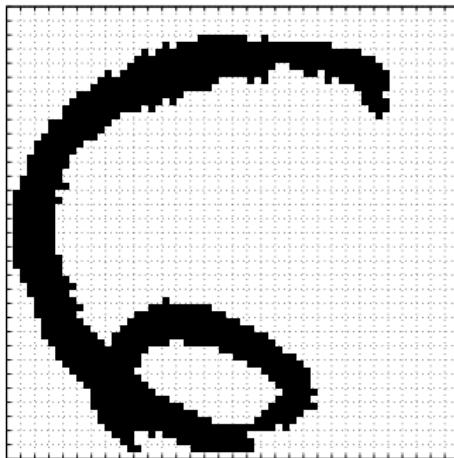
Simple Model of Digit

Rotate a 'Prototype'



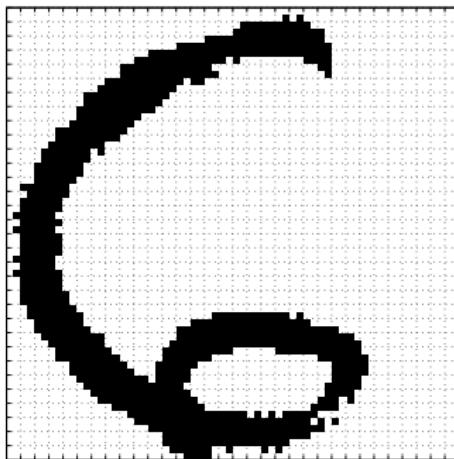
Simple Model of Digit

Rotate a 'Prototype'



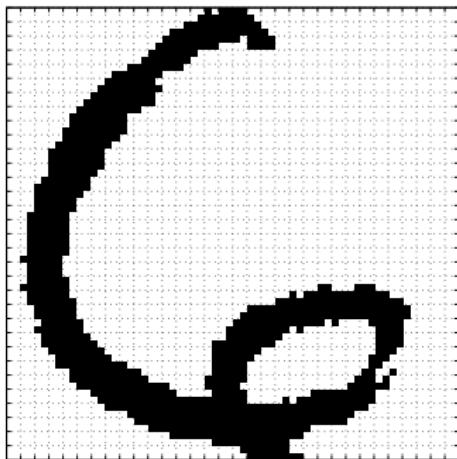
Simple Model of Digit

Rotate a 'Prototype'



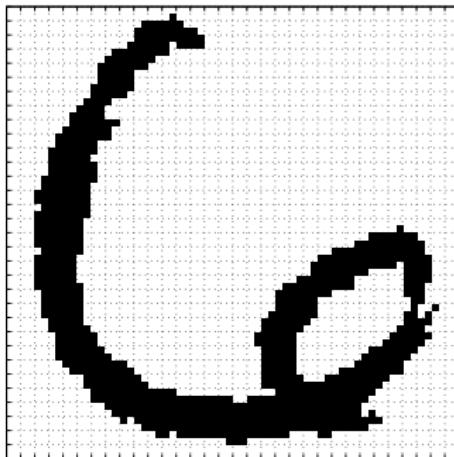
Simple Model of Digit

Rotate a 'Prototype'



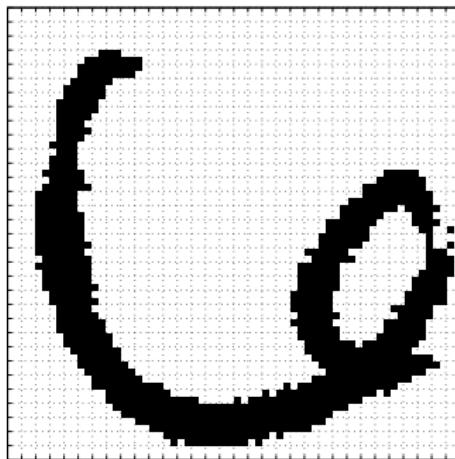
Simple Model of Digit

Rotate a 'Prototype'



Simple Model of Digit

Rotate a 'Prototype'

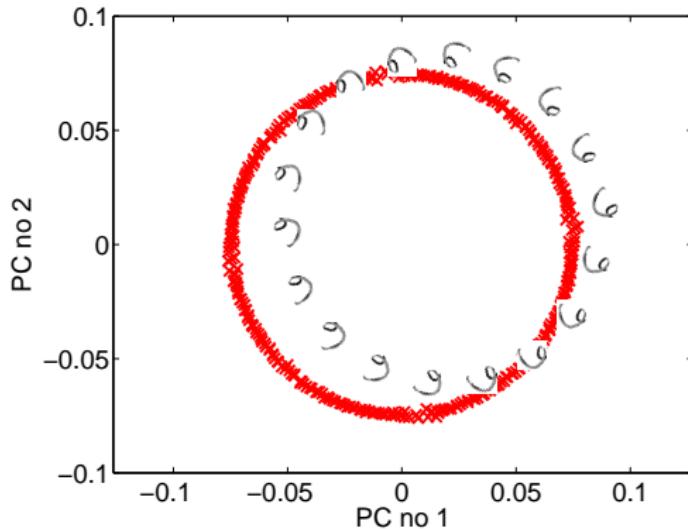


MATLAB Demo

```
demDigitsManifold([1 2], 'all')
```

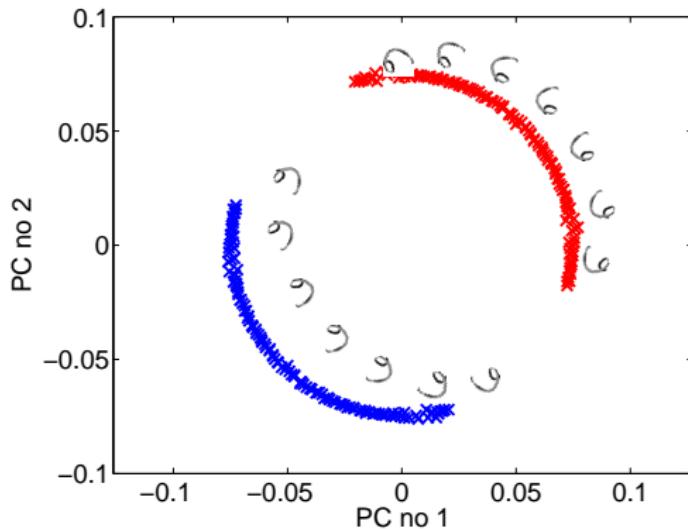
MATLAB Demo

```
demDigitsManifold([1 2], 'all')
```



MATLAB Demo

```
demDigitsManifold([1 2] , 'sixnine')
```



Pure Rotation is too Simple

- ▶ In practice the data may undergo several distortions.
 - ▶ e.g. digits undergo 'thinning', translation and rotation.
- ▶ For data with 'structure':
 - ▶ we expect fewer distortions than dimensions;
 - ▶ we therefore expect the data to live on a lower dimensional manifold.
- ▶ Conclusion: deal with high dimensional data by looking for lower dimensional non-linear embedding.

Existing Methods

Spectral Approaches

- ▶ Classical Multidimensional Scaling (MDS) (Mardia et al., 1979).
 - ▶ Uses eigenvectors of similarity matrix.
 - ▶ Isomap (Tenenbaum et al., 2000) is MDS with a particular proximity measure.
 - ▶ Kernel PCA (Schölkopf et al., 1998)
 - ▶ Provides a representation and a mapping — dimensional expansion.
 - ▶ Mapping is implied through the use of a kernel function as a similarity matrix.
 - ▶ Locally Linear Embedding (Roweis and Saul, 2000).
 - ▶ Looks to preserve locally linear relationships in a low dimensional space.

Existing Methods II

Iterative Methods

- ▶ Multidimensional Scaling (MDS)
 - ▶ Iterative optimisation of a stress function (Kruskal, 1964).
 - ▶ Sammon Mappings (Sammon, 1969).
 - ▶ Strictly speaking not a mapping — similar to iterative MDS.
- ▶ NeuroScale (Lowe and Tipping, 1997)
 - ▶ Augmentation of iterative MDS methods with a mapping.

Existing Methods III

Probabilistic Approaches

- ▶ Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)
 - ▶ A linear method.
- ▶ Density Networks (MacKay, 1995)
 - ▶ Use importance sampling and a multi-layer perceptron.
- ▶ Generative Topographic Mapping (GTM) (Bishop et al., 1998)
 - ▶ Uses a grid based sample and an RBF network.

Existing Methods III

Probabilistic Approaches

- ▶ Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)
 - ▶ A linear method.
- ▶ Density Networks (MacKay, 1995)
 - ▶ Use importance sampling and a multi-layer perceptron.
- ▶ Generative Topographic Mapping (GTM) (Bishop et al., 1998)
 - ▶ Uses a grid based sample and an RBF network.

Existing Methods III

Probabilistic Approaches

- ▶ Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)
 - ▶ A linear method.
- ▶ Density Networks (MacKay, 1995)
 - ▶ Use importance sampling and a multi-layer perceptron.
- ▶ Generative Topographic Mapping (GTM) (Bishop et al., 1998)
 - ▶ Uses a grid based sample and an RBF network.

Existing Methods III

Probabilistic Approaches

- ▶ Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)
 - ▶ A linear method.
- ▶ Density Networks (MacKay, 1995)
 - ▶ Use importance sampling and a multi-layer perceptron.
- ▶ Generative Topographic Mapping (GTM) (Bishop et al., 1998)
 - ▶ Uses a grid based sample and an RBF network.

Difficulty for Probabilistic Approaches

- ▶ Propagate a probability distribution through a non-linear mapping.

The New Model

A Probabilistic Non-linear PCA

- ▶ PCA has a probabilistic interpretation (Tipping and Bishop, 1999).
- ▶ It is difficult to ‘non-linearise’.

Dual Probabilistic PCA

- ▶ We present a new probabilistic interpretation of PCA (Lawrence, 2005).
- ▶ This interpretation can be made non-linear.
- ▶ The result is non-linear probabilistic PCA.

Notation

q — dimension of latent/embedded space

p — dimension of data space

n — number of data points

centred data, $\mathbf{Y} = [\mathbf{y}_{1,:}, \dots, \mathbf{y}_{n,:}]^\top = [\mathbf{y}_{:,1}, \dots, \mathbf{y}_{:,p}] \in \mathbb{R}^{n \times p}$

latent variables, $\mathbf{X} = [\mathbf{x}_{1,:}, \dots, \mathbf{x}_{n,:}]^\top = [\mathbf{x}_{:,1}, \dots, \mathbf{x}_{:,q}] \in \mathbb{R}^{n \times q}$
mapping matrix, $\mathbf{W} \in \mathbb{R}^{p \times q}$

$\mathbf{a}_{i,:}$ is a vector from the i th row of a given matrix \mathbf{A}

$\mathbf{a}_{:,j}$ is a vector from the j th row of a given matrix \mathbf{A}

Reading Notation

X and **Y** are *design matrices*

- ▶ Covariance given by $n^{-1}\mathbf{Y}^\top \mathbf{Y}$.
- ▶ Inner product matrix given by $\mathbf{Y}\mathbf{Y}^\top$.

Linear Dimensionality Reduction

Linear Latent Variable Model

- ▶ Represent data, \mathbf{Y} , with a lower dimensional set of latent variables \mathbf{X} .
- ▶ Assume a linear relationship of the form

$$\mathbf{y}_{i,:} = \mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\eta}_{i,:},$$

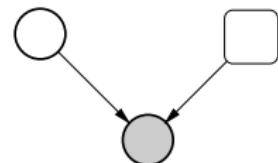
where

$$\boldsymbol{\eta}_{i,:} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}).$$

Linear Latent Variable Model

Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ Standard Latent variable approach:
 - ▶ Define Gaussian prior over *latent space*, \mathbf{X} .
 - ▶ Integrate out *latent variables*.

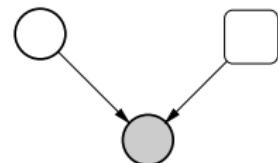


$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

Linear Latent Variable Model

Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Standard** Latent variable approach:
 - ▶ Define Gaussian prior over *latent space*, \mathbf{X} .
 - ▶ Integrate out *latent variables*.

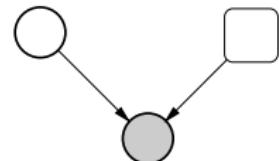


$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

Linear Latent Variable Model

Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Standard** Latent variable approach:
 - ▶ Define Gaussian prior over *latent space*, \mathbf{X} .
 - ▶ Integrate out *latent variables*.



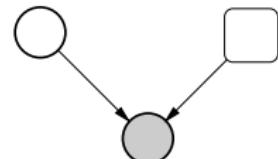
$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{X}) = \prod_{i=1}^n \mathcal{N}(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I})$$

Linear Latent Variable Model

Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Standard** Latent variable approach:
 - ▶ Define Gaussian prior over *latent space*, \mathbf{X} .
 - ▶ Integrate out *latent variables*.



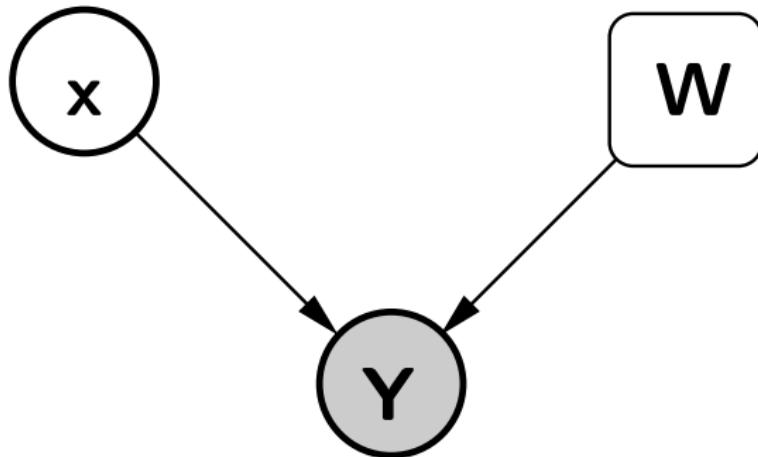
$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{X}) = \prod_{i=1}^n \mathcal{N}(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I})$$

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{0}, \mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I})$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)



$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{0}, \mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I})$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{0}, \mathbf{C}), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^\top + \sigma^2\mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{W}) = -\frac{n}{2} \log |\mathbf{C}| - \frac{1}{2} \text{tr} \left(\mathbf{C}^{-1} \mathbf{Y}^\top \mathbf{Y} \right) + \text{const.}$$

If \mathbf{U}_q are first q principal eigenvectors of $n^{-1}\mathbf{Y}^\top \mathbf{Y}$ and the corresponding eigenvalues are Λ_q ,

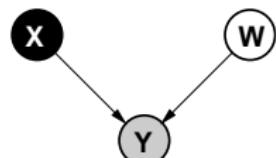
$$\mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{R}^\top, \quad \mathbf{L} = (\Lambda_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where \mathbf{R} is an arbitrary rotation matrix.

Linear Latent Variable Model III

Dual Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ Novel Latent variable approach:
 - ▶ Define Gaussian prior over parameters, \mathbf{W} .
 - ▶ Integrate out parameters.

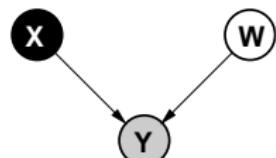


$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Novel** Latent variable approach:
 - ▶ Define Gaussian prior over *parameters*, \mathbf{W} .
 - ▶ Integrate out *parameters*.

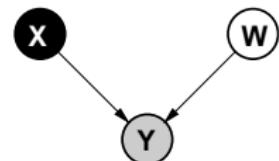


$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Novel** Latent variable approach:
 - ▶ Define Gaussian prior over *parameters*, \mathbf{W} .
 - ▶ Integrate out *parameters*.



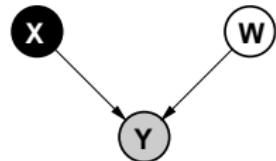
$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{W}) = \prod_{i=1}^p \mathcal{N}(\mathbf{w}_{i,:} | \mathbf{0}, \mathbf{I})$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Novel** Latent variable approach:
 - ▶ Define Gaussian prior over *parameters*, \mathbf{W} .
 - ▶ Integrate out *parameters*.



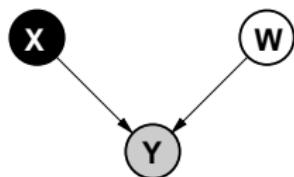
$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{W}) = \prod_{i=1}^p \mathcal{N}(\mathbf{w}_{i,:} | \mathbf{0}, \mathbf{I})$$

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j} | \mathbf{0}, \mathbf{X}\mathbf{X}^\top + \sigma^2 \mathbf{I})$$

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)



$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j} | \mathbf{0}, \mathbf{X}\mathbf{X}^\top + \sigma^2 \mathbf{I})$$

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K}), \quad \mathbf{K} = \mathbf{X}\mathbf{X}^\top + \sigma^2 \mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{X}) = -\frac{p}{2} \log |\mathbf{K}| - \frac{1}{2} \text{tr}(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^\top) + \text{const.}$$

If \mathbf{U}'_q are first q principal eigenvectors of $\mathbf{p}^{-1} \mathbf{Y} \mathbf{Y}^\top$ and the corresponding eigenvalues are Λ_q ,

$$\mathbf{X} = \mathbf{U}'_q \mathbf{L} \mathbf{R}^\top, \quad \mathbf{L} = (\Lambda_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where \mathbf{R} is an arbitrary rotation matrix.

Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{0}, \mathbf{C}), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^\top + \sigma^2\mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{W}) = -\frac{n}{2} \log |\mathbf{C}| - \frac{1}{2} \text{tr}(\mathbf{C}^{-1} \mathbf{Y}^\top \mathbf{Y}) + \text{const.}$$

If \mathbf{U}_q are first q principal eigenvectors of $n^{-1}\mathbf{Y}^\top \mathbf{Y}$ and the corresponding eigenvalues are Λ_q ,

$$\mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{R}^\top, \quad \mathbf{L} = (\Lambda_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where \mathbf{R} is an arbitrary rotation matrix.

Equivalence of Formulations

The Eigenvalue Problems are equivalent

- ▶ Solution for Probabilistic PCA (solves for the mapping)

$$\mathbf{Y}^\top \mathbf{Y} \mathbf{U}_q = \mathbf{U}_q \boldsymbol{\Lambda}_q \quad \mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{R}^\top$$

- ▶ Solution for Dual Probabilistic PCA (solves for the latent positions)

$$\mathbf{Y} \mathbf{Y}^\top \mathbf{U}'_q = \mathbf{U}'_q \boldsymbol{\Lambda}_q \quad \mathbf{X} = \mathbf{U}'_q \mathbf{L} \mathbf{R}^\top$$

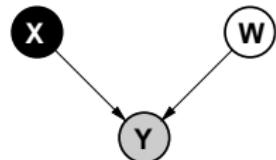
- ▶ Equivalence is from

$$\mathbf{U}_q = \mathbf{Y}^\top \mathbf{U}'_q \boldsymbol{\Lambda}_q^{-\frac{1}{2}}$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Novel** Latent variable approach:
 - ▶ Define Gaussian prior over *parameters*, \mathbf{W} .
 - ▶ Integrate out *parameters*.



$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

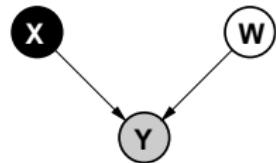
$$p(\mathbf{W}) = \prod_{i=1}^p \mathcal{N}(\mathbf{w}_{i,:} | \mathbf{0}, \mathbf{I})$$

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j} | \mathbf{0}, \mathbf{X}\mathbf{X}^\top + \sigma^2 \mathbf{I})$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- ▶ Inspection of the marginal likelihood shows ...
 - ▶ The covariance matrix is a covariance function.
 - ▶ We recognise it as the 'linear kernel'.
 - ▶ We call this the Gaussian Process Latent Variable model (GP-LVM).

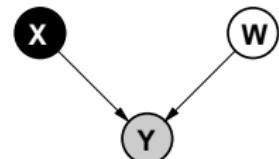


$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{X}\mathbf{X}^\top + \sigma^2 \mathbf{I})$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- ▶ Inspection of the marginal likelihood shows ...
 - ▶ The covariance matrix is a covariance function.
 - ▶ We recognise it as the 'linear kernel'.
 - ▶ We call this the Gaussian Process Latent Variable model (GP-LVM).



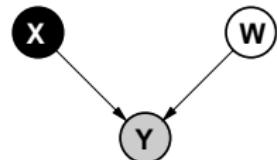
$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K})$$

$$\mathbf{K} = \mathbf{X}\mathbf{X}^\top + \sigma^2\mathbf{I}$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- ▶ Inspection of the marginal likelihood shows ...
 - ▶ The covariance matrix is a covariance function.
 - ▶ We recognise it as the 'linear kernel'.
 - ▶ We call this the Gaussian Process Latent Variable model (GP-LVM).



$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K})$$

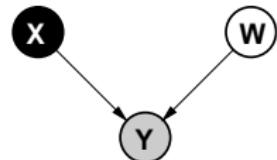
$$\mathbf{K} = \mathbf{X}\mathbf{X}^\top + \sigma^2\mathbf{I}$$

This is a product of Gaussian processes with linear kernels.

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- ▶ Inspection of the marginal likelihood shows ...
 - ▶ The covariance matrix is a covariance function.
 - ▶ We recognise it as the 'linear kernel'.
 - ▶ We call this the Gaussian Process Latent Variable model (GP-LVM).



$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K})$$

$$\mathbf{K} = ?$$

Replace linear kernel with non-linear kernel for non-linear model.

Non-linear Latent Variable Models

RBF Kernel

- ▶ The RBF kernel has the form $k_{i,j} = k(\mathbf{x}_{i,:}, \mathbf{x}_{j,:})$, where

$$k(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}) = \alpha \exp\left(-\frac{(\mathbf{x}_{i,:} - \mathbf{x}_{j,:})^\top (\mathbf{x}_{i,:} - \mathbf{x}_{j,:})}{2\ell^2}\right).$$

- ▶ No longer possible to optimise wrt \mathbf{X} via an eigenvalue problem.
- ▶ Instead find gradients with respect to \mathbf{X}, α, ℓ and σ^2 and optimise using conjugate gradients.

Applications

Style Based Inverse Kinematics

- ▶ Facilitating animation through modeling human motion with the GP-LVM (Grochow et al., 2004)

Tracking

- ▶ Tracking using models of human motion learnt with the GP-LVM (Urtasun et al., 2005, 2006)

Generalization with less Data than Dimensions

- ▶ Powerful uncertainty handling of GPs leads to surprising properties.
- ▶ Non-linear models can be used where there are fewer data points than dimensions *without overfitting*.
- ▶ Example: Modelling a stick man in 102 dimensions with 55 data points!

Stick Man II

demStick1

Figure: The latent space for the stick man motion capture data.

Stick Man II

demStick1

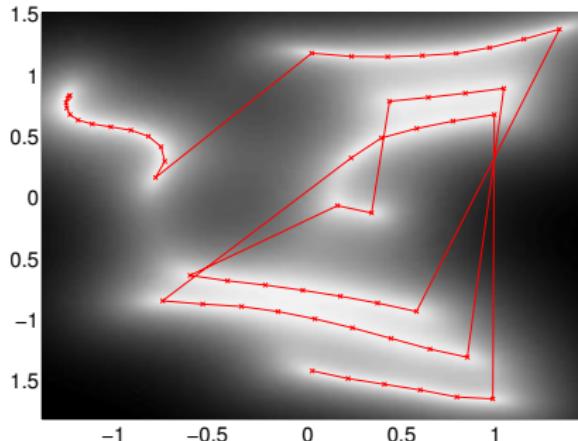


Figure: The latent space for the stick man motion capture data.

Outline

Dimensionality Reduction

GP-LVM

GP-LVM Extensions

Mechanistic Modeling

GPs and Differential Equations

Linear Dimensionality Reduction

Linear Latent Variable Model

- ▶ Represent data, \mathbf{Y} , with a lower dimensional set of latent variables \mathbf{X} .
- ▶ Assume a linear relationship of the form

$$\mathbf{y}_{i,:} = \mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\eta}_{i,:},$$

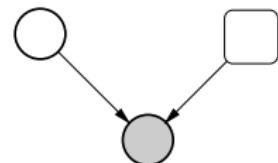
where

$$\boldsymbol{\eta}_{i,:} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}).$$

Linear Latent Variable Model

Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ Standard Latent variable approach:
 - ▶ Define Gaussian prior over *latent space*, \mathbf{X} .
 - ▶ Integrate out *latent variables*.

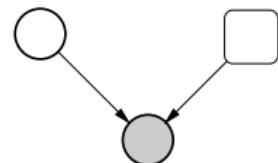


$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

Linear Latent Variable Model

Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Standard** Latent variable approach:
 - ▶ Define Gaussian prior over *latent space*, \mathbf{X} .
 - ▶ Integrate out *latent variables*.

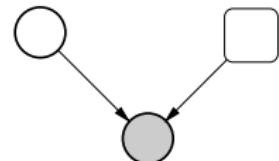


$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

Linear Latent Variable Model

Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Standard** Latent variable approach:
 - ▶ Define Gaussian prior over *latent space*, \mathbf{X} .
 - ▶ Integrate out *latent variables*.



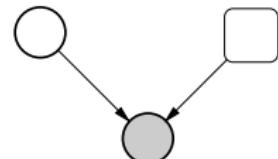
$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{X}) = \prod_{i=1}^n \mathcal{N}(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I})$$

Linear Latent Variable Model

Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Standard** Latent variable approach:
 - ▶ Define Gaussian prior over *latent space*, \mathbf{X} .
 - ▶ Integrate out *latent variables*.



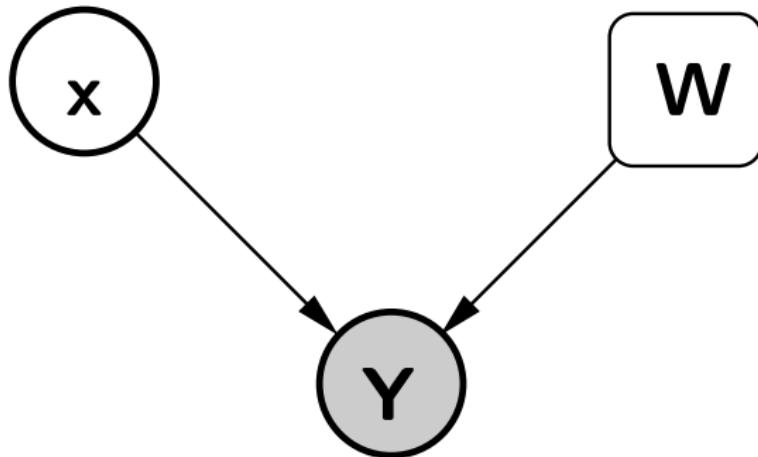
$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{X}) = \prod_{i=1}^n \mathcal{N}(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I})$$

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{0}, \mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I})$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)



$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{0}, \mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I})$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{0}, \mathbf{C}), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^\top + \sigma^2\mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{W}) = -\frac{n}{2} \log |\mathbf{C}| - \frac{1}{2} \text{tr} \left(\mathbf{C}^{-1} \mathbf{Y}^\top \mathbf{Y} \right) + \text{const.}$$

If \mathbf{U}_q are first q principal eigenvectors of $n^{-1}\mathbf{Y}^\top \mathbf{Y}$ and the corresponding eigenvalues are Λ_q ,

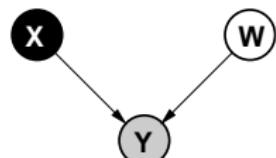
$$\mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{R}^\top, \quad \mathbf{L} = (\Lambda_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where \mathbf{R} is an arbitrary rotation matrix.

Linear Latent Variable Model III

Dual Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ Novel Latent variable approach:
 - ▶ Define Gaussian prior over parameters, \mathbf{W} .
 - ▶ Integrate out parameters.

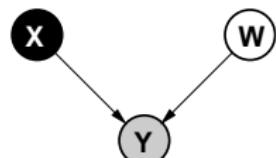


$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Novel** Latent variable approach:
 - ▶ Define Gaussian prior over *parameters*, \mathbf{W} .
 - ▶ Integrate out *parameters*.

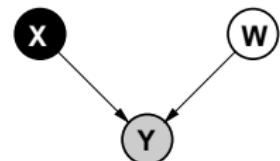


$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Novel** Latent variable approach:
 - ▶ Define Gaussian prior over *parameters*, \mathbf{W} .
 - ▶ Integrate out *parameters*.



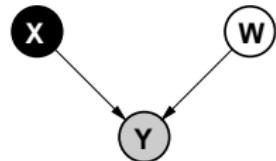
$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{W}) = \prod_{i=1}^p \mathcal{N}(\mathbf{w}_{i,:} | \mathbf{0}, \mathbf{I})$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Novel** Latent variable approach:
 - ▶ Define Gaussian prior over *parameters*, \mathbf{W} .
 - ▶ Integrate out *parameters*.



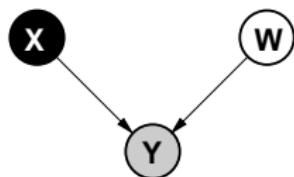
$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{W}) = \prod_{i=1}^p \mathcal{N}(\mathbf{w}_{i,:} | \mathbf{0}, \mathbf{I})$$

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j} | \mathbf{0}, \mathbf{X}\mathbf{X}^\top + \sigma^2 \mathbf{I})$$

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)



$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j} | \mathbf{0}, \mathbf{X}\mathbf{X}^\top + \sigma^2 \mathbf{I})$$

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K}), \quad \mathbf{K} = \mathbf{X}\mathbf{X}^\top + \sigma^2 \mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{X}) = -\frac{p}{2} \log |\mathbf{K}| - \frac{1}{2} \text{tr}(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^\top) + \text{const.}$$

If \mathbf{U}'_q are first q principal eigenvectors of $\mathbf{p}^{-1} \mathbf{Y} \mathbf{Y}^\top$ and the corresponding eigenvalues are Λ_q ,

$$\mathbf{X} = \mathbf{U}'_q \mathbf{L} \mathbf{R}^\top, \quad \mathbf{L} = (\Lambda_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where \mathbf{R} is an arbitrary rotation matrix.

Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{0}, \mathbf{C}), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^\top + \sigma^2\mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{W}) = -\frac{n}{2} \log |\mathbf{C}| - \frac{1}{2} \text{tr}(\mathbf{C}^{-1} \mathbf{Y}^\top \mathbf{Y}) + \text{const.}$$

If \mathbf{U}_q are first q principal eigenvectors of $n^{-1}\mathbf{Y}^\top \mathbf{Y}$ and the corresponding eigenvalues are Λ_q ,

$$\mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{R}^\top, \quad \mathbf{L} = (\Lambda_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where \mathbf{R} is an arbitrary rotation matrix.

Equivalence of Formulations

The Eigenvalue Problems are equivalent

- ▶ Solution for Probabilistic PCA (solves for the mapping)

$$\mathbf{Y}^\top \mathbf{Y} \mathbf{U}_q = \mathbf{U}_q \boldsymbol{\Lambda}_q \quad \mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{R}^\top$$

- ▶ Solution for Dual Probabilistic PCA (solves for the latent positions)

$$\mathbf{Y} \mathbf{Y}^\top \mathbf{U}'_q = \mathbf{U}'_q \boldsymbol{\Lambda}_q \quad \mathbf{X} = \mathbf{U}'_q \mathbf{L} \mathbf{R}^\top$$

- ▶ Equivalence is from

$$\mathbf{U}_q = \mathbf{Y}^\top \mathbf{U}'_q \boldsymbol{\Lambda}_q^{-\frac{1}{2}}$$

Gaussian Process (GP)

Prior for Functions

- ▶ Probability Distribution over Functions
 - ▶ Functions are infinite dimensional.
 - ▶ Prior distribution over *instantiations* of the function: finite dimensional objects.
- ▶ Can prove by induction that GP is ‘consistent’.
- ▶ Mean and Covariance Functions
 - ▶ Instead of mean and covariance matrix, GP is defined by mean function and covariance function.
 - ▶ Mean function often taken to be zero or constant.
 - ▶ Covariance function must be *positive definite*.
 - ▶ Class of valid covariance functions is the same as the class of *Mercer kernels*.

Gaussian Processes II

Zero mean Gaussian Process

- ▶ A (zero mean) Gaussian process likelihood is of the form

$$p(\mathbf{y}|\mathbf{X}) = N(\mathbf{y}|\mathbf{0}, \mathbf{K}),$$

where \mathbf{K} is the covariance function or *kernel*.

- ▶ The *linear kernel* with noise has the form

$$\mathbf{K} = \mathbf{X}\mathbf{X}^\top + \sigma^2\mathbf{I}$$

- ▶ Priors over non-linear functions are also possible.
 - ▶ To see what functions look like, we can sample from the prior process.

Covariance Samples

demCovFuncSample

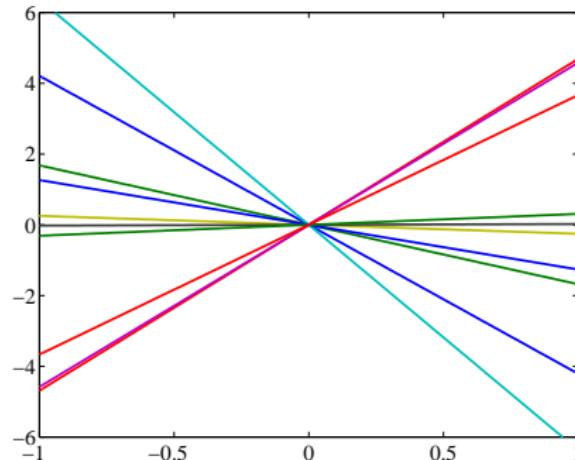


Figure: linear kernel, $\mathbf{K} = \mathbf{XX}^\top$

Covariance Samples

demCovFuncSample

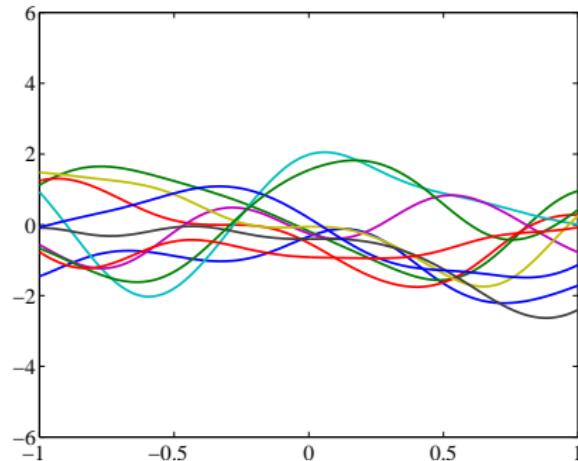


Figure: RBF kernel with $\gamma = 10$, $\alpha = 1$

Covariance Samples

demCovFuncSample

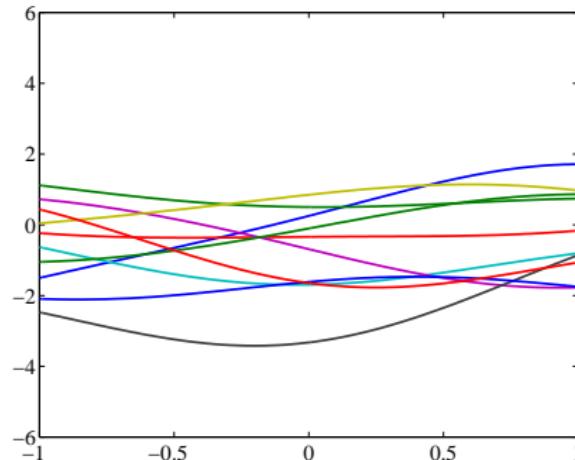


Figure: RBF kernel with $\ell = 1$, $\alpha = 1$

Covariance Samples

demCovFuncSample

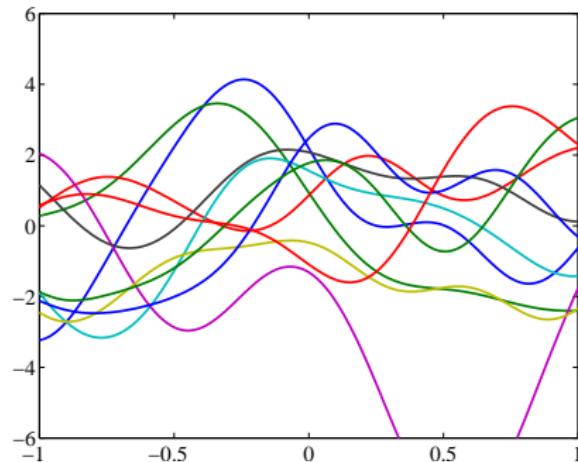


Figure: RBF kernel with $\ell = 0.3$, $\alpha = 4$

Covariance Samples

demCovFuncSample

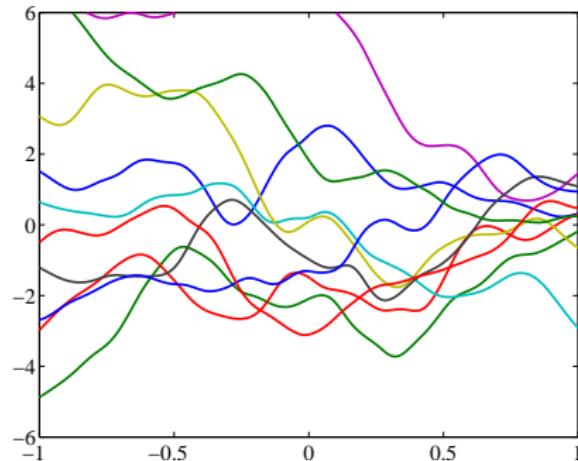


Figure: MLP kernel with $\alpha = 8$, $w = 100$ and $b = 100$

Covariance Samples

demCovFuncSample

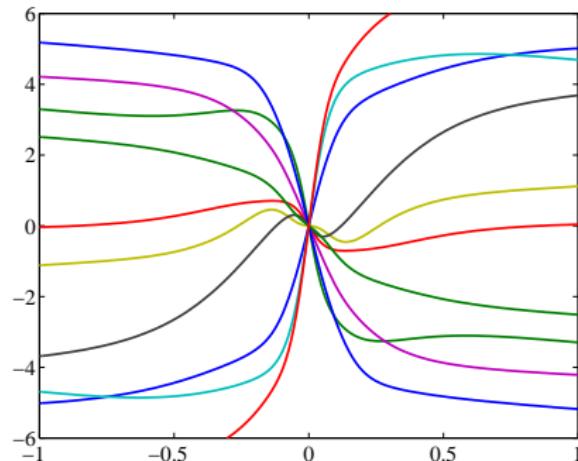


Figure: MLP kernel with $\alpha = 8$, $b = 0$ and $w = 100$

Covariance Samples

demCovFuncSample

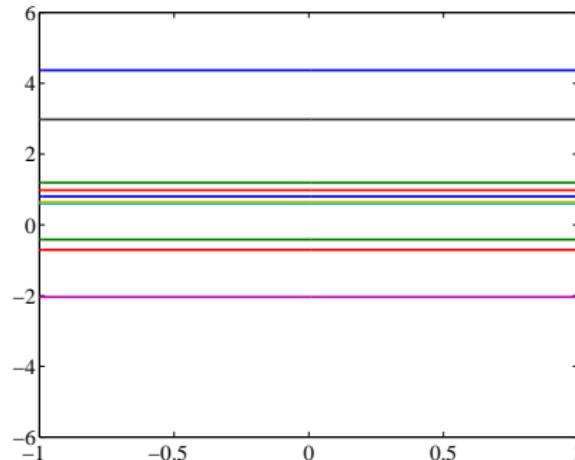


Figure: bias kernel with $\alpha = 1$ and

Covariance Samples

demCovFuncSample

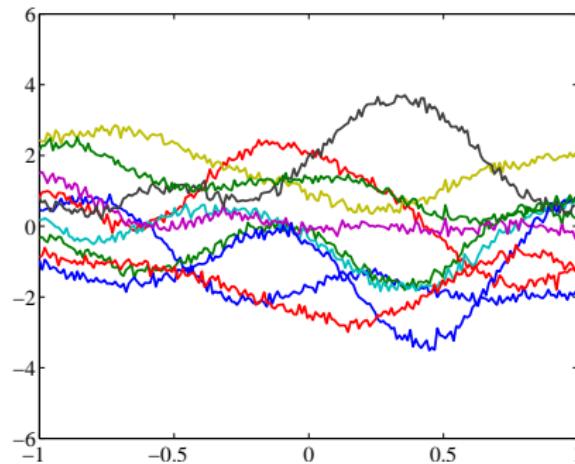


Figure: summed combination of: RBF kernel, $\alpha = 1$, $\ell = 0.3$; bias kernel, $\alpha = 1$; and white noise kernel, $\beta = 100$

Gaussian Process Regression

Posterior Distribution over Functions

- ▶ Gaussian processes are often used for regression.
- ▶ We are given known inputs \mathbf{X} and targets \mathbf{Y} .
- ▶ We assume a prior distribution over functions by selecting a kernel.
- ▶ Combine the prior with data to get a *posterior* distribution over functions.

Gaussian Process Regression

demRegression

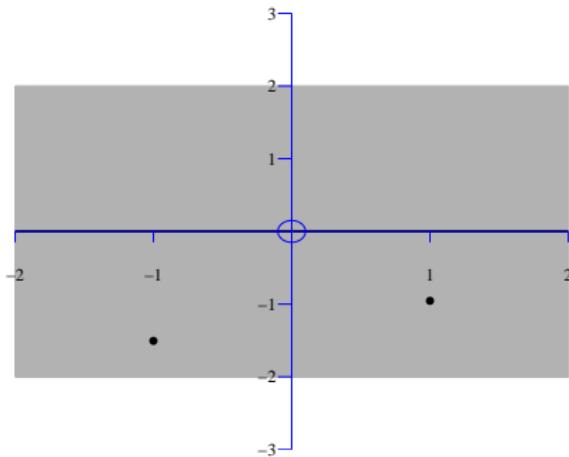


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

demRegression

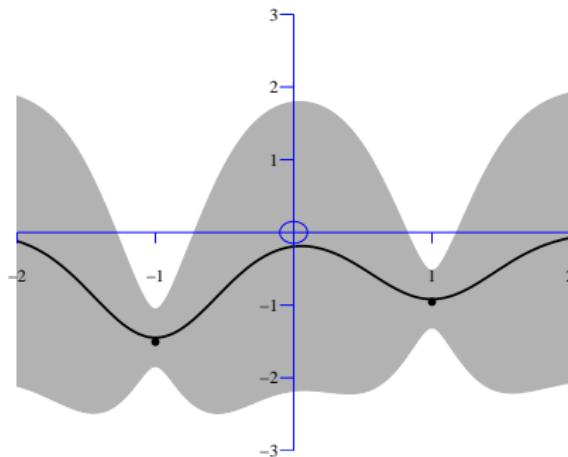


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

demRegression

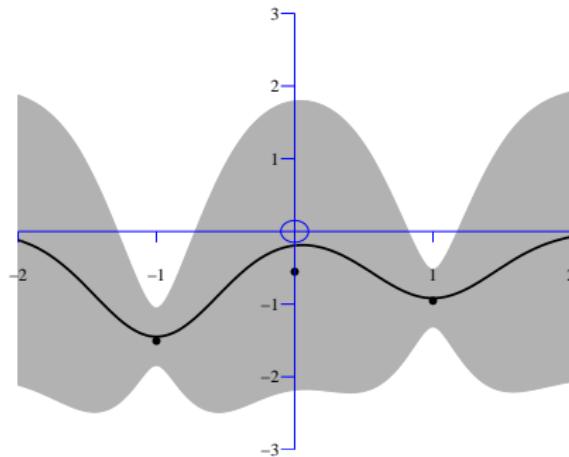


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

demRegression

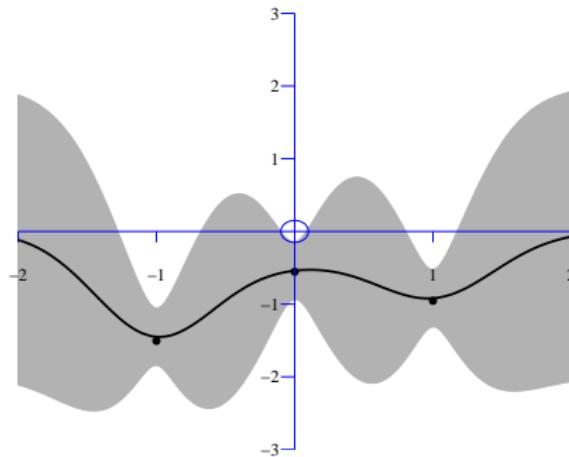


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

demRegression

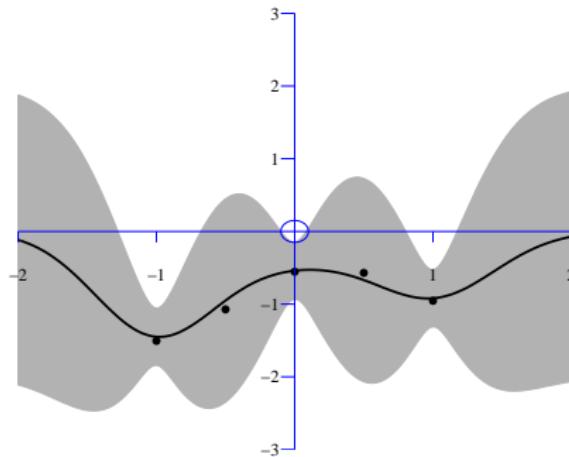


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

demRegression

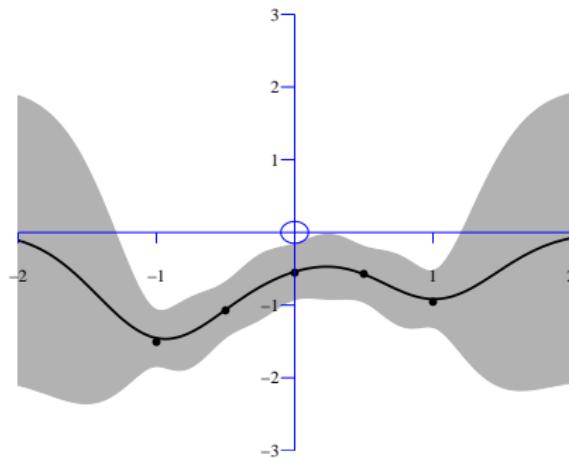


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

demRegression

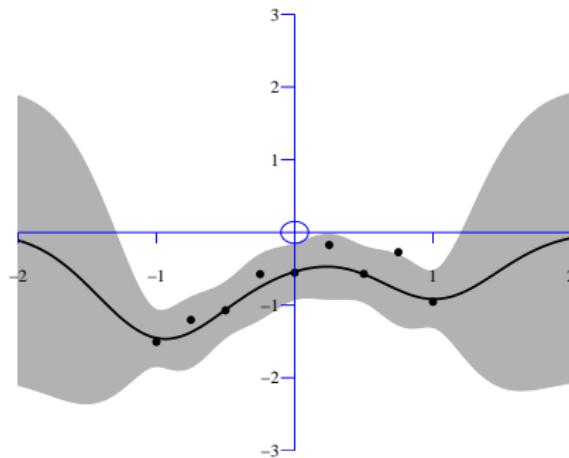


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

demRegression

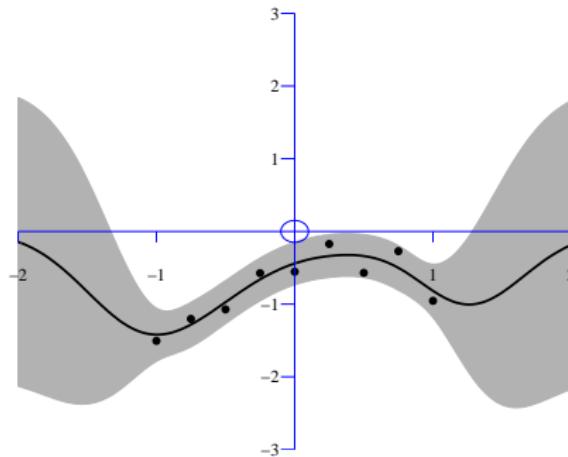
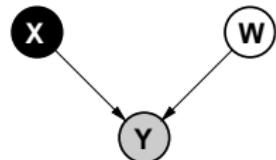


Figure: Examples include WiFi localization, C14 calibration curve.

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- ▶ Define *linear-Gaussian relationship* between latent variables and data.
- ▶ **Novel** Latent variable approach:
 - ▶ Define Gaussian prior over *parameters*, \mathbf{W} .
 - ▶ Integrate out *parameters*.



$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n \mathcal{N}(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

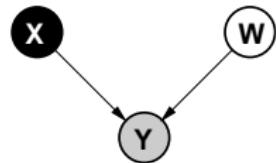
$$p(\mathbf{W}) = \prod_{i=1}^p \mathcal{N}(\mathbf{w}_{i,:} | \mathbf{0}, \mathbf{I})$$

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j} | \mathbf{0}, \mathbf{X}\mathbf{X}^\top + \sigma^2 \mathbf{I})$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- ▶ Inspection of the marginal likelihood shows ...
 - ▶ The covariance matrix is a covariance function.
 - ▶ We recognise it as the 'linear kernel'.
 - ▶ We call this the Gaussian Process Latent Variable model (GP-LVM).

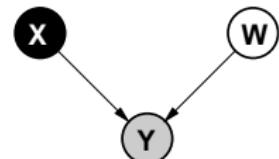


$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{X}\mathbf{X}^\top + \sigma^2 \mathbf{I})$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- ▶ Inspection of the marginal likelihood shows ...
 - ▶ The covariance matrix is a covariance function.
 - ▶ We recognise it as the 'linear kernel'.
 - ▶ We call this the Gaussian Process Latent Variable model (GP-LVM).



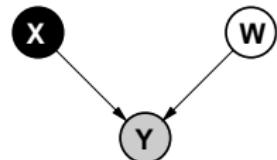
$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K})$$

$$\mathbf{K} = \mathbf{X}\mathbf{X}^\top + \sigma^2\mathbf{I}$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- ▶ Inspection of the marginal likelihood shows ...
 - ▶ The covariance matrix is a covariance function.
 - ▶ We recognise it as the 'linear kernel'.
 - ▶ We call this the Gaussian Process Latent Variable model (GP-LVM).



$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K})$$

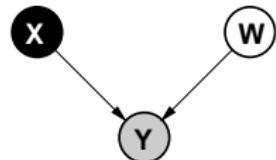
$$\mathbf{K} = \mathbf{X}\mathbf{X}^\top + \sigma^2\mathbf{I}$$

This is a product of Gaussian processes with linear kernels.

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- ▶ Inspection of the marginal likelihood shows ...
 - ▶ The covariance matrix is a covariance function.
 - ▶ We recognise it as the 'linear kernel'.
 - ▶ We call this the Gaussian Process Latent Variable model (GP-LVM).



$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^p \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K})$$

$$\mathbf{K} = ?$$

Replace linear kernel with non-linear kernel for non-linear model.

RBF Kernel

- ▶ The RBF kernel has the form $k_{i,j} = k(\mathbf{x}_{i,:}, \mathbf{x}_{j,:})$, where

$$k(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}) = \alpha \exp\left(-\frac{(\mathbf{x}_{i,:} - \mathbf{x}_{j,:})^\top (\mathbf{x}_{i,:} - \mathbf{x}_{j,:})}{2\ell^2}\right).$$

- ▶ No longer possible to optimise wrt \mathbf{X} via an eigenvalue problem.
- ▶ Instead find gradients with respect to \mathbf{X}, α, ℓ and σ^2 and optimise using conjugate gradients.

Applications

Style Based Inverse Kinematics

- ▶ Facilitating animation through modeling human motion with the GP-LVM (Grochow et al., 2004)

Tracking

- ▶ Tracking using models of human motion learnt with the GP-LVM (Urtasun et al., 2005, 2006)

Generalization with less Data than Dimensions

- ▶ Powerful uncertainty handling of GPs leads to surprising properties.
- ▶ Non-linear models can be used where there are fewer data points than dimensions *without overfitting*.
- ▶ Example: Modelling a stick man in 102 dimensions with 55 data points!

Stick Man II

demStick1

Figure: The latent space for the stick man motion capture data.

Stick Man II

demStick1

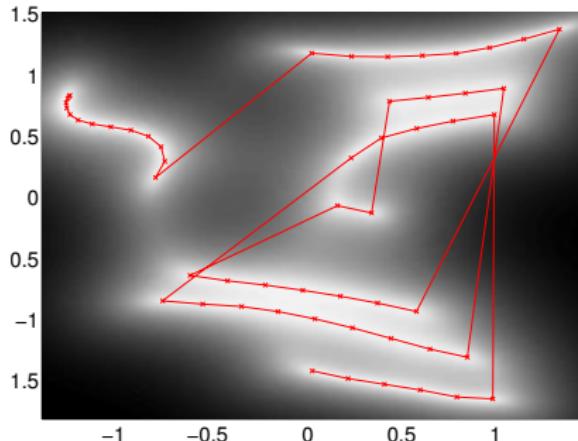


Figure: The latent space for the stick man motion capture data.

Outline

Dimensionality Reduction

GP-LVM

GP-LVM Extensions

Mechanistic Modeling

GPs and Differential Equations

Back Constraints I

Local Distance Preservation (Lawrence and Quiñonero Candela, 2006)

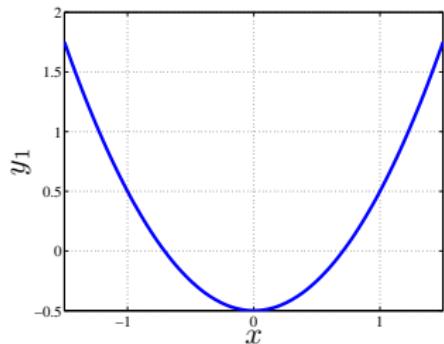
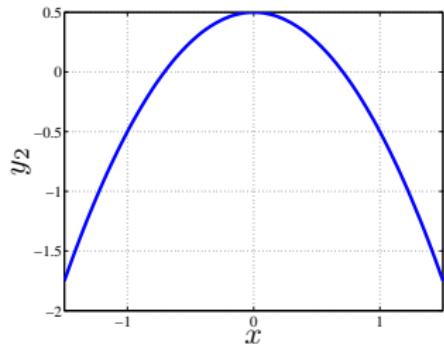
- ▶ Most dimensional reduction techniques preserve local distances.
- ▶ The GP-LVM does not.
- ▶ GP-LVM maps smoothly from latent to data space.
 - ▶ Points close in latent space are close in data space.
 - ▶ This does not imply points close in data space are close in latent space.
- ▶ Kernel PCA maps smoothly from data to latent space.
 - ▶ Points close in data space are close in latent space.
 - ▶ This does not imply points close in latent space are close in data space.

Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

- ▶ Mapping from 1-D latent space to 2-D data space.

$$y_1 = x^2 - 0.5, \quad y_2 = -x^2 + 0.5$$

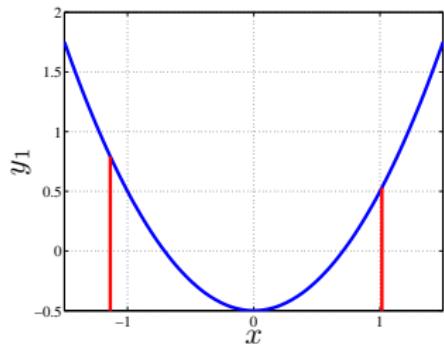
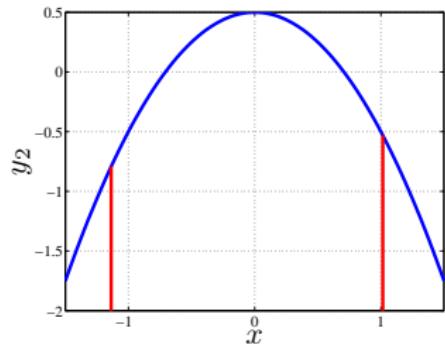


Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

- ▶ Mapping from 1-D latent space to 2-D data space.

$$y_1 = x^2 - 0.5, \quad y_2 = -x^2 + 0.5$$

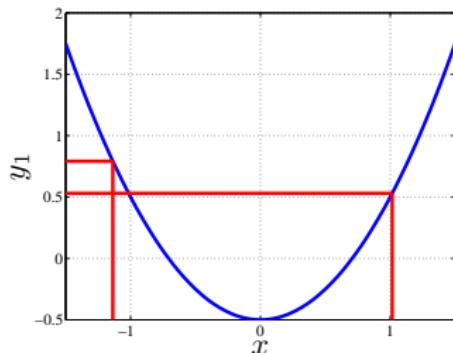
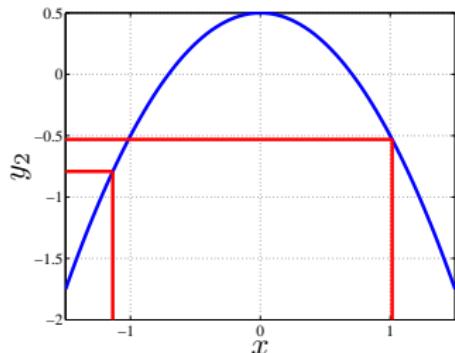


Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

- ▶ Mapping from 1-D latent space to 2-D data space.

$$y_1 = x^2 - 0.5, \quad y_2 = -x^2 + 0.5$$

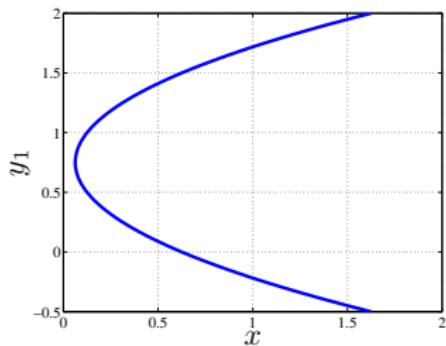
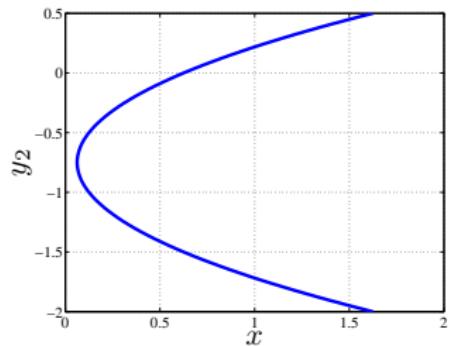


Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

- ▶ Mapping from 2-D data space to 1-D latent.

$$x = 0.5 (y_1^2 + y_2^2 + 1)$$

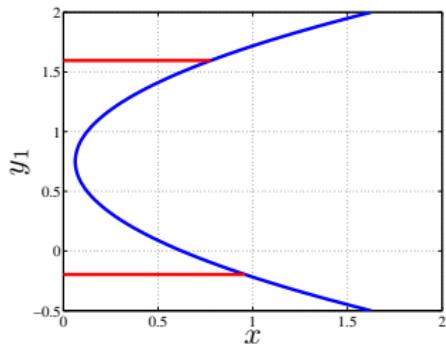
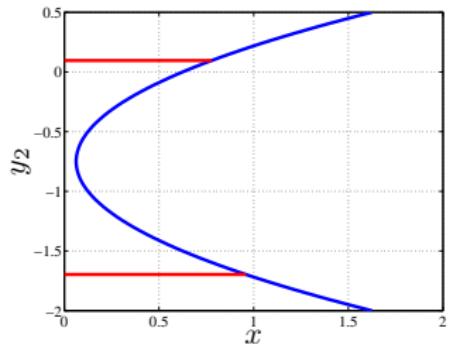


Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

- ▶ Mapping from 2-D data space to 1-D latent.

$$x = 0.5 (y_1^2 + y_2^2 + 1)$$

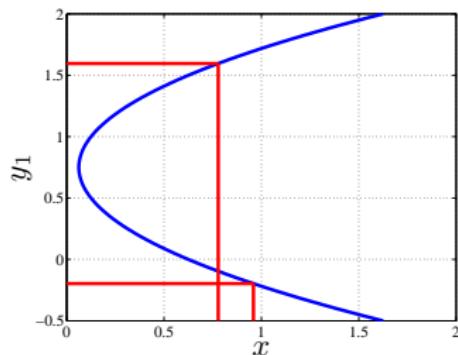
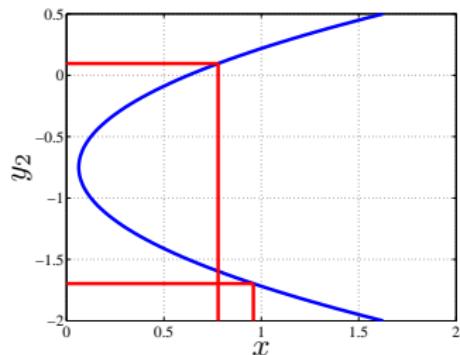


Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

- ▶ Mapping from 2-D data space to 1-D latent.

$$x = 0.5 (y_1^2 + y_2^2 + 1)$$



Multi-Dimensional Scaling with a Mapping

- ▶ Lowe and Tipping (1997) made latent positions a function of the data.

$$x_{i,j} = f_j(\mathbf{y}_{i,:}; \mathbf{w})$$

- ▶ Function was either multi-layer perceptron or a radial basis function network.
- ▶ Their motivation was different from ours:
 - ▶ They wanted to add the advantages of a true mapping to multi-dimensional scaling.

Back Constraints in the GP-LVM

Back Constraints

- ▶ We can use the same idea to force the GP-LVM to respect local distances.(Lawrence and Quiñonero Candela, 2006)
 - ▶ By constraining each x_i to be a 'smooth' mapping from y_i local distances can be respected.
- ▶ This works because in the GP-LVM we maximise wrt latent variables, we don't integrate out.
- ▶ Can use any 'smooth' function:
 1. Neural network.
 2. RBF Network.
 3. Kernel based mapping.

Optimising BC-GPLVM

Computing Gradients

- ▶ GP-LVM normally proceeds by optimising

$$L(\mathbf{X}) = \log p(\mathbf{Y}|\mathbf{X})$$

with respect to \mathbf{X} using $\frac{dL}{d\mathbf{X}}$.

- ▶ The back constraints are of the form

$$x_{i,j} = f_j(\mathbf{y}_{i,:}; \mathbf{B})$$

where \mathbf{B} are parameters.

- ▶ We can compute $\frac{dL}{d\mathbf{B}}$ via chain rule and optimise parameters of mapping.

Motion Capture Results

demStick1 and demStick3

Figure: The latent space for the motion capture data with (*right*) and without (*left*) back constraints.

Motion Capture Results

demStick1 and demStick3

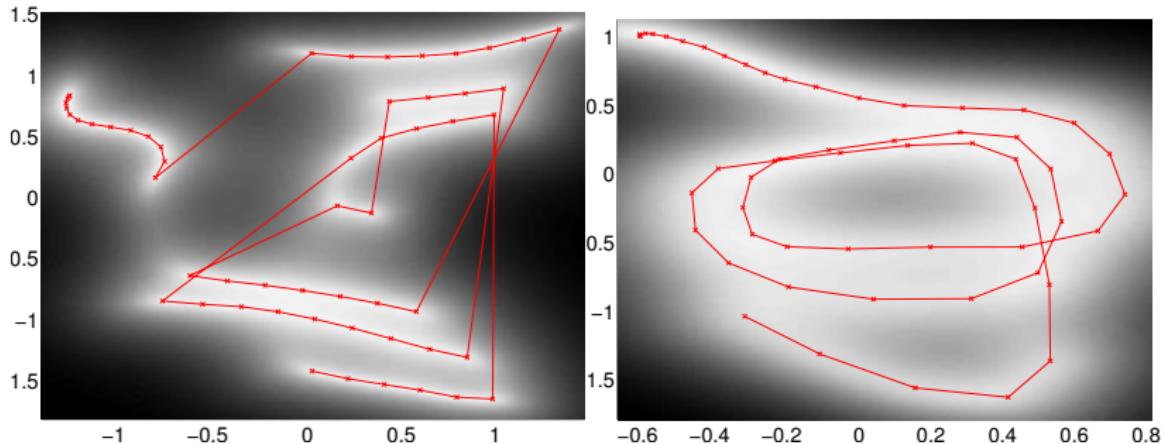
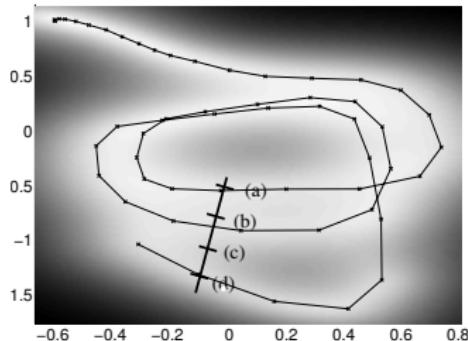


Figure: The latent space for the motion capture data with (*right*) and without (*left*) back constraints.

Stick Man Results

demStickResults



Projection into data space from four points in the latent space. The inclination of the runner changes becoming more upright.

Adding Dynamics

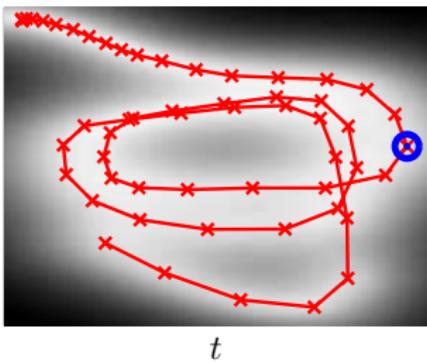
MAP Solutions for Dynamics Models

- ▶ Data often has a temporal ordering.
- ▶ Markov-based dynamics are often used.
- ▶ For the GP-LVM
 - ▶ Marginalising such dynamics is intractable.
 - ▶ But: MAP solutions are trivial to implement.
- ▶ Many choices: Kalman filter, Markov chains etc..
- ▶ Wang et al. (2006) suggest using a Gaussian Process.

Gaussian Process Dynamics

GP-LVM with Dynamics

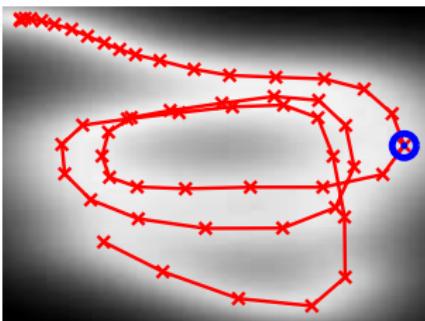
- ▶ Autoregressive Gaussian process mapping in latent space between time points.



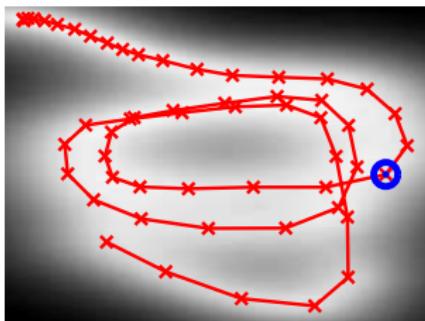
Gaussian Process Dynamics

GP-LVM with Dynamics

- ▶ Autoregressive Gaussian process mapping in latent space between time points.



t

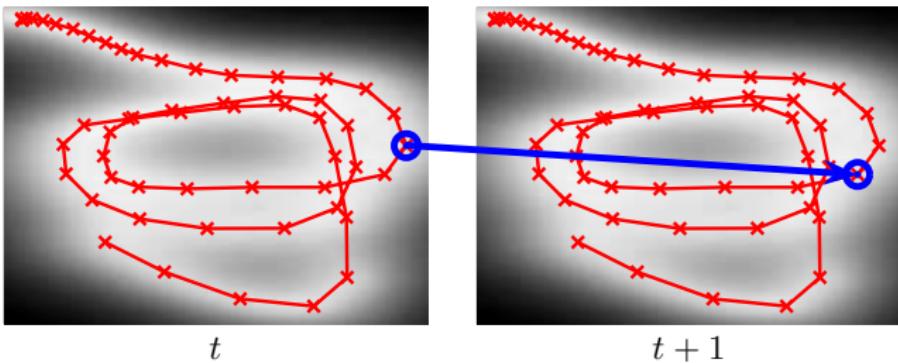


$t + 1$

Gaussian Process Dynamics

GP-LVM with Dynamics

- ▶ Autoregressive Gaussian process mapping in latent space between time points.



Motion Capture Results

demStick1 and demStick2

Figure: The latent space for the motion capture data without dynamics (*left*), with auto-regressive dynamics (*right*) based on an RBF kernel.

Motion Capture Results

demStick1 and demStick2

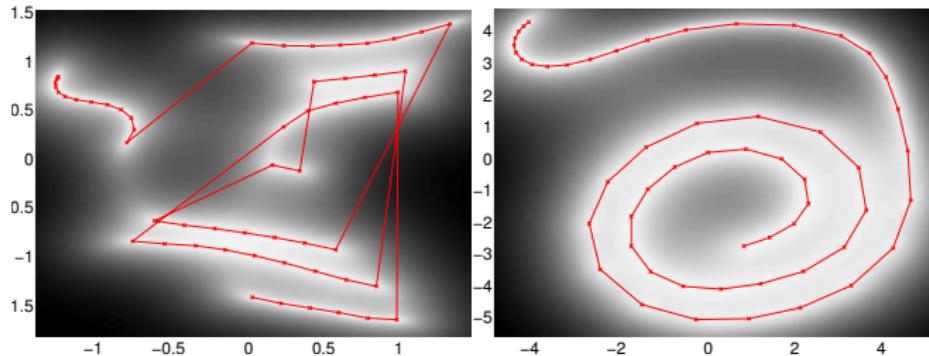
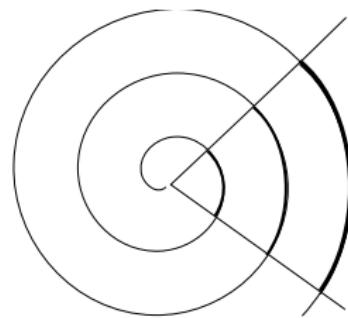


Figure: The latent space for the motion capture data without dynamics (*left*), with auto-regressive dynamics (*right*) based on an RBF kernel.

Regressive Dynamics

Inner Groove Distortion

- ▶ Autoregressive unimodal dynamics, $p(\mathbf{x}_t|\mathbf{x}_{t-1})$.
- ▶ Forces spiral visualisation.
- ▶ Poorer model due to inner groove distortion.



Regressive Dynamics

Direct use of Time Variable

- ▶ Instead of auto-regressive dynamics, consider regressive dynamics.
- ▶ Take t as an input, use a prior $p(\mathbf{X}|t)$.
- ▶ Use a Gaussian process prior for $p(\mathbf{X}|t)$.
- ▶ Also allows us to consider variable sample rate data.

Motion Capture Results

demStick1, demStick2 and demStick5

Figure: The latent space for the motion capture data without dynamics (*left*), with auto-regressive dynamics (*middle*) and with regressive dynamics (*right*) based on an RBF kernel.

Motion Capture Results

demStick1, demStick2 and demStick5

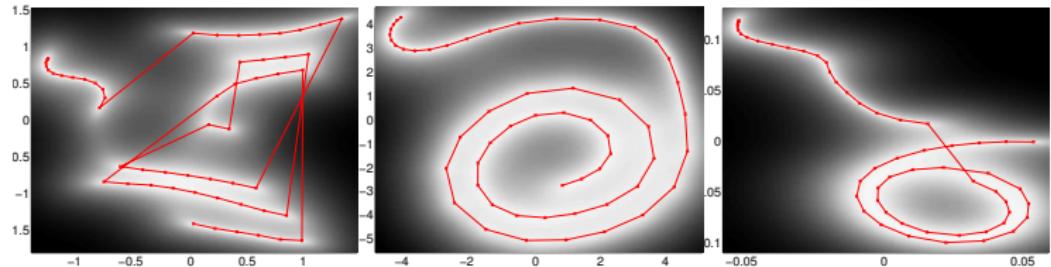


Figure: The latent space for the motion capture data without dynamics (*left*), with auto-regressive dynamics (*middle*) and with regressive dynamics (*right*) based on an RBF kernel.

Stacking Gaussian Processes

- ▶ Regressive dynamics provides a simple hierarchy.
 - ▶ The input space of the GP is governed by another GP.
- ▶ By stacking GPs we can consider more complex hierarchies.
- ▶ Ideally we should marginalise latent spaces
 - ▶ In practice we seek MAP solutions.

Two Correlated Subjects

demHighFive1

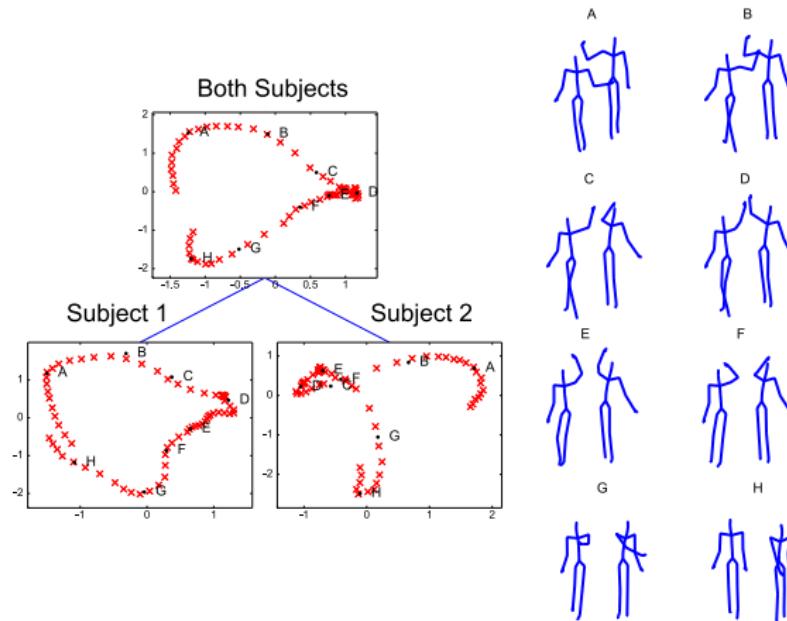


Figure: Hierarchical model of a 'high five'.

Within Subject Hierarchy

Decomposition of Body

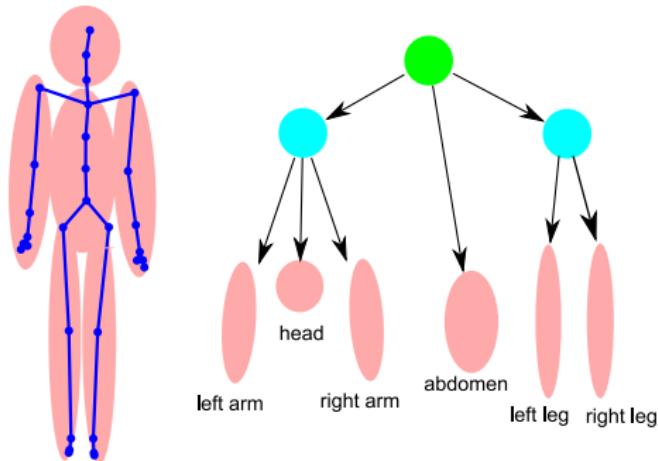


Figure: Decomposition of a subject.

Single Subject Run/Walk

demRunWalk1

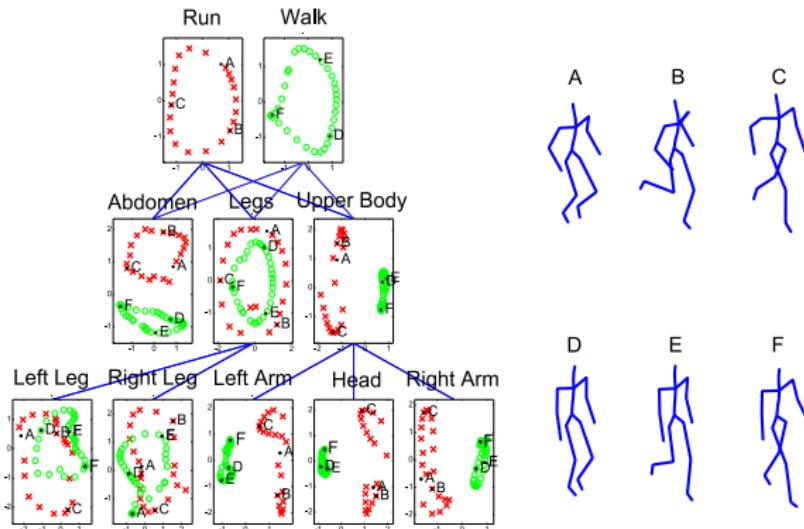


Figure: Hierarchical model of a walk and a run.

Bayesian GP-LVM

- ▶ GP-LVM optimizes latent variables and integrates out parameters.
- ▶ Full Bayesian approach would also integrate latent variables.
- ▶ Cannot do analytically, but Michalis Titsias (Titsias and Lawrence, 2010) developed a clever trick to do it variationally.

Bayesian Gaussian process latent variables model

- ▶ Latent variable model:

$$\mathbf{y} = \mathbf{w}(\mathbf{x}) + \epsilon$$

- ▶ **Bayesian training:** Integrate out both the latent mapping and the latent space
 - ▶ Exact Bayesian inference is intractable
 - ▶ But variational Bayesian inference is tractable

Bayesian Gaussian process latent variables model

Automatic selection of the latent dimensionality

- ▶ Squared exponential ARD kernel

$$k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp \left(-\frac{1}{2} \sum_{i=1}^q \alpha_i (x_i - x'_i)^2 \right)$$

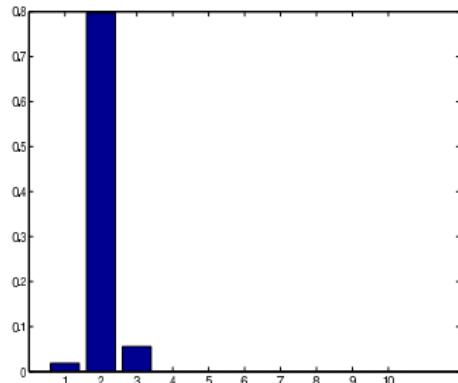
- ▶ Maximizing the variational lower bound w.r.t. α_i s allows to remove redundant latent dimensions

Experiments: Visualization

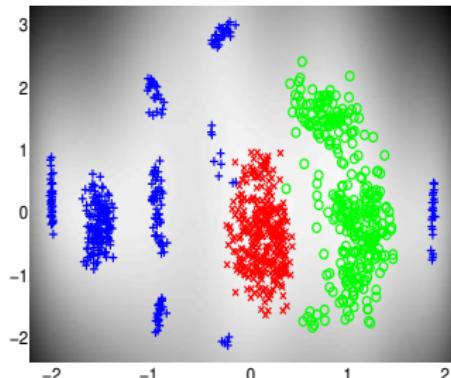
- ▶ Oil flow data: 1000 training; 12 dimensions; 3 known classes
- ▶ Compare:
 - ▶ Bayesian GP-LVM
 - ▶ Standard sparse GP-LVM
 - ▶ Probabilistic PCA

Experiments: Visualization

Oil flow data



(α_{qs})

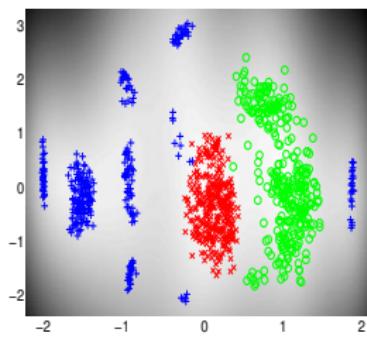


(Bayesian GP-LVM)

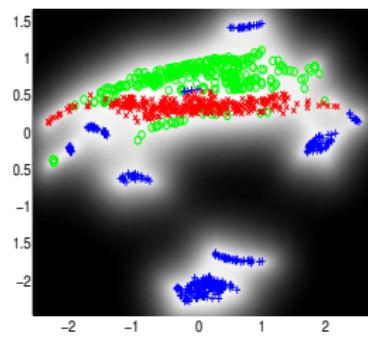
- ▶ Bayesian GP-LVM runs with 10 latent dimensions
- ▶ The red, green and blue points are the predicted means for the latent variables labeled with the known class
- ▶ 7 out 10 latent dimensions are shrunk to zero
- ▶ Visualization is shown for the dominant (with the largest inverse lengthscales) latent dimensions

Experiments: Visualization

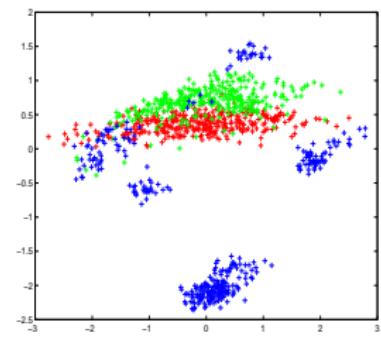
Oil flow data



(Bayesian GP-LVM)



(GP-LVM)



(PPCA)

GP-LVM and Bayesian GP-LVM are both initialized based on PCA

Summary

- ▶ GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.
- ▶ Works Effectively as a Probabilistic Model in High Dimensional Spaces.
- ▶ Back constraints can be introduced to force local distance preservation.
- ▶ Dynamics can be introduced for modelling data with a temporal structure.

Outline

Dimensionality Reduction

GP-LVM

GP-LVM Extensions

Mechanistic Modeling

GPs and Differential Equations

Styles of Machine Learning

Background: interpolation is easy, extrapolation is hard

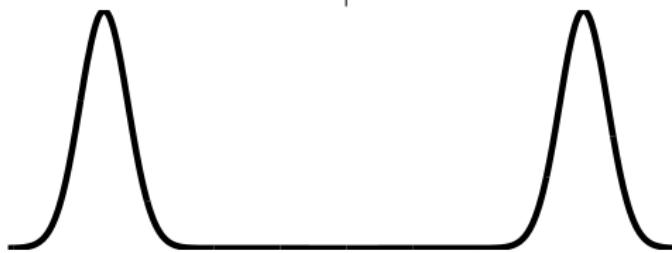
- ▶ Urs Hözle keynote talk at NIPS 2005.
 - ▶ Emphasis on massive data sets.
 - ▶ Let the data do the work—more data, less extrapolation.
- ▶ Alternative paradigm:
 - ▶ Very scarce data: computational biology, human motion.
 - ▶ How to generalize from scarce data?
 - ▶ Need to include more assumptions about the data (e.g. invariances).

General Approach

Broadly Speaking: Two approaches to modeling

data modeling

mechanistic modeling



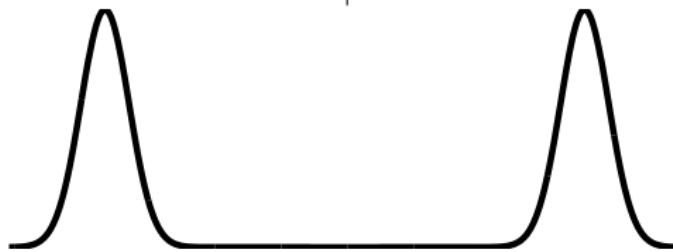
General Approach

Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”

mechanistic modeling



General Approach

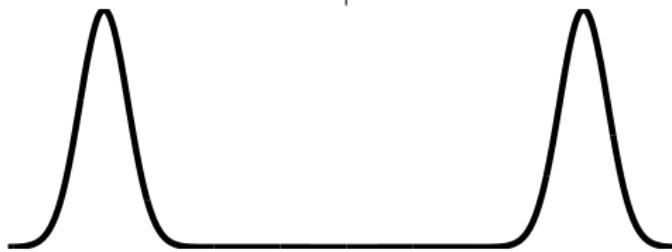
Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”

mechanistic modeling

impose physical laws



General Approach

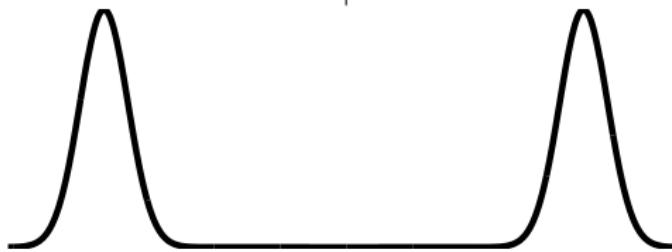
Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”
data driven

mechanistic modeling

impose physical laws



General Approach

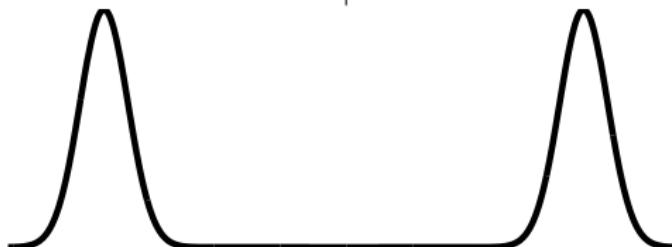
Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”
data driven

mechanistic modeling

impose physical laws
knowledge driven



General Approach

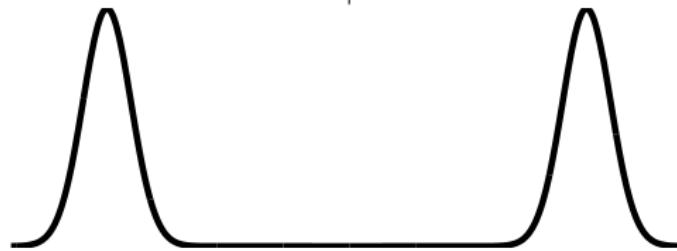
Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”
data driven
adaptive models

mechanistic modeling

impose physical laws
knowledge driven



General Approach

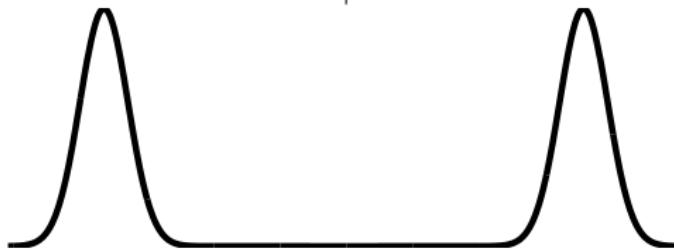
Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”
data driven
adaptive models

mechanistic modeling

impose physical laws
knowledge driven
differential equations



General Approach

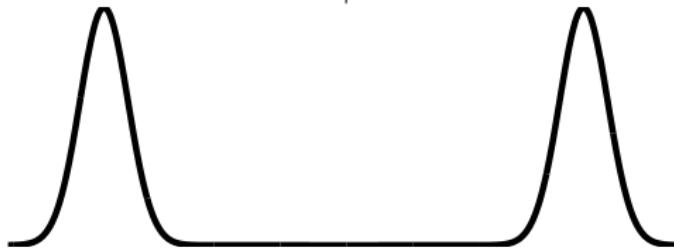
Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”
data driven
adaptive models
digit recognition

mechanistic modeling

impose physical laws
knowledge driven
differential equations

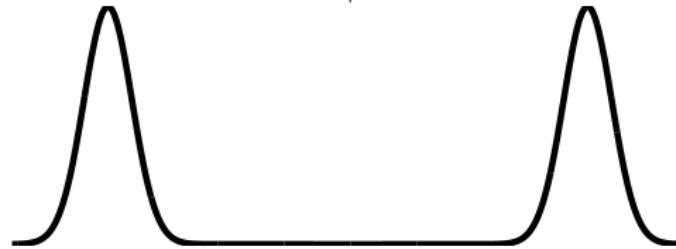


General Approach

Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”
data driven
adaptive models
digit recognition



mechanistic modeling

impose physical laws
knowledge driven
differential equations
climate, weather models

General Approach

Broadly Speaking: Two approaches to modeling

data modeling

let the data "speak"

data driven

adaptive models

digit recognition

Weakly Mechanistic

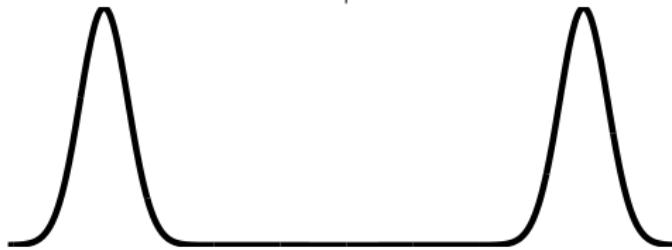
mechanistic modeling

impose physical laws

knowledge driven

differential equations

climate, weather models



General Approach

Broadly Speaking: Two approaches to modeling

data modeling

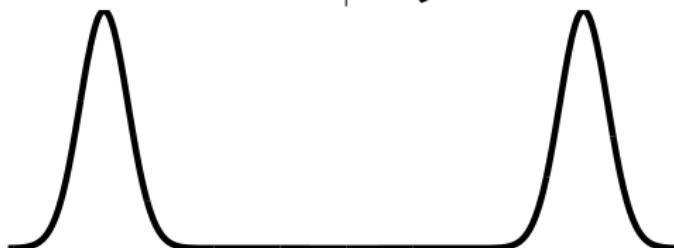
let the data "speak"
data driven
adaptive models
digit recognition

Weakly Mechanistic

mechanistic modeling

impose physical laws
knowledge driven
differential equations
climate, weather models

Strongly Mechanistic



Weakly Mechanistic vs Strongly Mechanistic

- ▶ Underlying data modeling techniques there are *weakly mechanistic* principles (e.g. smoothness).
- ▶ In physics the models are typically *strongly mechanistic*.
- ▶ In principle we expect a range of models which vary in the strength of their mechanistic assumptions.
- ▶ This work is one part of that spectrum: add further mechanistic ideas to weakly mechanistic models.

Dimensionality Reduction

- ▶ Linear relationship between the data, $\mathbf{X} \in \mathbb{R}^{n \times p}$, and a reduced dimensional representation, $\mathbf{F} \in \mathbb{R}^{n \times q}$, where $q \ll p$.

$$\mathbf{X} = \mathbf{F}\mathbf{W} + \epsilon,$$

$$\epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma)$$

- ▶ Integrate out \mathbf{F} , optimize with respect to \mathbf{W} .
- ▶ For Gaussian prior, $\mathbf{F} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - ▶ and $\Sigma = \sigma^2 \mathbf{I}$ we have probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998).
 - ▶ and Σ constrained to be diagonal, we have factor analysis.

Dimensionality Reduction: Temporal Data

- ▶ Deal with temporal data with a temporal latent prior.
- ▶ Independent Gauss-Markov priors over each $f_i(t)$ leads to : Rauch-Tung-Striebel (RTS) smoother (Kalman filter).
- ▶ More generally consider a Gaussian process (GP) prior,

$$p(\mathbf{f}|\mathbf{t}) = \prod_{i=1}^q \mathcal{N}(\mathbf{f}_{:,i} | \mathbf{0}, \mathbf{K}_{f_{:,i}, f_{:,i}}) .$$

- ▶ Given the covariance functions for $\{f_i(t)\}$ we have an implied covariance function across all $\{x_i(t)\}$ —(ML: semi-parametric latent factor model (Teh et al., 2005), Geostatistics: linear model of coregionalization).
- ▶ Rauch-Tung-Striebel smoother has been preferred
 - ▶ linear computational complexity in n .
 - ▶ Advances in sparse approximations have made the general GP framework practical. (Titsias, 2009; Snelson and Ghahramani, 2006; Quiñonero Candela and Rasmussen, 2005).

Outline

Dimensionality Reduction

GP-LVM

GP-LVM Extensions

Mechanistic Modeling

GPs and Differential Equations

Mechanical Analogy

Back to Mechanistic Models!

- ▶ These models rely on the latent variables to provide the dynamic information.
- ▶ We now introduce a further dynamical system with a *mechanistic* inspiration.
- ▶ Physical Interpretation:
 - ▶ the latent functions, $f_i(t)$ are q forces.
 - ▶ We observe the displacement of p springs to the forces.,
 - ▶ Interpret system as the force balance equation, $\mathbf{X}\mathbf{D} = \mathbf{FS} + \boldsymbol{\epsilon}$.
 - ▶ Forces act, e.g. through levers — a matrix of sensitivities, $\mathbf{S} \in \mathbb{R}^{q \times p}$.
 - ▶ Diagonal matrix of spring constants, $\mathbf{D} \in \mathbb{R}^{p \times p}$.
 - ▶ Original System: $\mathbf{W} = \mathbf{SD}^{-1}$.

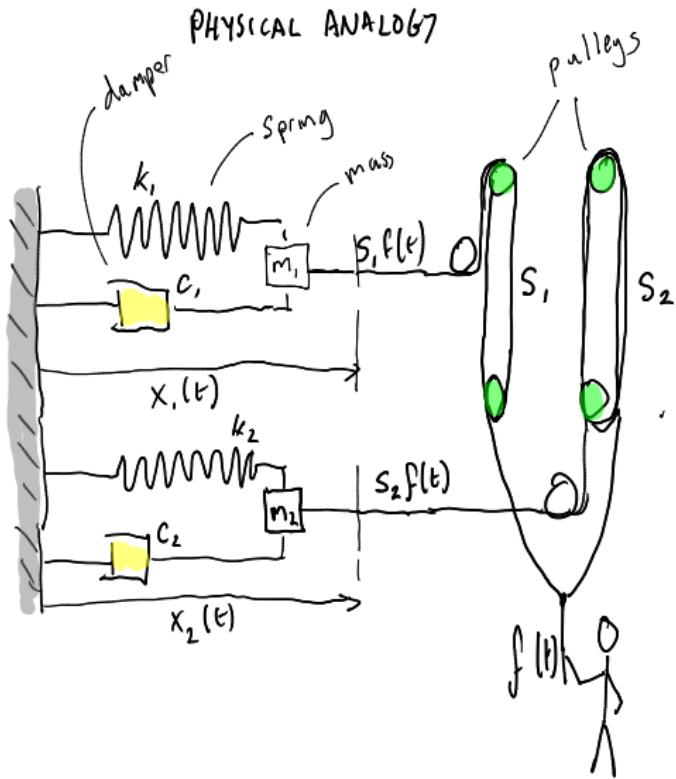
Extend Model

- ▶ Add a damper and give the system mass.

$$\mathbf{FS} = \ddot{\mathbf{X}}\mathbf{M} + \dot{\mathbf{X}}\mathbf{C} + \mathbf{X}\mathbf{D} + \boldsymbol{\epsilon}.$$

- ▶ Now have a second order mechanical system.
- ▶ It will exhibit inertia and resonance.
- ▶ There are many systems that can also be represented by differential equations.
 - ▶ When being forced by latent function(s), $\{f_i(t)\}_{i=1}^q$, we call this a *latent force model*.

Physical Analogy



MARIONETTE



Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

- ▶ For Gaussian process we can compute the covariance matrices for the output displacements.
- ▶ For one displacement the model is

$$m_k \ddot{x}_k(t) + c_k \dot{x}_k(t) + d_k x_k(t) = b_k + \sum_{i=0}^q s_{ik} f_i(t), \quad (1)$$

where, m_k is the k th diagonal element from \mathbf{M} and similarly for c_k and d_k . s_{ik} is the i, k th element of \mathbf{S} .

- ▶ Model the latent forces as q independent, GPs with exponentiated quadratic covariances

$$k_{f_i f_j}(t, t') = \exp \left(-\frac{(t - t')^2}{2\ell_i^2} \right) \delta_{ij}.$$

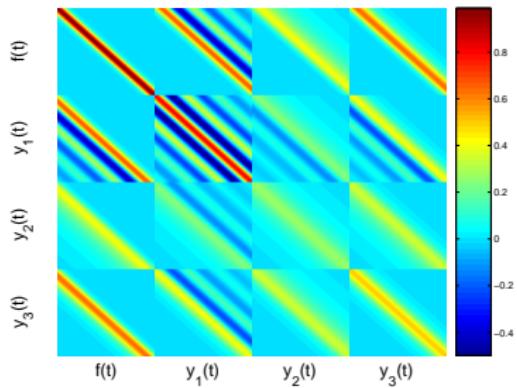
Covariance for ODE Model

- ▶ Exponentiated Quadratic Covariance function for $f(t)$

$$x_j(t) = \frac{1}{m_j \omega_j} \sum_{i=1}^q s_{ji} \exp(-\alpha_j t) \int_0^t f_i(\tau) \exp(\alpha_j \tau) \sin(\omega_j(t - \tau)) d\tau$$

- ▶ Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and $f(t)$.
Damping ratios:

ζ_1	ζ_2	ζ_3
0.125	2	1



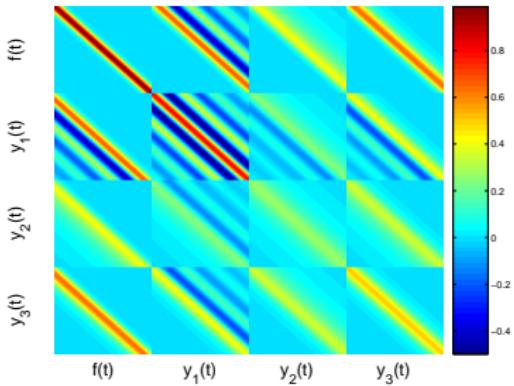
Covariance for ODE Model

- Analogy

$$x = \sum_i \mathbf{e}_i^\top \mathbf{f}_i \quad \mathbf{f}_i \sim \mathcal{N}(\mathbf{0}, \Sigma_i) \rightarrow x \sim \mathcal{N}\left(0, \sum_i \mathbf{e}_i^\top \Sigma_i \mathbf{e}_i\right)$$

- Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and $f(t)$.
Damping ratios:

ζ_1	ζ_2	ζ_3
0.125	2	1



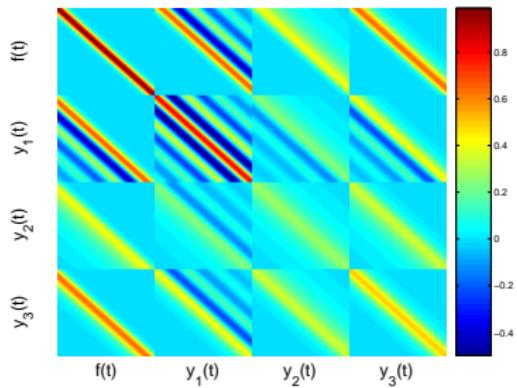
Covariance for ODE Model

- ▶ Exponentiated Quadratic Covariance function for $f(t)$

$$x_j(t) = \frac{1}{m_j \omega_j} \sum_{i=1}^q s_{ji} \exp(-\alpha_j t) \int_0^t f_i(\tau) \exp(\alpha_j \tau) \sin(\omega_j(t - \tau)) d\tau$$

- ▶ Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and $f(t)$.
Damping ratios:

ζ_1	ζ_2	ζ_3
0.125	2	1



Joint Sampling of $x(t)$ and $f(t)$

► lfmSample

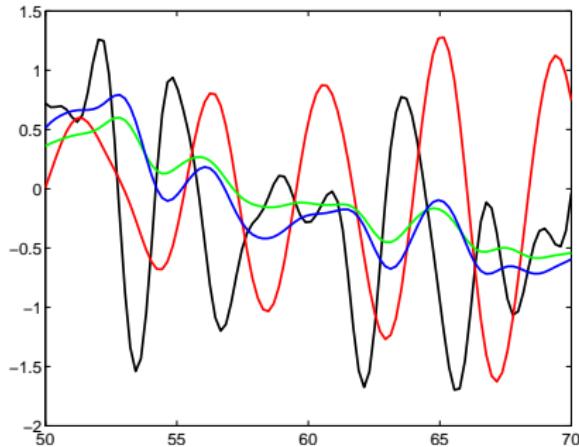


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

Joint Sampling of $x(t)$ and $f(t)$

► lfmSample

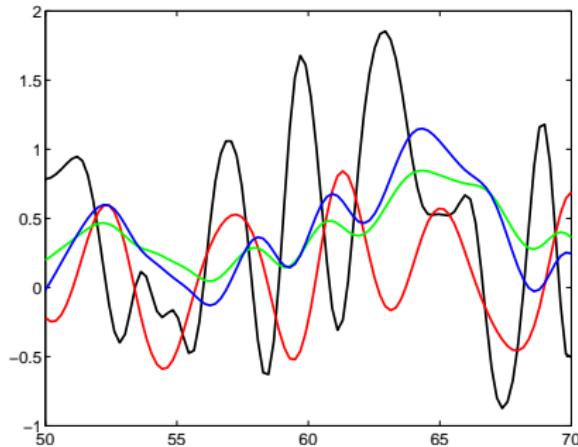


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

Joint Sampling of $x(t)$ and $f(t)$

► lfmSample

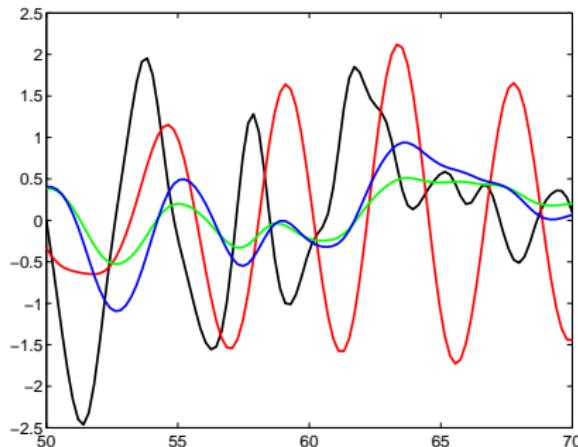


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

Joint Sampling of $x(t)$ and $f(t)$

► lfmSample

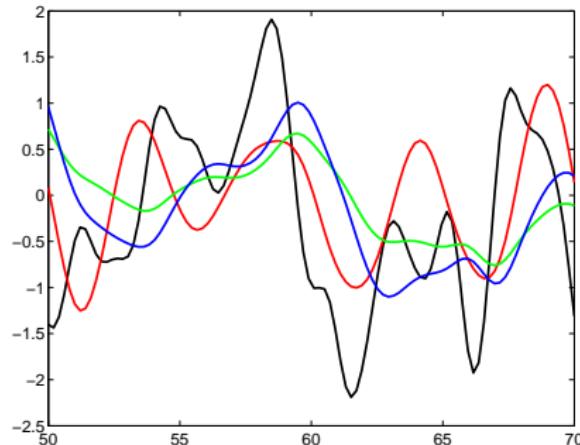


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

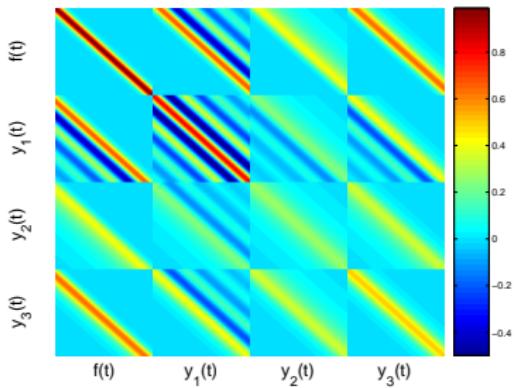
Covariance for ODE

- ▶ Exponentiated Quadratic Covariance function for $f(t)$

$$x_j(t) = \frac{1}{m_j \omega_j} \sum_{i=1}^q s_{ji} \exp(-\alpha_j t) \int_0^t f_i(\tau) \exp(\alpha_j \tau) \sin(\omega_j(t-\tau)) d\tau$$

- ▶ Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and $f(t)$.
- ▶ Damping ratios:

ζ_1	ζ_2	ζ_3
0.125	2	1



Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009)

- ▶ Motion capture data: used for animating human motion.
- ▶ Multivariate time series of angles representing joint positions.
- ▶ Objective: generalize from training data to realistic motions.
- ▶ Use 2nd Order Latent Force Model with mass/spring/damper (resistor inductor capacitor) at each joint.

Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009)

- ▶ Motion capture data: used for animating human motion.
- ▶ Multivariate time series of angles representing joint positions.
- ▶ Objective: generalize from training data to realistic motions.
- ▶ Use 2nd Order Latent Force Model with mass/spring/damper (resistor inductor capacitor) at each joint.

Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009)

- ▶ Motion capture data: used for animating human motion.
- ▶ Multivariate time series of angles representing joint positions.
- ▶ Objective: generalize from training data to realistic motions.
- ▶ Use 2nd Order Latent Force Model with mass/spring/damper (resistor inductor capacitor) at each joint.

Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009)

- ▶ Motion capture data: used for animating human motion.
- ▶ Multivariate time series of angles representing joint positions.
- ▶ Objective: generalize from training data to realistic motions.
- ▶ Use 2nd Order Latent Force Model with mass/spring/damper (resistor inductor capacitor) at each joint.

Prediction of Test Motion

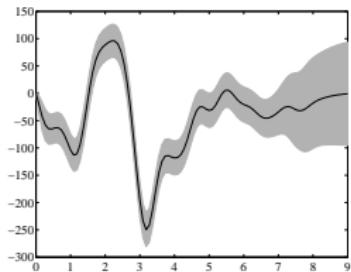
- ▶ Model left arm only.
- ▶ 3 balancing motions (18, 19, 20) from subject 49.
- ▶ 18 and 19 are similar, 20 contains more dramatic movements.
- ▶ Train on 18 and 19 and testing on 20
- ▶ Data was down-sampled by 32 (from 120 fps).
- ▶ Reconstruct motion of left arm for 20 given other movements.
- ▶ Compare with GP that predicts left arm angles given other body angles.

Mocap Results

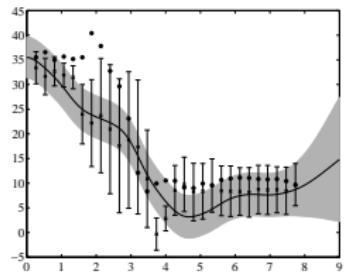
Table: Root mean squared (RMS) angle error for prediction of the left arm's configuration in the motion capture data. Prediction with the latent force model outperforms the prediction with regression for all apart from the radius's angle.

Angle	Latent Force Error	Regression Error
Radius	4.11	4.02
Wrist	6.55	6.65
Hand X rotation	1.82	3.21
Hand Z rotation	2.76	6.14
Thumb X rotation	1.77	3.10
Thumb Z rotation	2.73	6.09

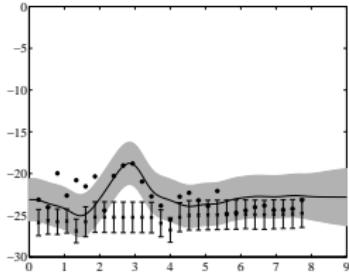
Mocap Results II



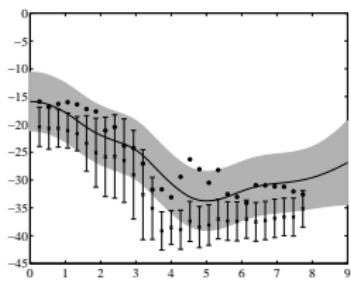
(a) Inferred Latent Force



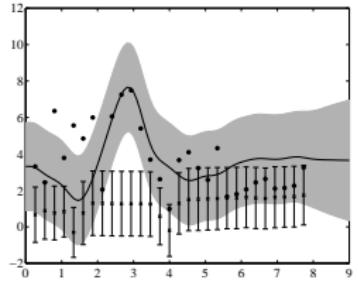
(b) Wrist



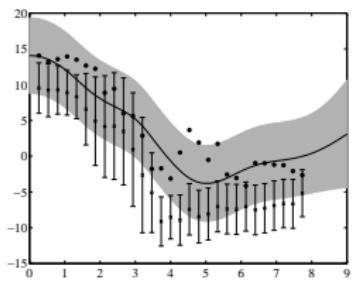
(c) Hand X Rotation



(d) Hand Z Rotation



(e) Thumb X Rotation



(f) Thumb Z Rotation

Figure: Predictions from LFM (solid line, grey error bars) and direct regression (crosses with stick error bars).

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline b_j , sensitivity s_j and decay d_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline b_j , sensitivity s_j and decay d_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline b_j , sensitivity s_j and decay d_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline b_j , sensitivity s_j and decay d_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline b_j , sensitivity s_j and decay d_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline b_j , sensitivity s_j and decay d_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline b_j , sensitivity s_j and decay d_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Covariance for Transcription Model

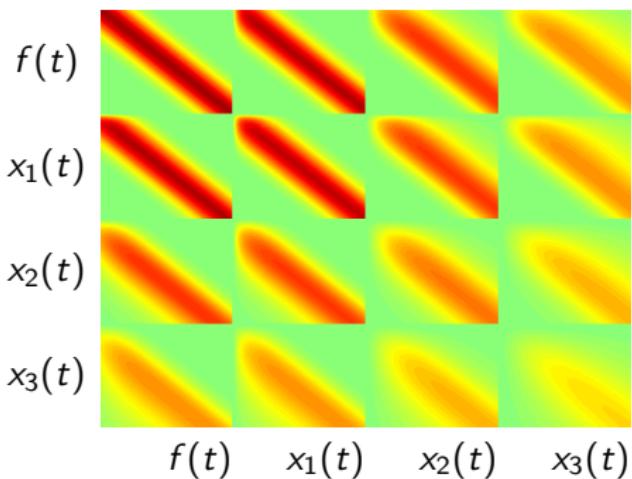
RBF covariance function for $f(t)$

$$x_i(t) = \frac{b_i}{d_i} + s_i \exp(-d_i t) \int_0^t f(u) \exp(d_i u) du.$$

- ▶ Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$, and $f(t)$.

- ▶ Here:

d_1	s_1	d_2	s_2	d_3	s_3
5	5	1	1	0.5	0.5

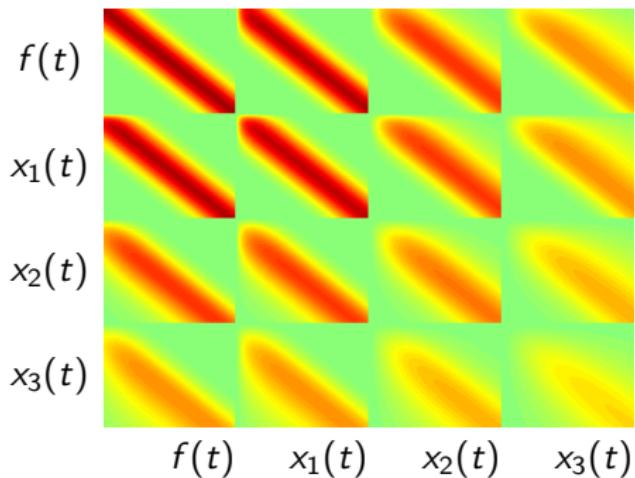


Covariance for Transcription Model

RBF covariance function for $f(t)$

$$x = b/d + \sum_i \mathbf{e}_i^\top \mathbf{f} \quad \mathbf{f} \sim \mathcal{N}(\mathbf{0}, \Sigma_i) \rightarrow x \sim \mathcal{N}\left(b/d, \sum_i \mathbf{e}_i^\top \Sigma_i \mathbf{e}_i\right)$$

- ▶ Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$, and $f(t)$.



- ▶ Here:

d_1	s_1	d_2	s_2	d_3	s_3
5	5	1	1	0.5	0.5

Covariance for Transcription Model

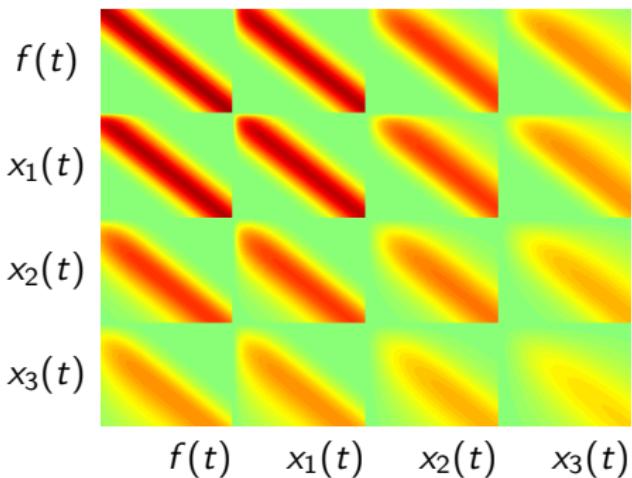
RBF covariance function for $f(t)$

$$x_i(t) = \frac{b_i}{d_i} + s_i \exp(-d_i t) \int_0^t f(u) \exp(d_i u) du.$$

- ▶ Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$, and $f(t)$.

- ▶ Here:

d_1	s_1	d_2	s_2	d_3	s_3
5	5	1	1	0.5	0.5



Joint Sampling of $f(t)$ and $x(t)$

► simSample

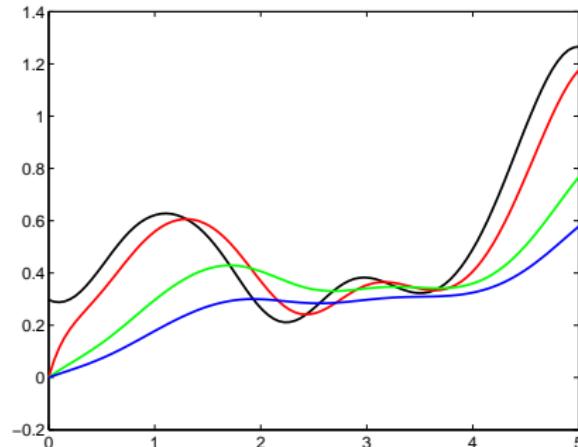


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (high decay/sensitivity), *green*: $x_2(t)$ (medium decay/sensitivity) and *blue*: $x_3(t)$ (low decay/sensitivity).

Joint Sampling of $f(t)$ and $x(t)$

- ▶ simSample

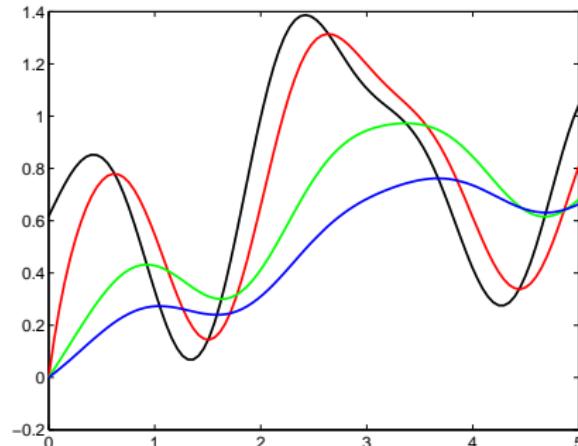


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (high decay/sensitivity), *green*: $x_2(t)$ (medium decay/sensitivity) and *blue*: $x_3(t)$ (low decay/sensitivity).

Joint Sampling of $f(t)$ and $x(t)$

► simSample

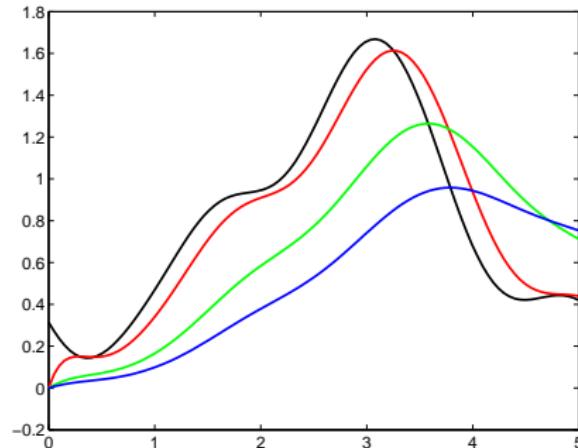


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (high decay/sensitivity), *green*: $x_2(t)$ (medium decay/sensitivity) and *blue*: $x_3(t)$ (low decay/sensitivity).

Joint Sampling of $f(t)$ and $x(t)$

► simSample

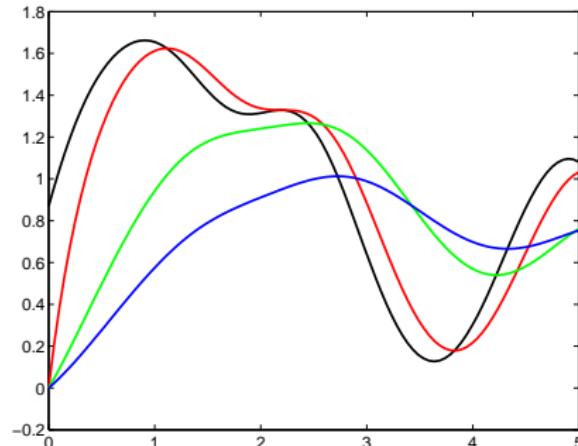
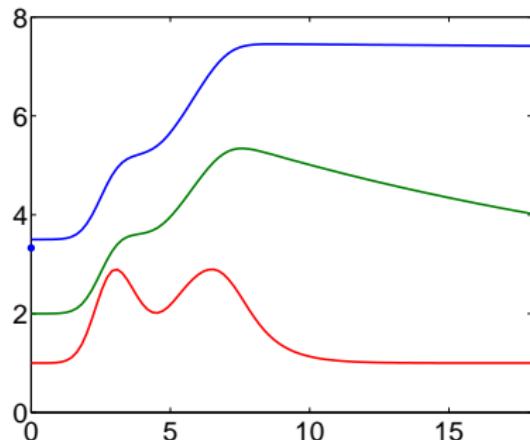


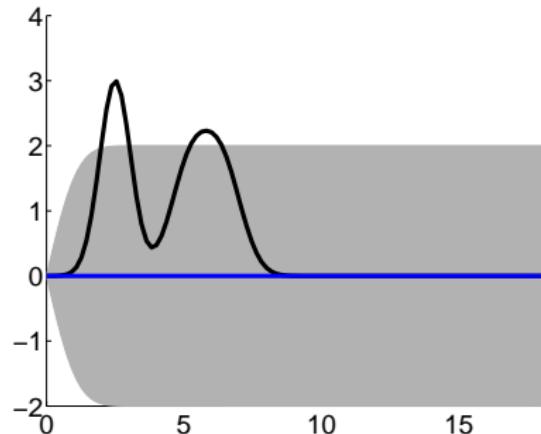
Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (high decay/sensitivity), *green*: $x_2(t)$ (medium decay/sensitivity) and *blue*: $x_3(t)$ (low decay/sensitivity).

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



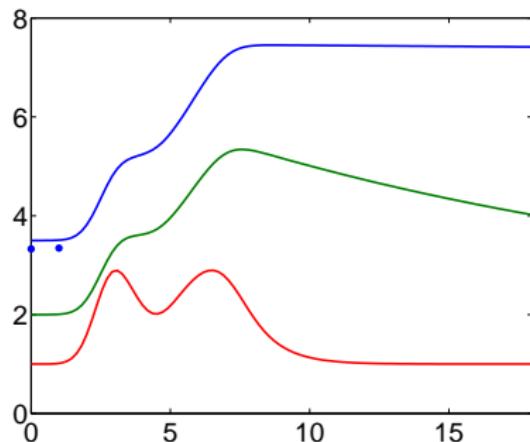
True “gene profiles” and noisy observations.



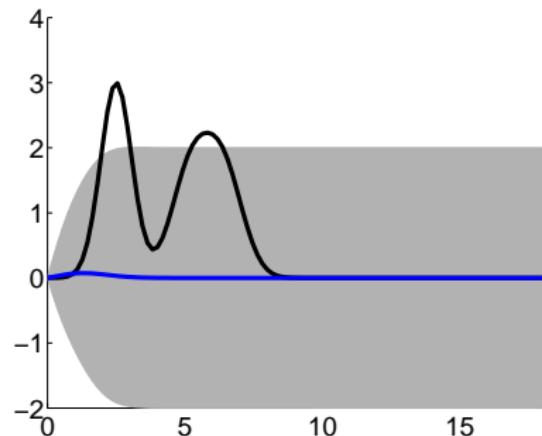
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



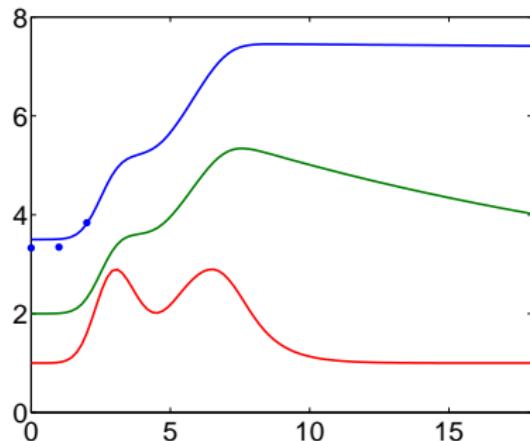
True “gene profiles” and noisy observations.



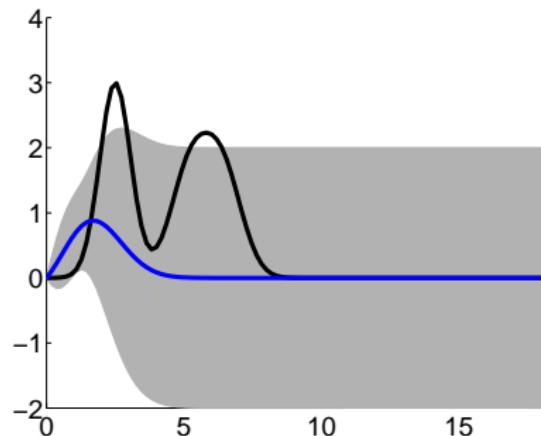
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



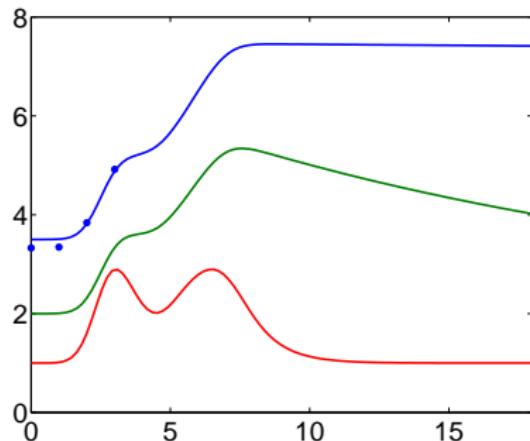
True “gene profiles” and noisy observations.



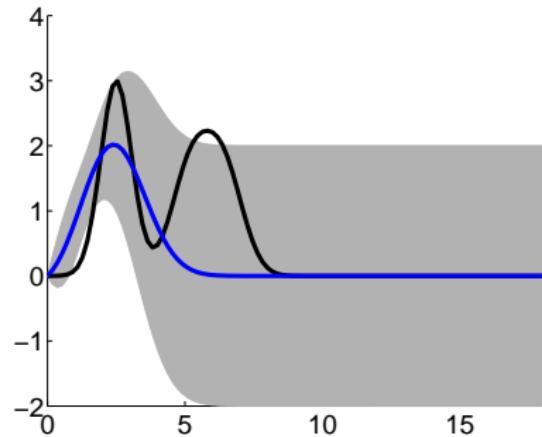
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



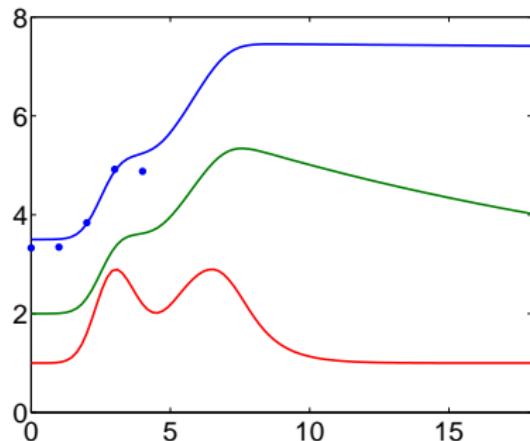
True “gene profiles” and noisy observations.



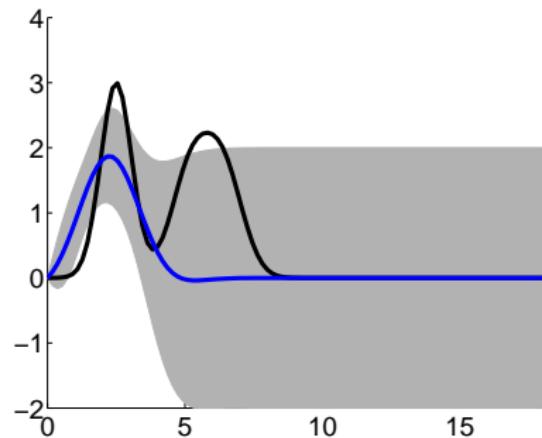
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



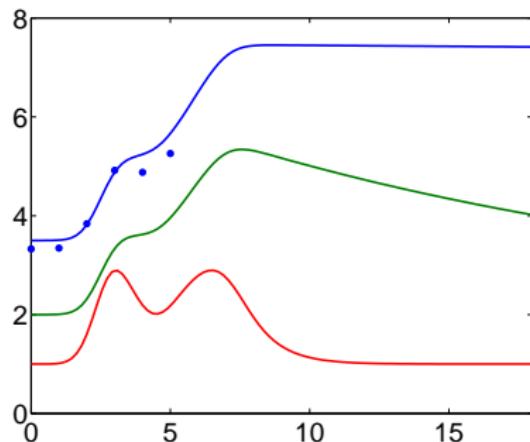
True “gene profiles” and noisy observations.



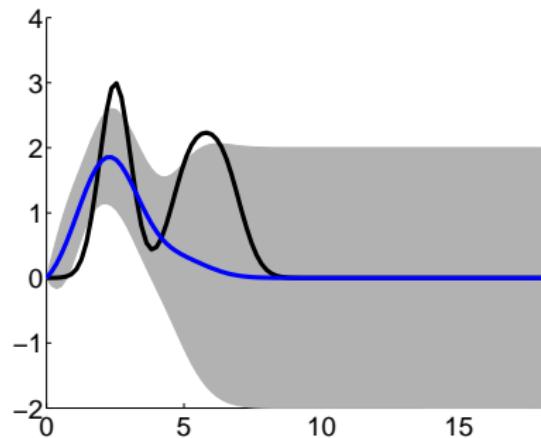
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



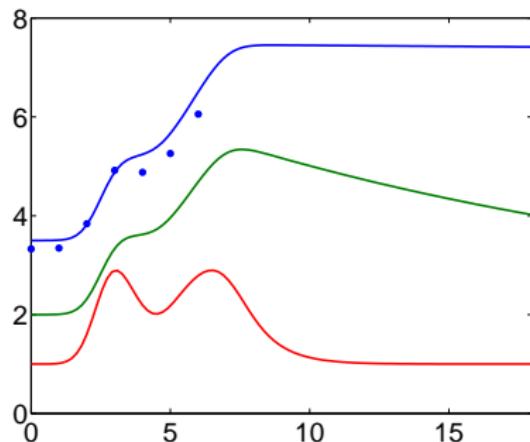
True “gene profiles” and noisy observations.



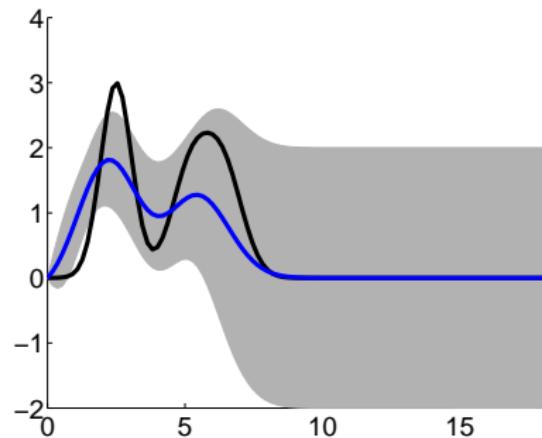
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



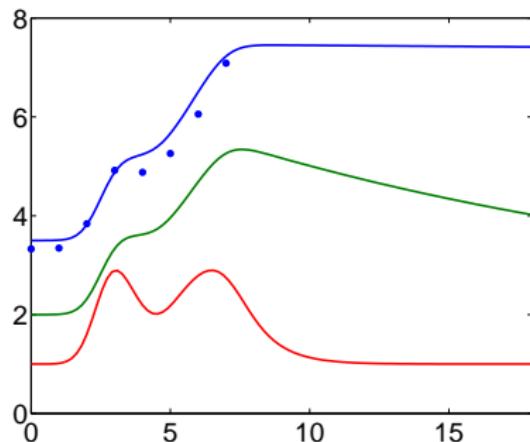
True “gene profiles” and noisy observations.



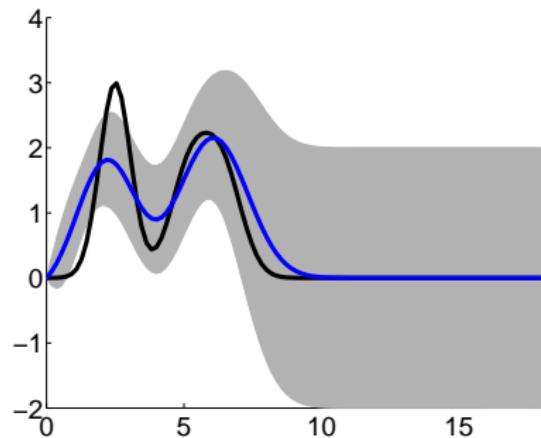
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



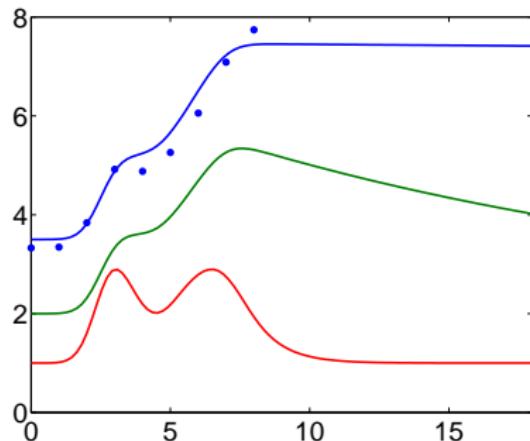
True “gene profiles” and noisy observations.



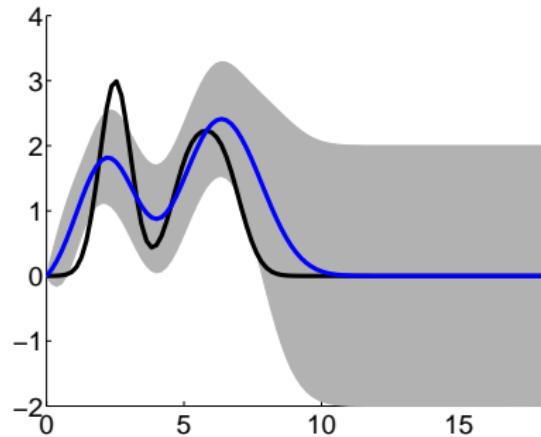
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



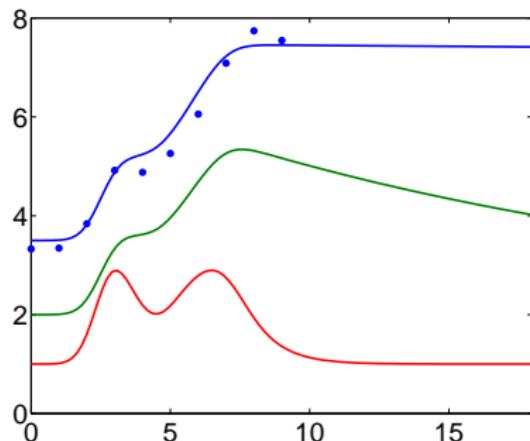
True “gene profiles” and noisy observations.



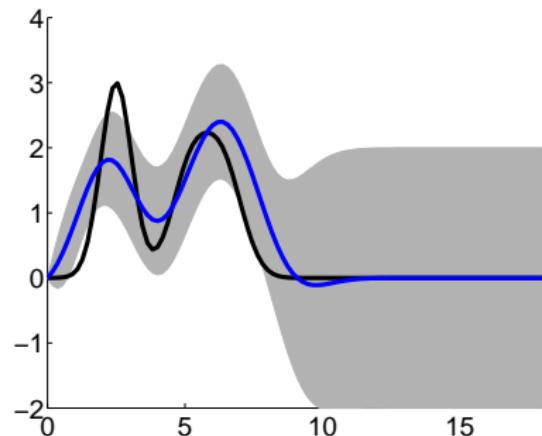
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



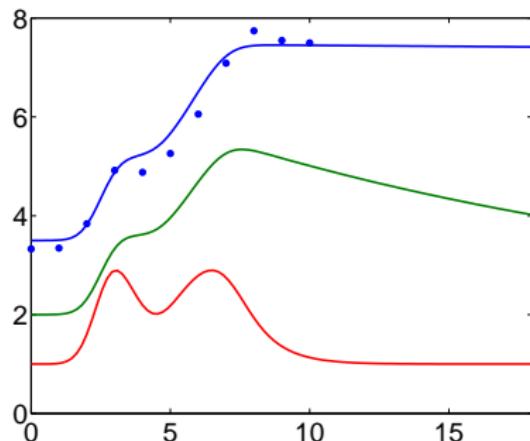
True “gene profiles” and noisy observations.



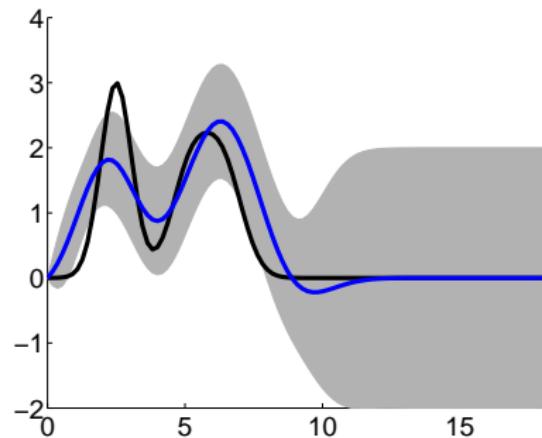
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



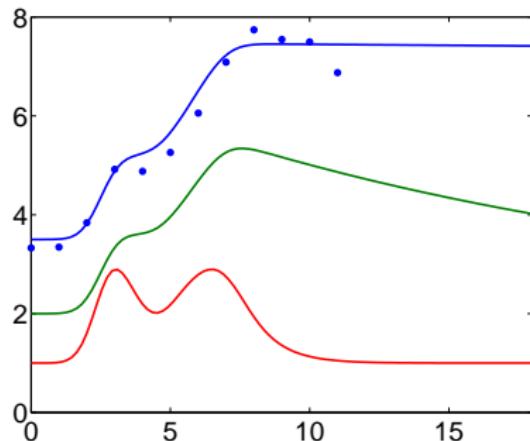
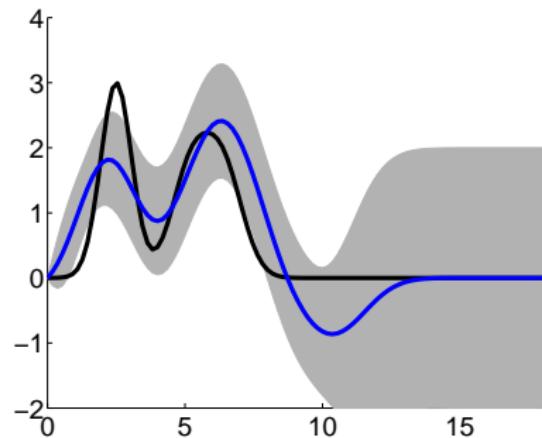
True “gene profiles” and noisy observations.



Inferred transcription factor activity.

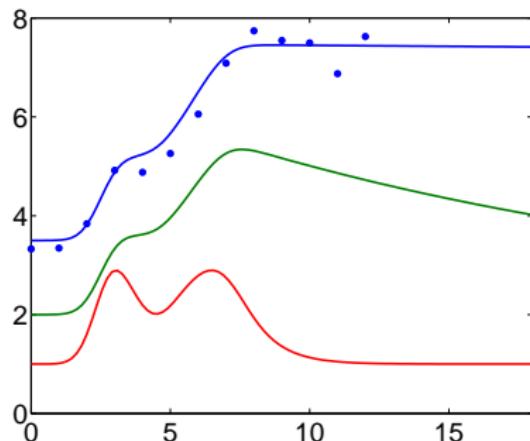
Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.

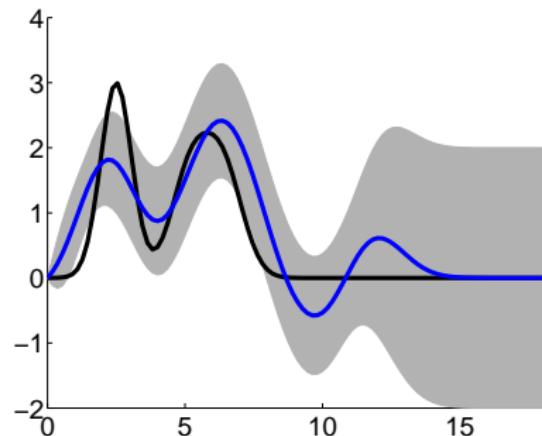


Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



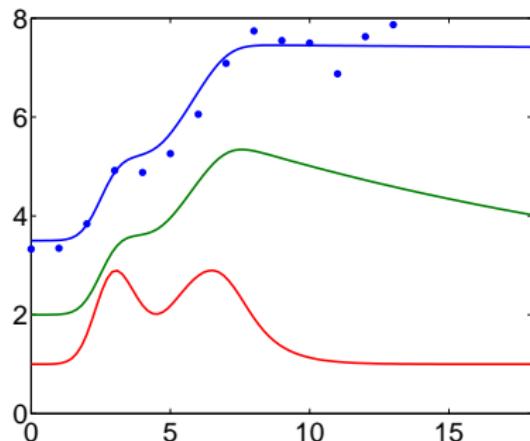
True “gene profiles” and noisy observations.



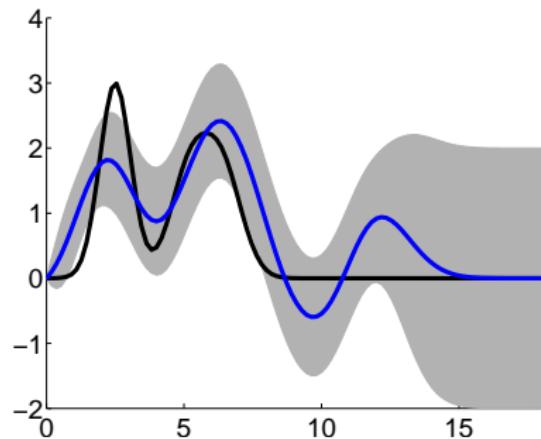
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



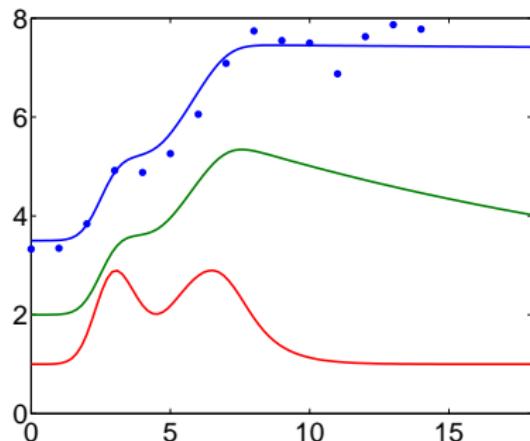
True “gene profiles” and noisy observations.



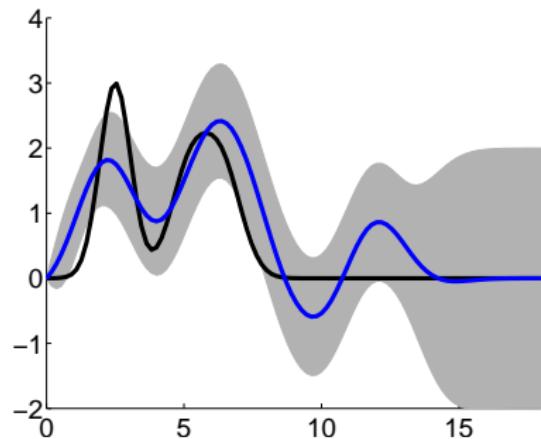
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



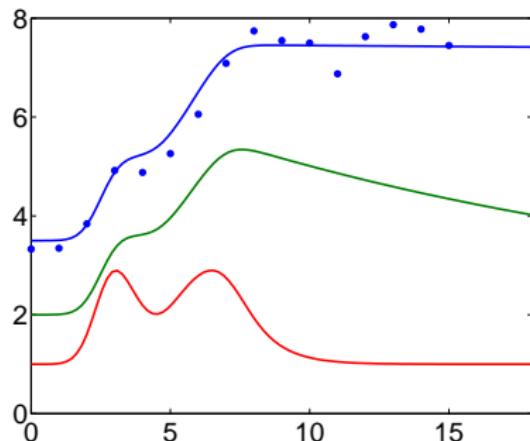
True “gene profiles” and noisy observations.



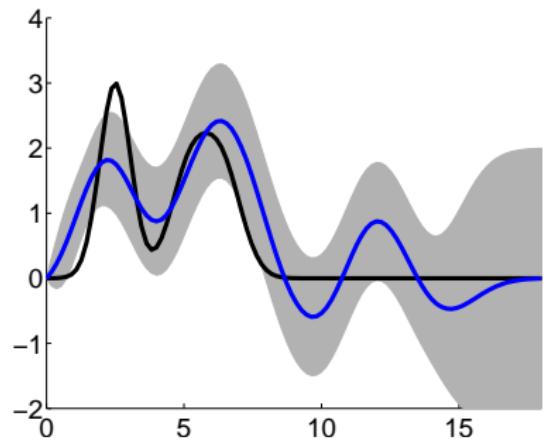
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



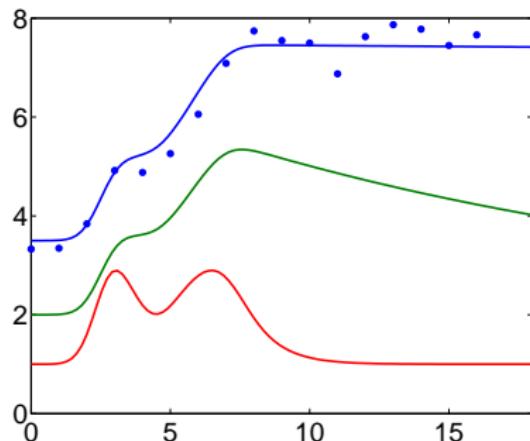
True “gene profiles” and noisy observations.



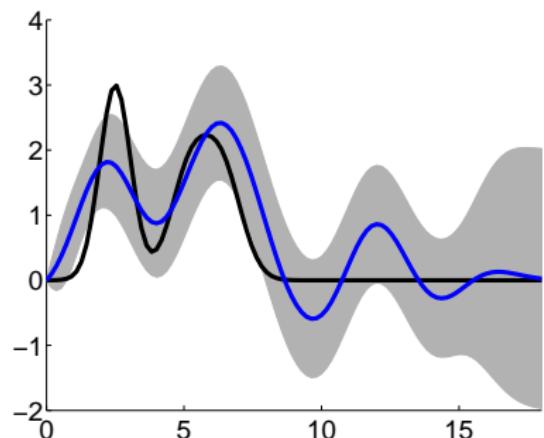
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



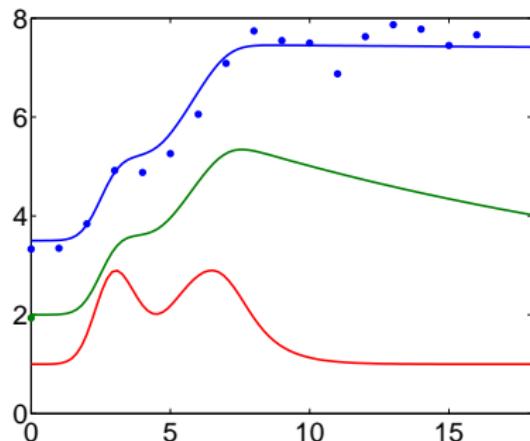
True “gene profiles” and noisy observations.



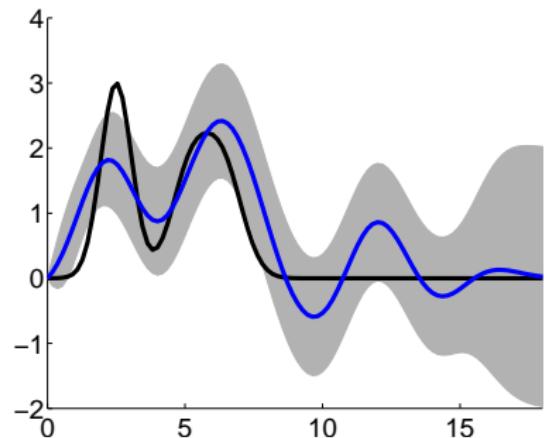
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



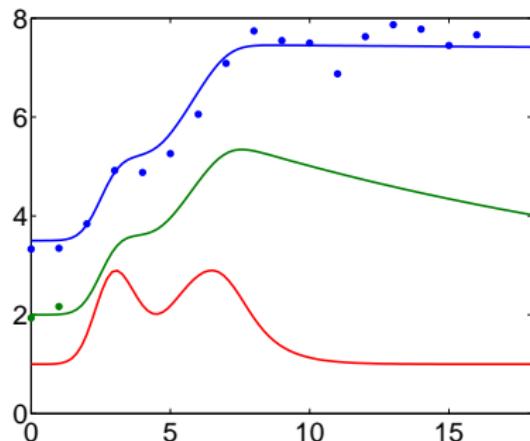
True “gene profiles” and noisy observations.



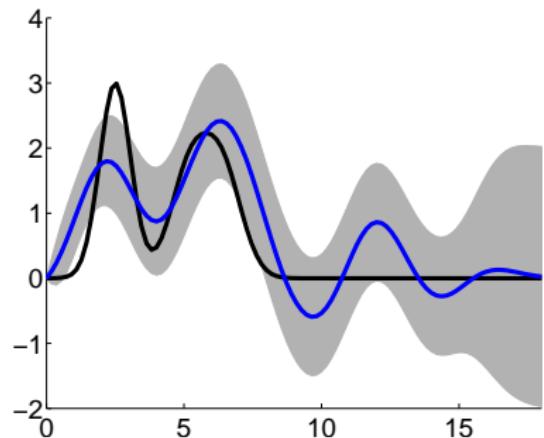
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



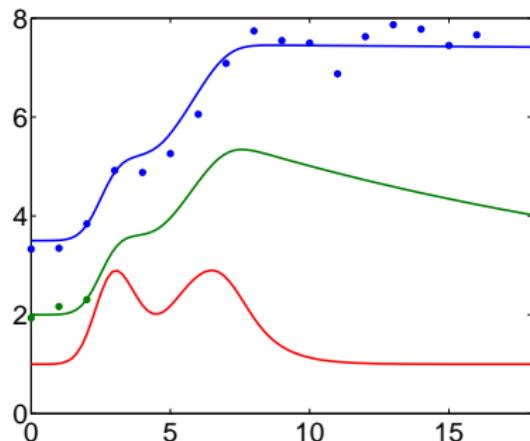
True “gene profiles” and noisy observations.



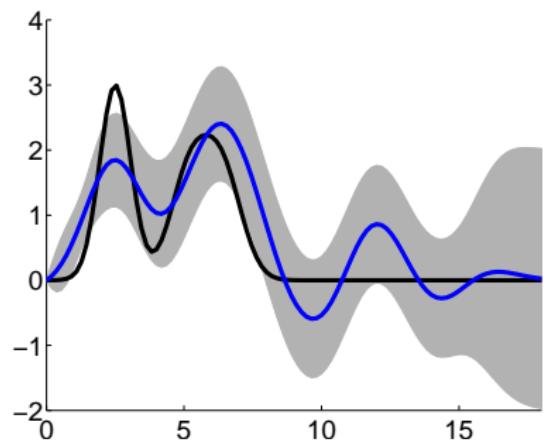
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



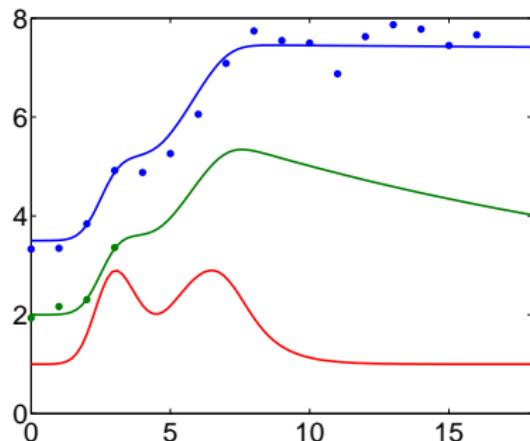
True “gene profiles” and noisy observations.



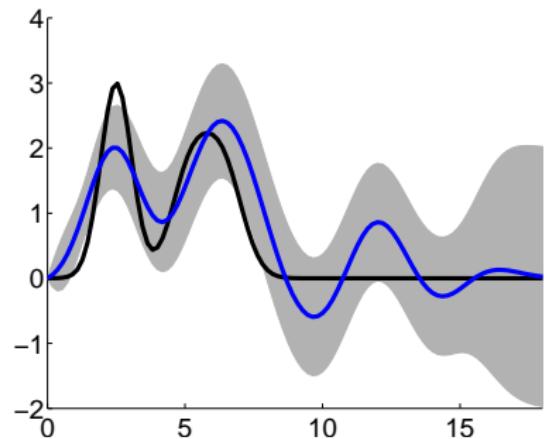
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



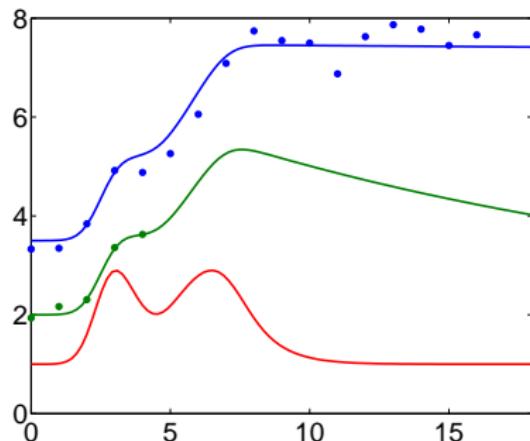
True “gene profiles” and noisy observations.



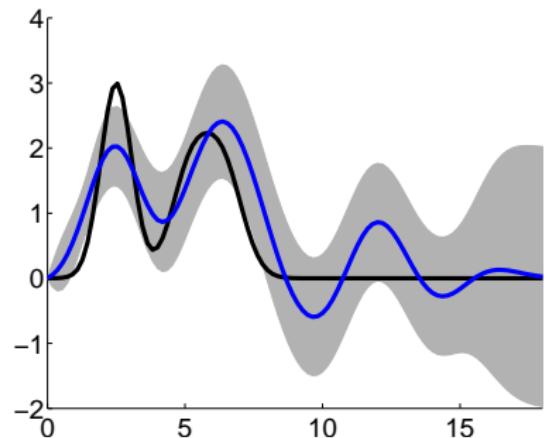
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



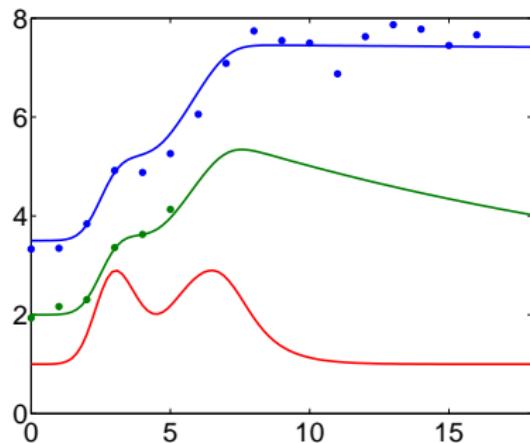
True “gene profiles” and noisy observations.



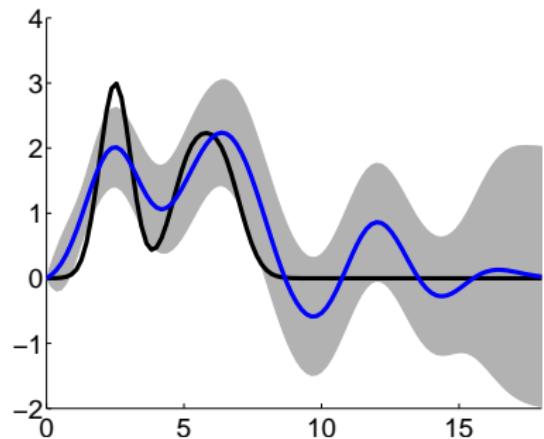
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



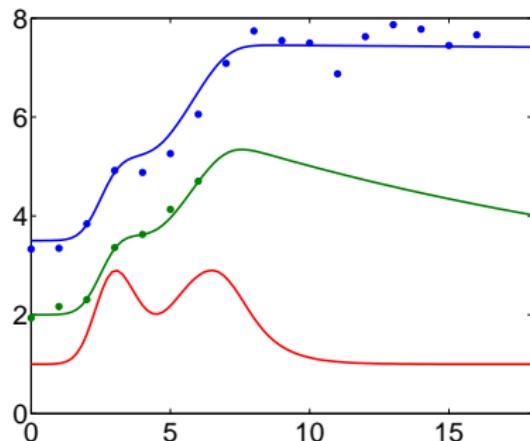
True “gene profiles” and noisy observations.



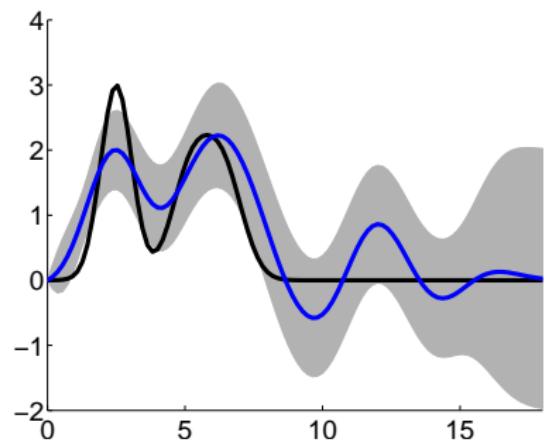
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



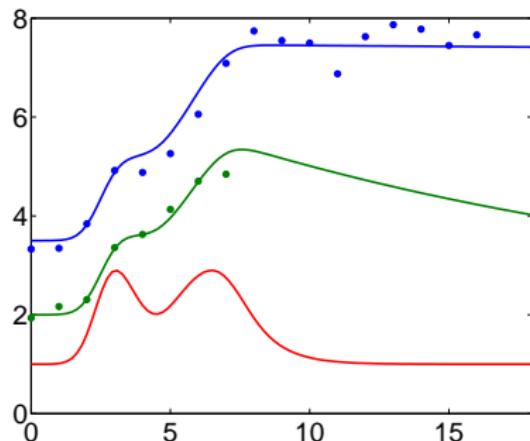
True “gene profiles” and noisy observations.



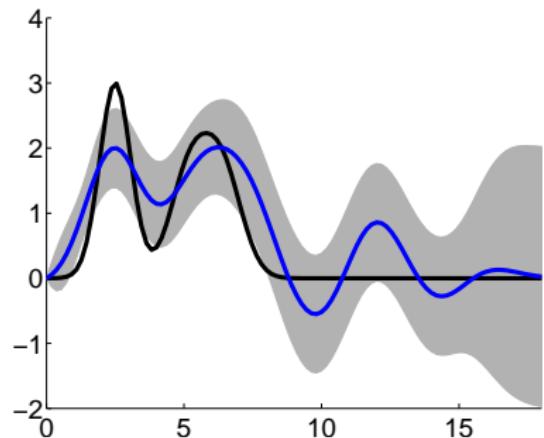
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



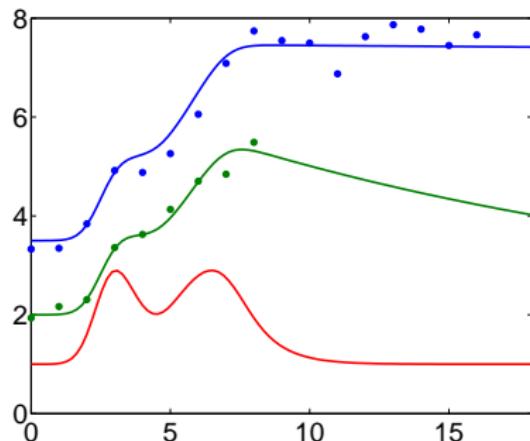
True “gene profiles” and noisy observations.



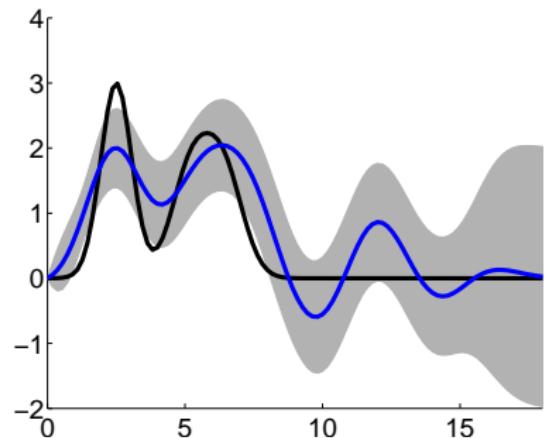
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



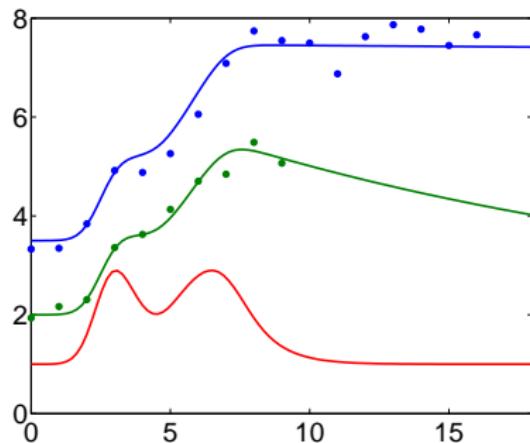
True “gene profiles” and noisy observations.



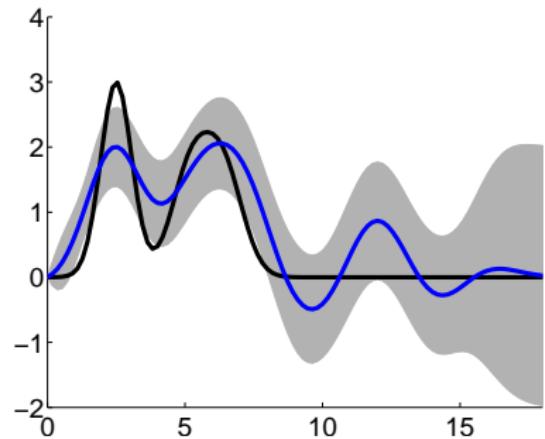
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



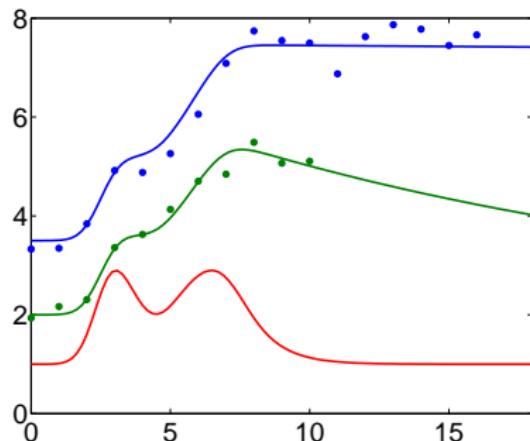
True “gene profiles” and noisy observations.



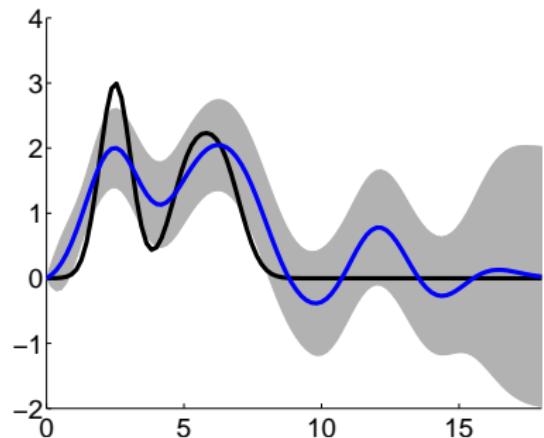
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



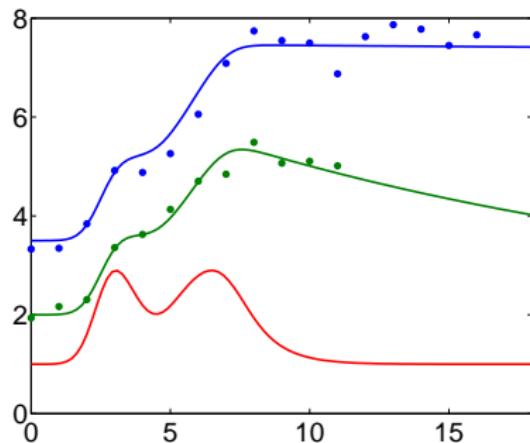
True “gene profiles” and noisy observations.



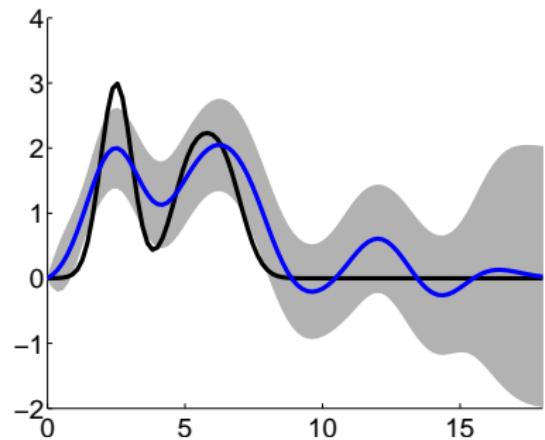
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



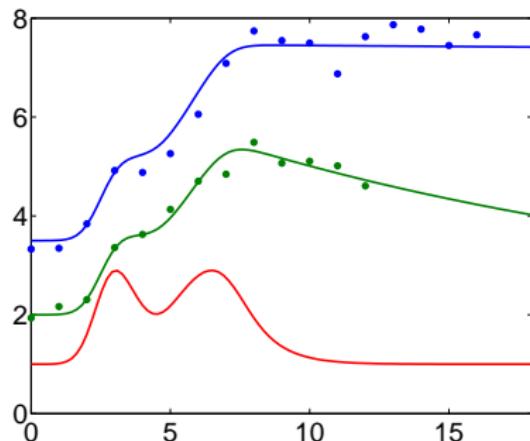
True “gene profiles” and noisy observations.



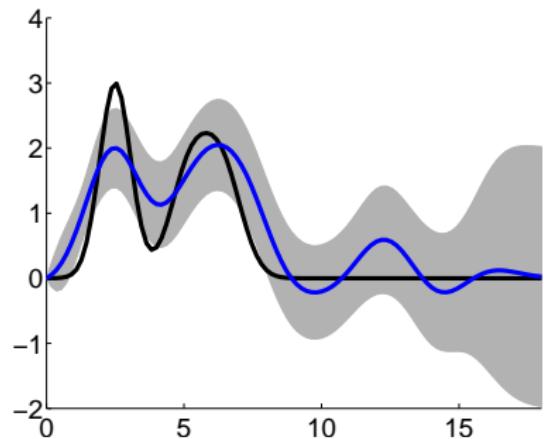
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



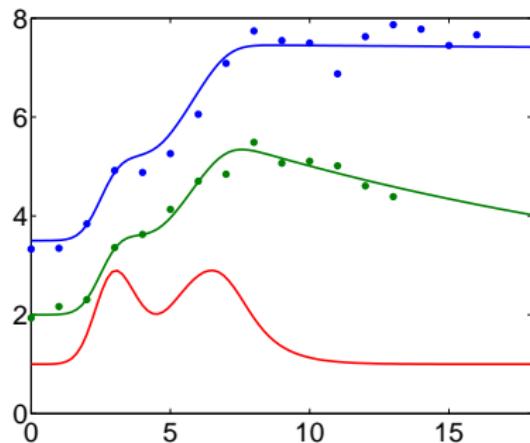
True “gene profiles” and noisy observations.



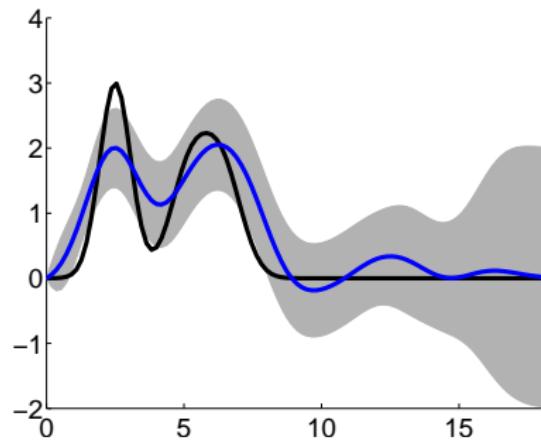
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



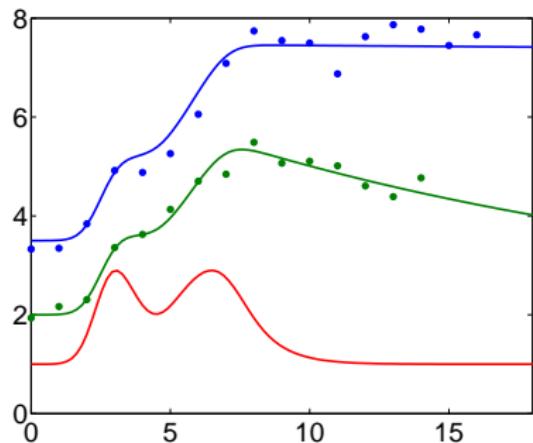
True “gene profiles” and noisy observations.



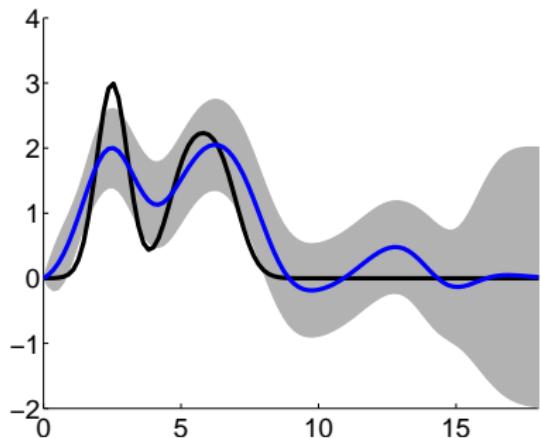
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



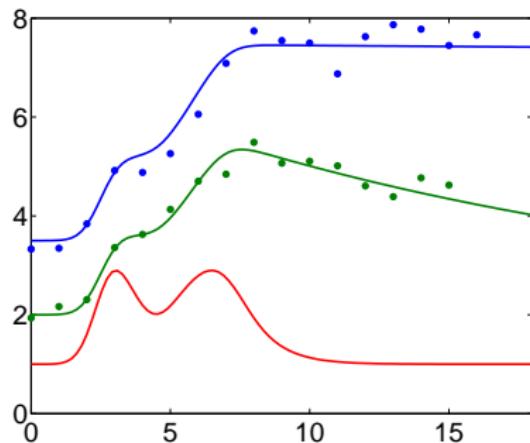
True “gene profiles” and noisy observations.



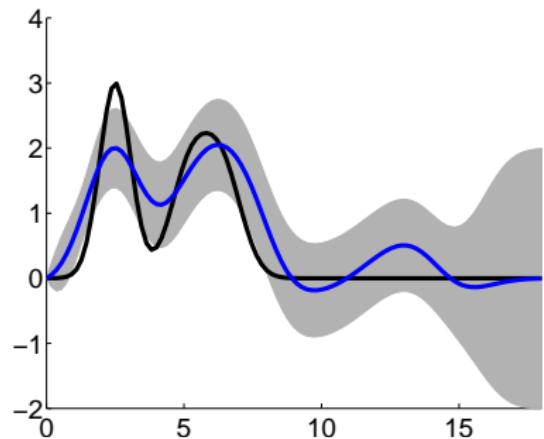
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



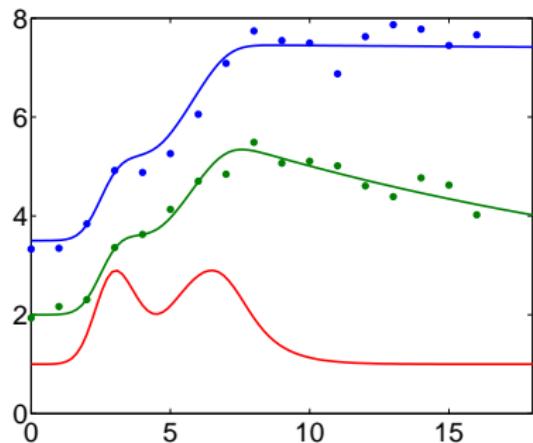
True “gene profiles” and noisy observations.



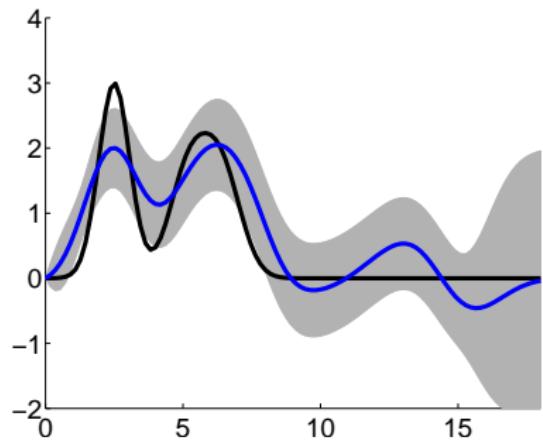
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



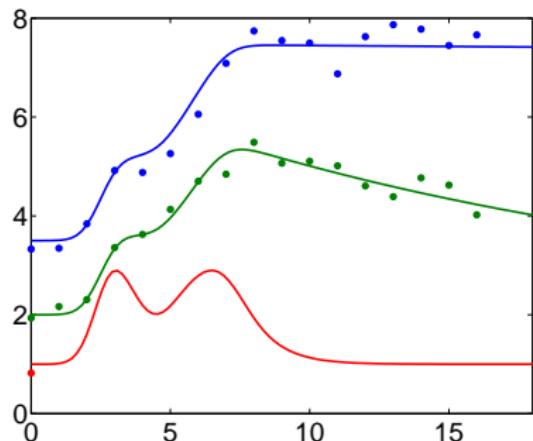
True “gene profiles” and noisy observations.



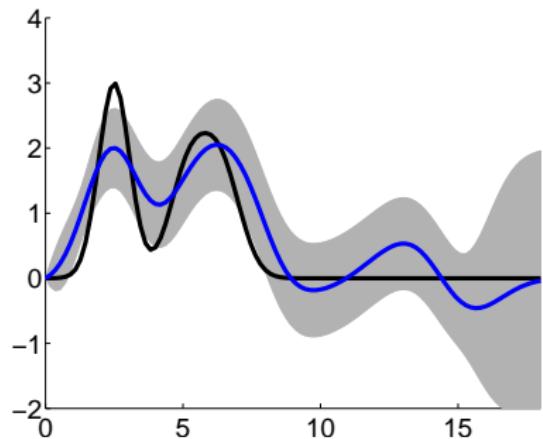
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



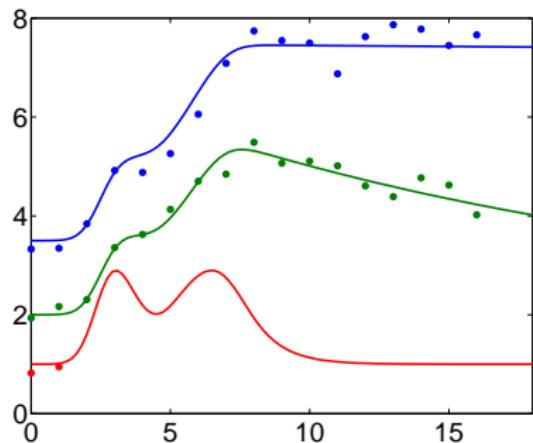
True “gene profiles” and noisy observations.



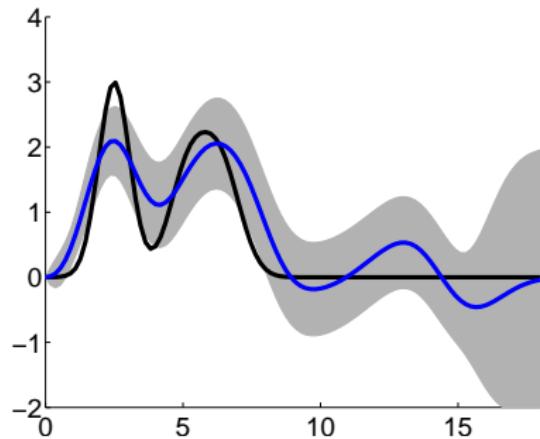
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



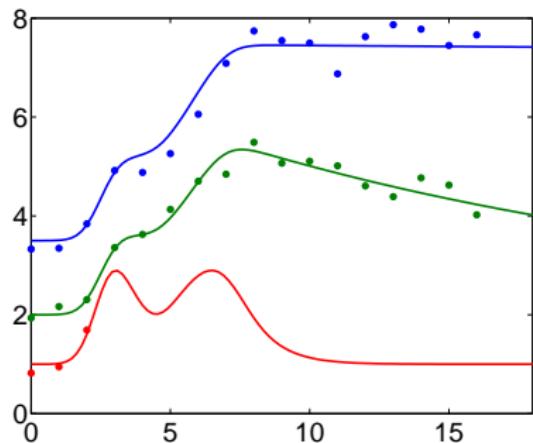
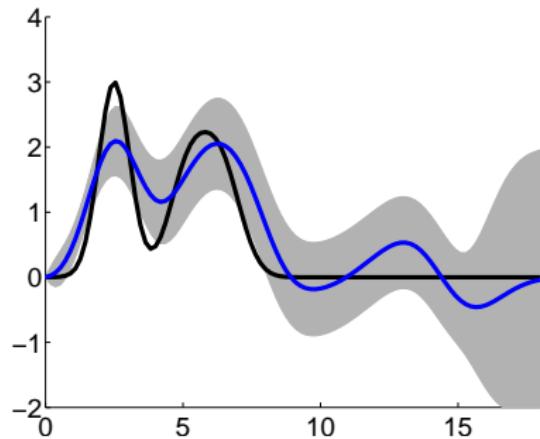
True “gene profiles” and noisy observations.



Inferred transcription factor activity.

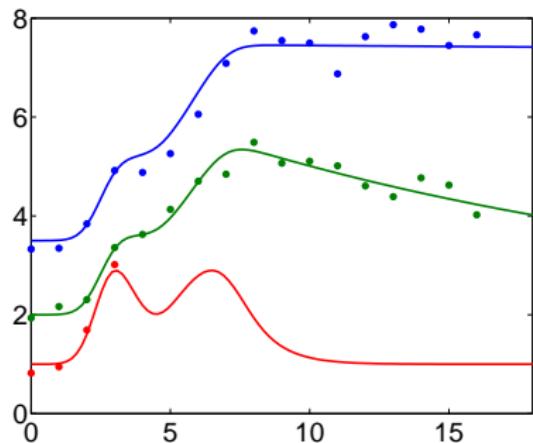
Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.

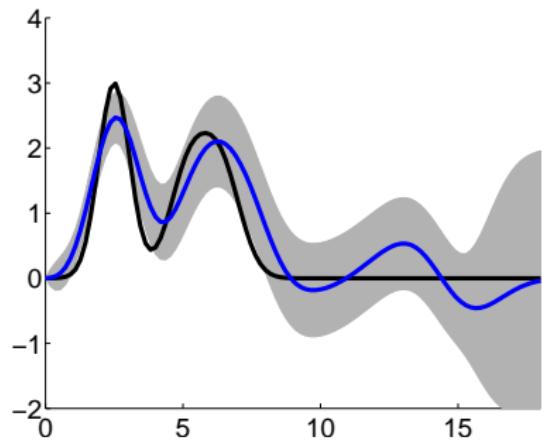


Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



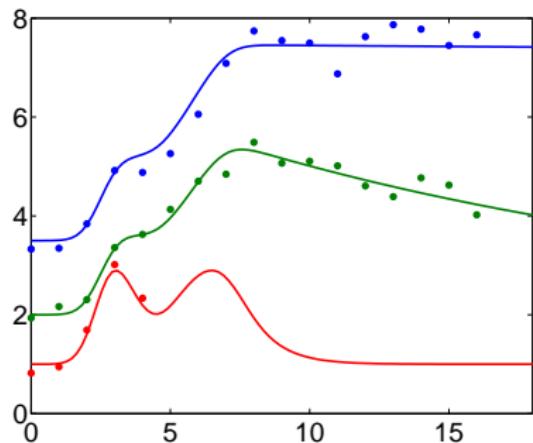
True “gene profiles” and noisy observations.



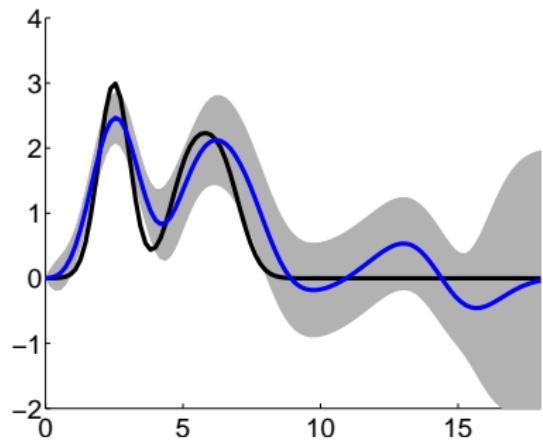
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



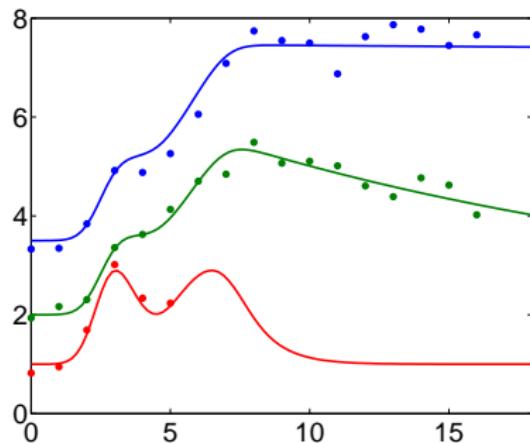
True “gene profiles” and noisy observations.



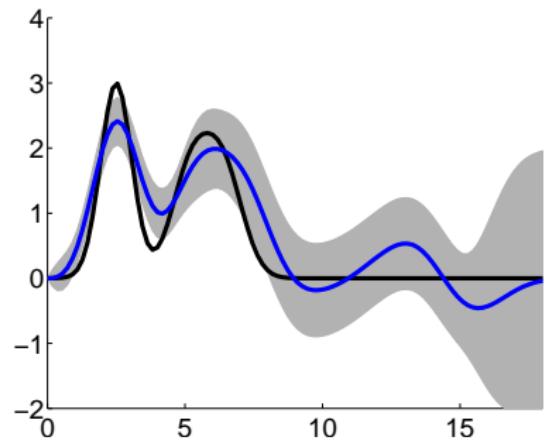
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



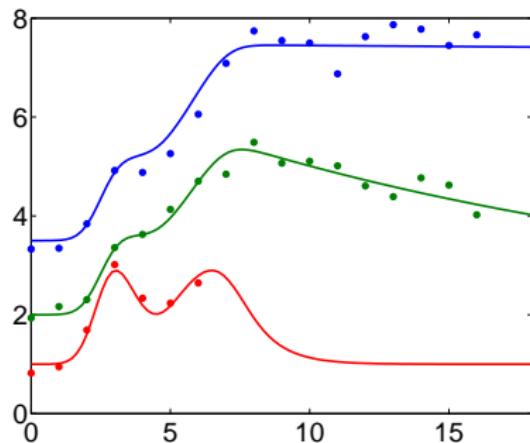
True “gene profiles” and noisy observations.



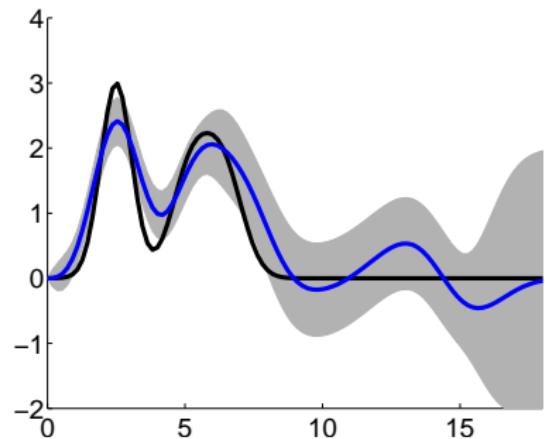
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



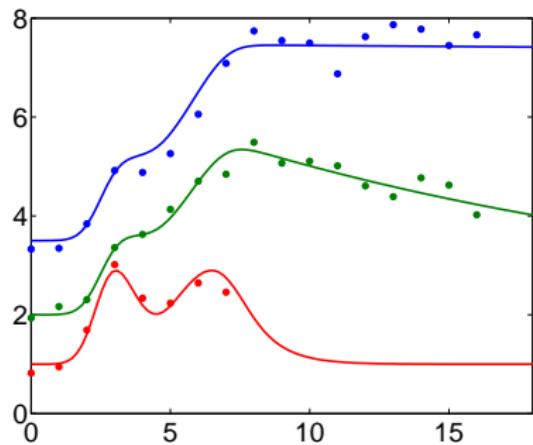
True “gene profiles” and noisy observations.



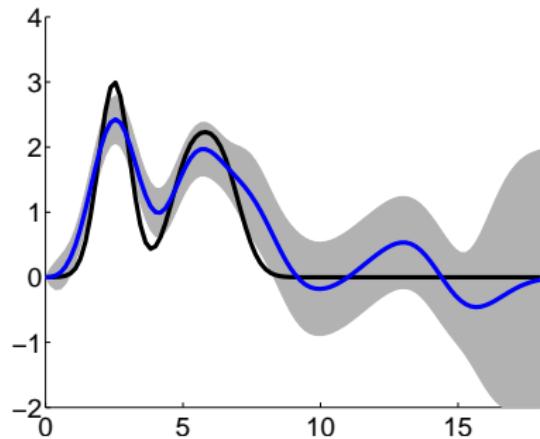
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



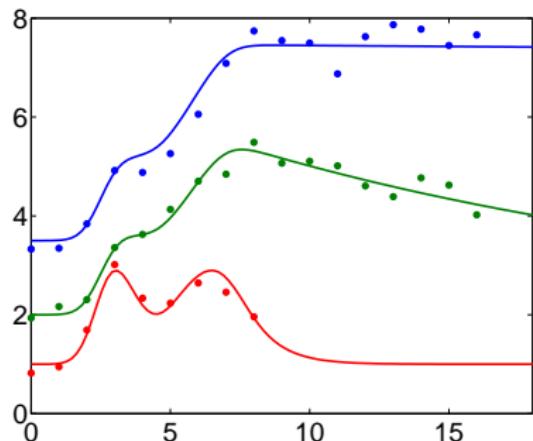
True “gene profiles” and noisy observations.



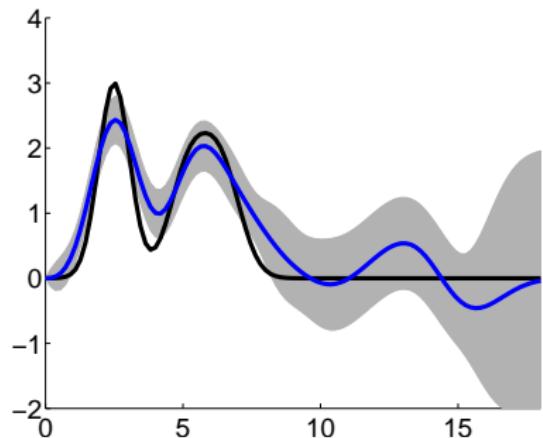
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



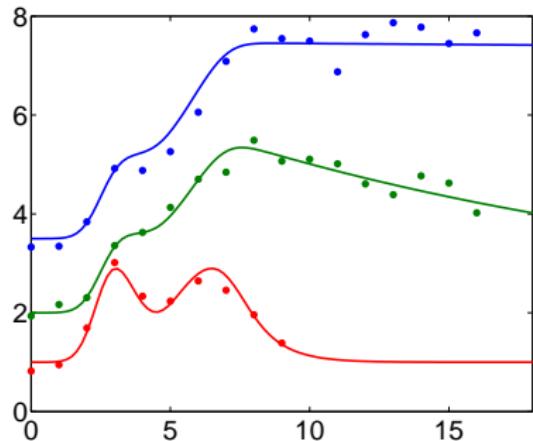
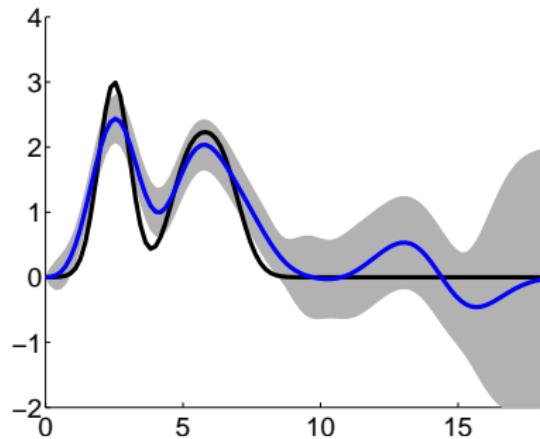
True “gene profiles” and noisy observations.



Inferred transcription factor activity.

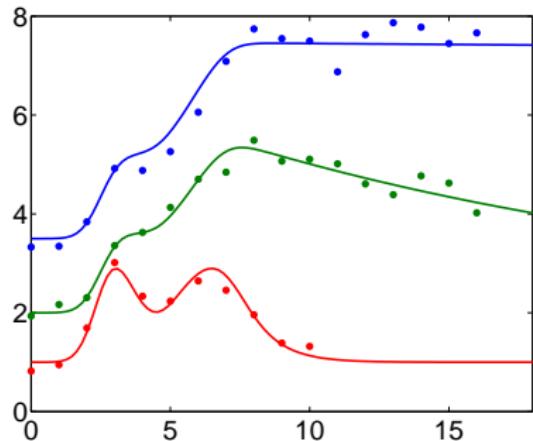
Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.

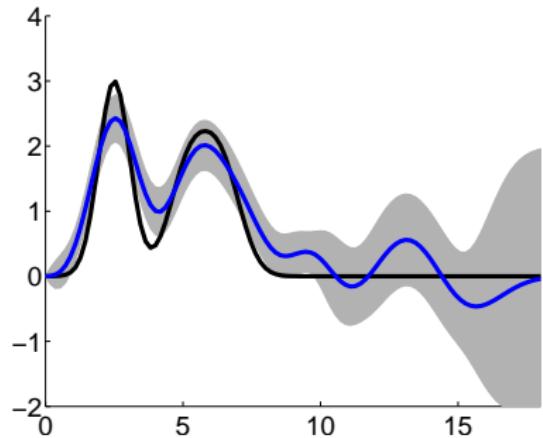


Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



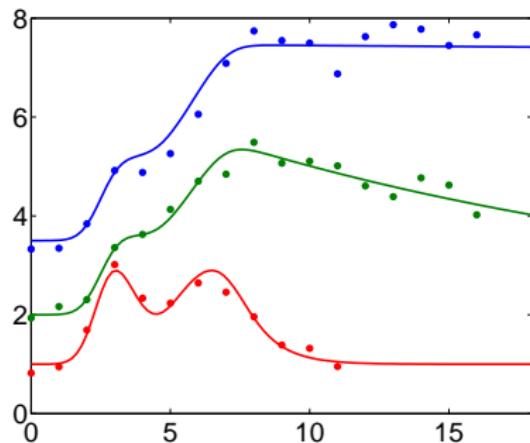
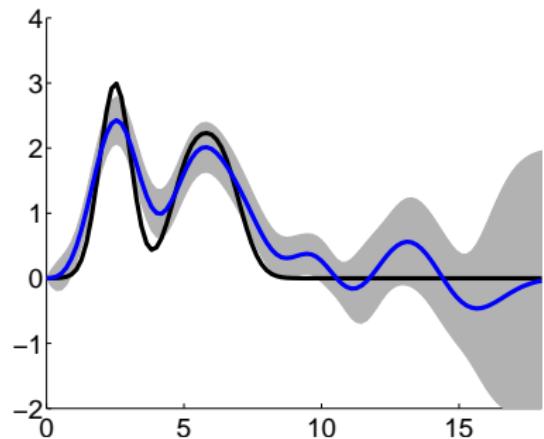
True “gene profiles” and noisy observations.



Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

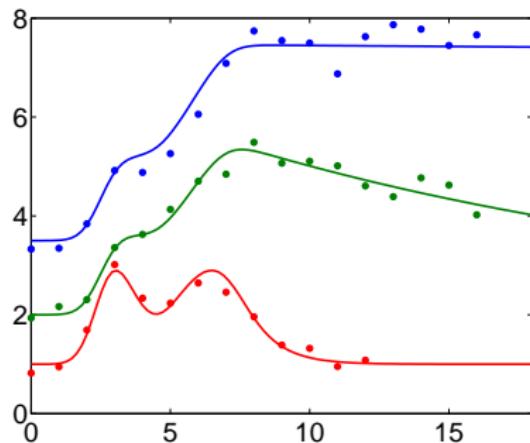
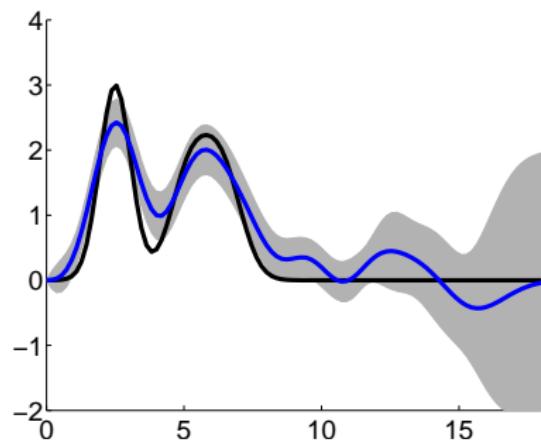
Inferring TF activity from artificially sampled genes.



Inferred transcription factor activity.

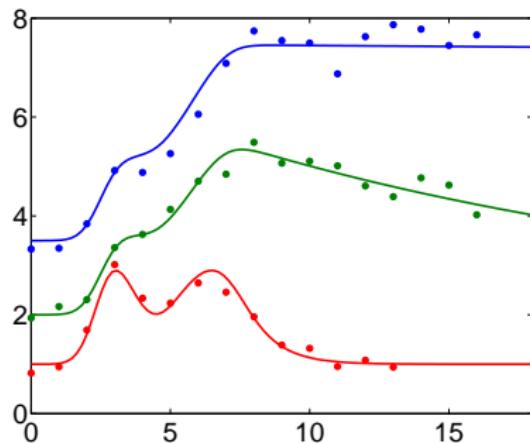
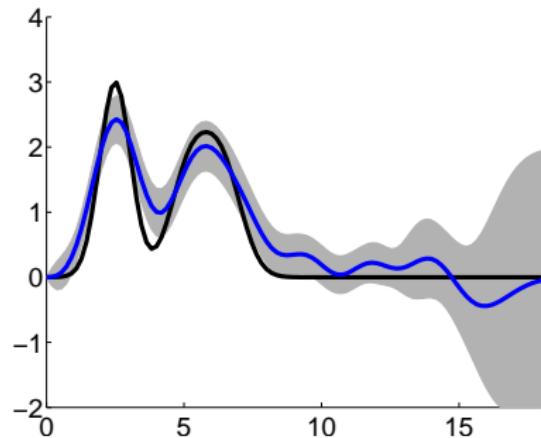
Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



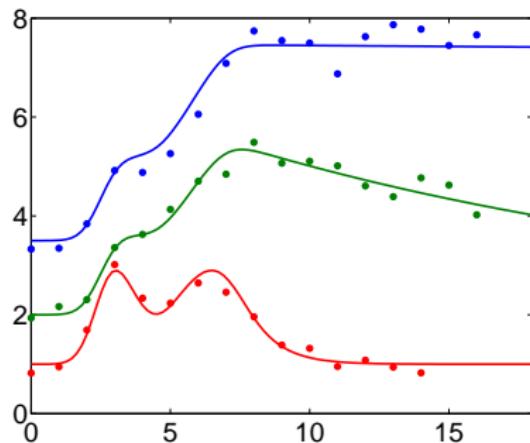
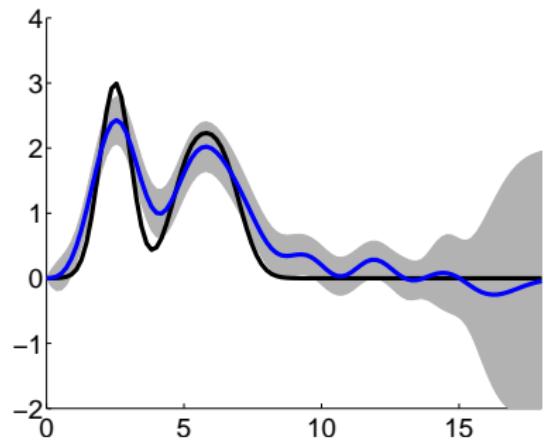
Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



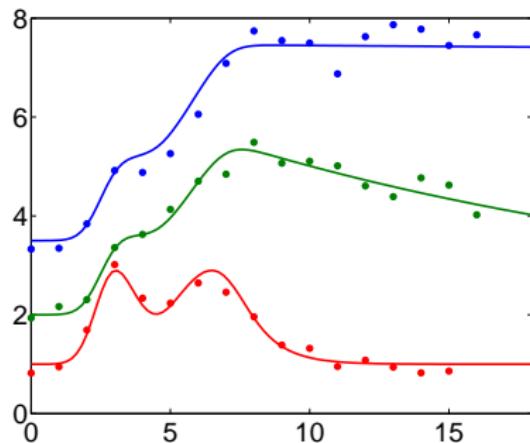
Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.

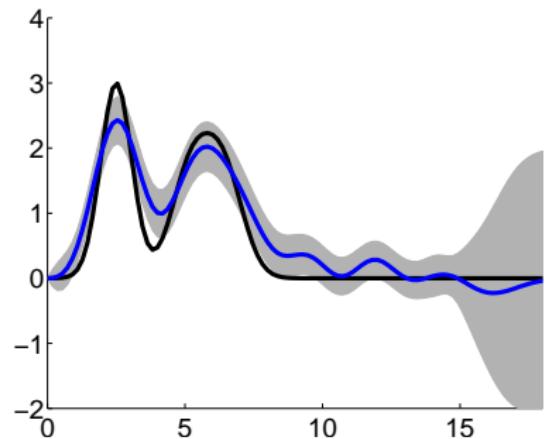


Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



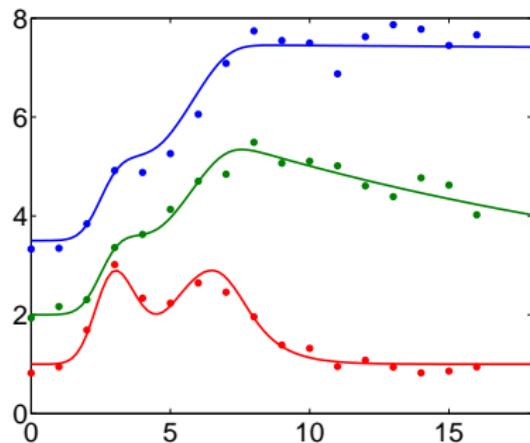
True “gene profiles” and noisy observations.



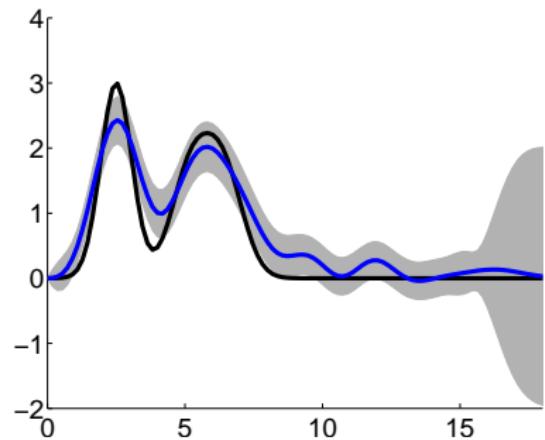
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



True “gene profiles” and noisy observations.



Inferred transcription factor activity.

Radiation Damage in the Cell

- ▶ Radiation can damage molecules including DNA.
- ▶ Most DNA damage is quickly repaired—single strand breaks, backbone break.
- ▶ Double strand breaks are more serious—a complete disconnect along the chromosome.
- ▶ Cell cycle stages:
 - ▶ G_1 : Cell is not dividing.
 - ▶ G_2 : Cell is preparing for mitosis, chromosomes have divided.
 - ▶ S: Cell is undergoing mitosis (DNA synthesis).
- ▶ Main problem is in G_1 . In G_2 there are two copies of the chromosome. In G_1 only one copy.

p53 “Guardian of the Cell”

- ▶ Responsible for Repairing DNA damage
- ▶ Activates DNA Repair proteins
- ▶ Pauses the Cell Cycle (prevents replication of damage DNA)
- ▶ Initiates *apoptosis* (cell death) in the case where damage can't be repaired.
- ▶ Large scale feedback loop with NF- κ B.

p53 DNA Damage Repair

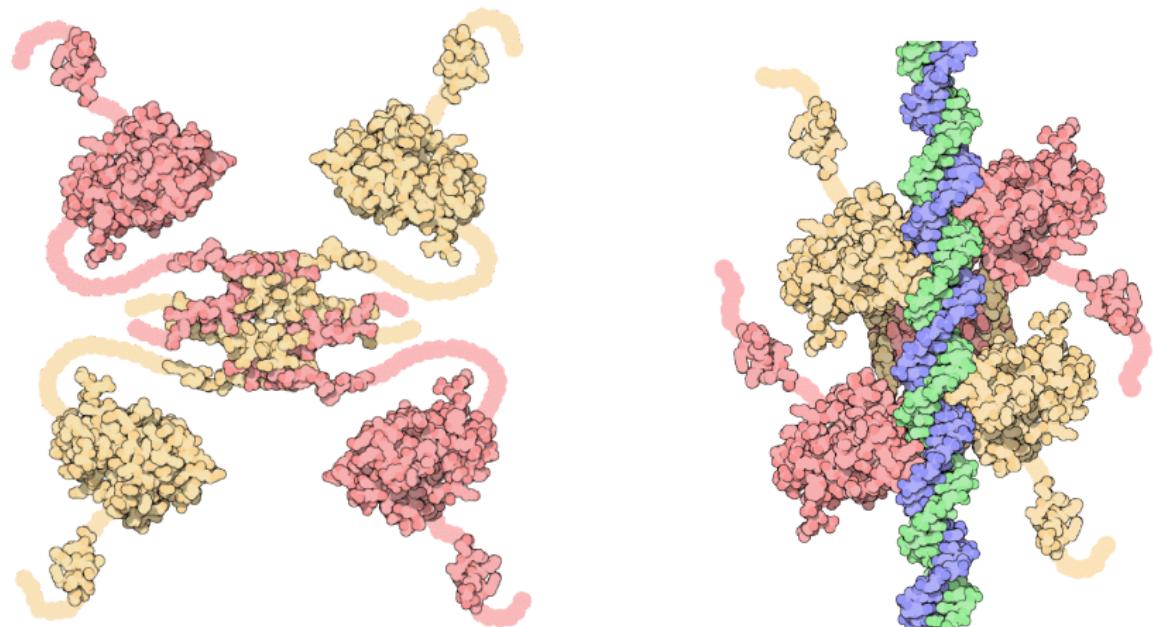


Figure: p53. *Left* unbound, *Right* bound to DNA. Images by David S. Goodsell from <http://www.rcsb.org/> (see the "Molecule of the Month" feature).

p53

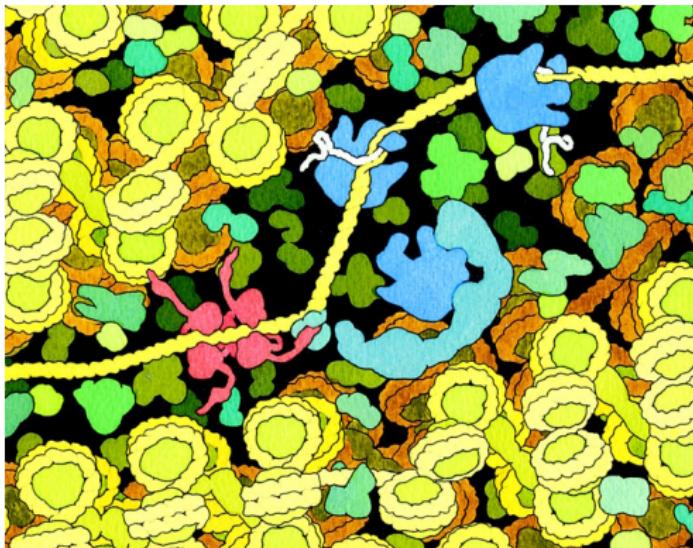


Figure: Repair of DNA damage by p53. Image from Goodsell (1999).

Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cyclin-dependent kinase inhibitor 1A (CDKN1A). A regulator of cell cycle progression. (also governed by SREBP-1a, Sp1, Sp3,...).

hPA26/SESN1 sestrin 1 Cell Cycle arrest.

BIK BCL2-interacting killer. Induces cell death (apoptosis)

TNFRSF10b tumor necrosis factor receptor superfamily, member 10b. A transducer of apoptosis signals.

Modelling Assumption

- ▶ Assume p53 affects targets as a single input module network motif (SIM).

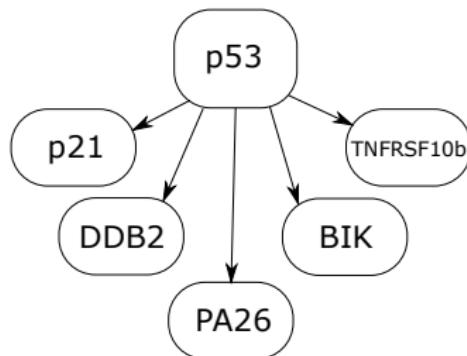


Figure: p53 SIM network motif as modelled by Barenco et al. 2006.

Ordinary Differential Equation Model

► First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- Proposed by Barenco et al. (2006).
- $x_j(t)$ – concentration of gene j 's mRNA
- $f(t)$ – concentration of active transcription factor
- Model parameters: baseline b_j , sensitivity s_j and decay d_j
- Application: identifying co-regulated genes (targets)
- Problem: how do we fit the model when $f(t)$ is not observed?

Ordinary Differential Equation Model

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- ▶ Proposed by Barenco et al. (2006).
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline b_j , sensitivity s_j and decay d_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Ordinary Differential Equation Model

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- ▶ Proposed by Barenco et al. (2006).
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline b_j , sensitivity s_j and decay d_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Ordinary Differential Equation Model

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- ▶ Proposed by Barenco et al. (2006).
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline b_j , sensitivity s_j and decay d_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Ordinary Differential Equation Model

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- ▶ Proposed by Barenco et al. (2006).
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline b_j , sensitivity s_j and decay d_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Ordinary Differential Equation Model

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- ▶ Proposed by Barenco et al. (2006).
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline b_j , sensitivity s_j and decay d_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Ordinary Differential Equation Model

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

- ▶ Proposed by Barenco et al. (2006).
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline b_j , sensitivity s_j and decay d_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities

Pei Gao¹, Antti Honkela², Magnus Rattray¹ and Neil D. Lawrence^{1,*}

¹School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL and

²Adaptive Informatics Research Centre, Helsinki University of Technology, PO Box 5400, FI-02015 TKK, Finland

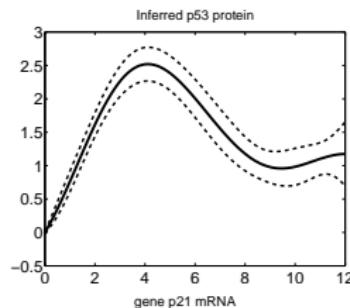
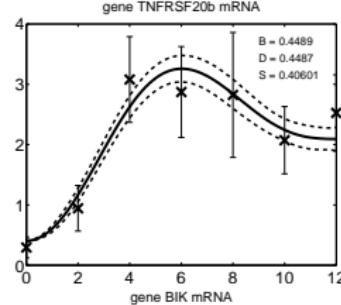
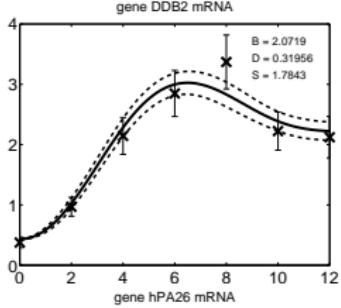
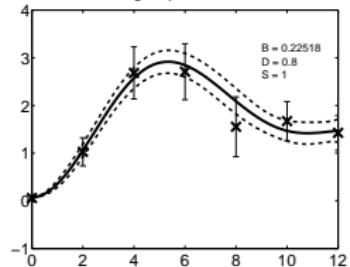
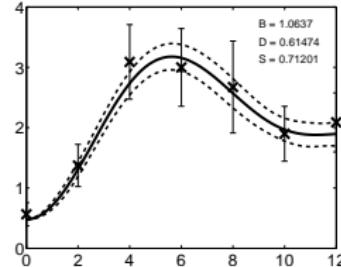
ABSTRACT

Motivation: Inference of *latent chemical species* in biochemical interaction networks is a key problem in estimation of the structure

A challenging problem for parameter estimation in ODE models occurs where one or more chemical species influencing the dynamics are controlled outside of the sub-system being modelled. For

p53 Results with GP

(Gao et al., 2008)



Model-based method for transcription factor target identification with limited data

Antti Honkela^{a,1}, Charles Girardot^b, E. Hilary Gustafson^b, Ya-Hsin Liu^b, Eileen E. M. Furlong^b, Neil D. Lawrence^{c,1}, and Magnus Rattray^{c,1}

^aDepartment of Information and Computer Science, Aalto University School of Science and Technology, Helsinki, Finland; ^bGenome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; and ^cSchool of Computer Science, University of Manchester, Manchester, United Kingdom

Edited by David Baker, University of Washington, Seattle, WA, and approved March 3, 2010 (received for review December 10, 2009)

We present a computational method for identifying potential targets of a transcription factor (TF) using wild-type gene expression time series data. For each putative target gene we fit a simple differential equation model of transcriptional regulation, and the

used for genome-wide scoring of putative target genes. A key requirement is to apply our method is wild-type time series collected over a period where TF activity is changing. Our method allows for complementary evidence from expression

Cascaded Differential Equations

(Honkela et al., 2010)

- ▶ Transcription factor protein also has governing mRNA.
- ▶ This mRNA can be measured.
- ▶ In signalling systems this measurement can be misleading because it is activated (phosphorylated) transcription factor that counts.
- ▶ In development phosphorylation plays less of a role.

Drosophila *Mesoderm* Development

Collaboration with Furlong Lab in EMBL Heidelberg.

- ▶ Mesoderm development in *Drosophila melanogaster* (fruit fly).
- ▶ Mesoderm forms in triploblastic animals (along with ectoderm and endoderm). Mesoderm develops into muscles, and circulatory system.
- ▶ The transcription factor Twist initiates *Drosophila* mesoderm development, resulting in the formation of heart, somatic muscle, and other cell types.
- ▶ Wildtype microarray experiments publicly available.
- ▶ Can we use the cascade model to predict viable targets of Twist?

Cascaded Differential Equations

(Honkela et al., 2010)

We take the production rate of active transcription factor to be given by

$$\frac{df(t)}{dt} = \sigma y(t) - \delta f(t)$$

$$\frac{dx_j(t)}{dt} = b_j + s_j f(t) - d_j x_j(t)$$

The solution for $f(t)$, setting transient terms to zero, is

$$f(t) = \sigma \exp(-\delta t) \int_0^t y(u) \exp(\delta u) du .$$

Covariance for Translation/Transcription Model

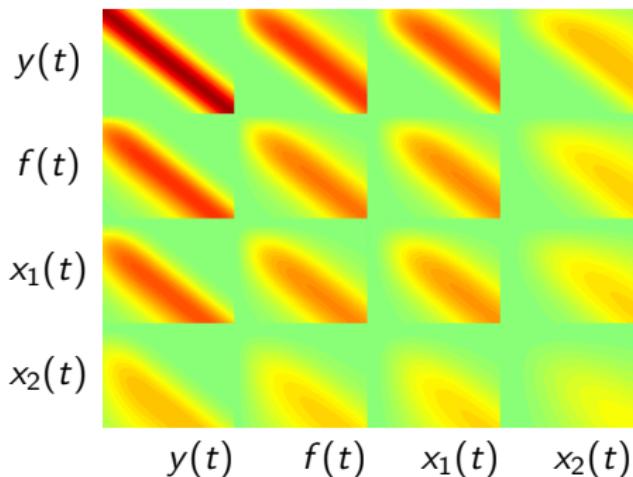
RBF covariance function for $y(t)$

$$f(t) = \sigma \exp(-\delta t) \int_0^t y(u) \exp(\delta u) du$$

$$x_i(t) = \frac{b_i}{d_i} + s_i \exp(-d_i t) \int_0^t f(u) \exp(d_i u) du.$$

- ▶ Joint distribution for $x_1(t)$, $x_2(t)$, $f(t)$ and $y(t)$.
- ▶ Here:

δ	d_1	s_1	d_2	s_2
1	5	5	0.5	0.5



Joint Sampling of $y(t)$, $f(t)$, and $x(t)$

- `disimSample`

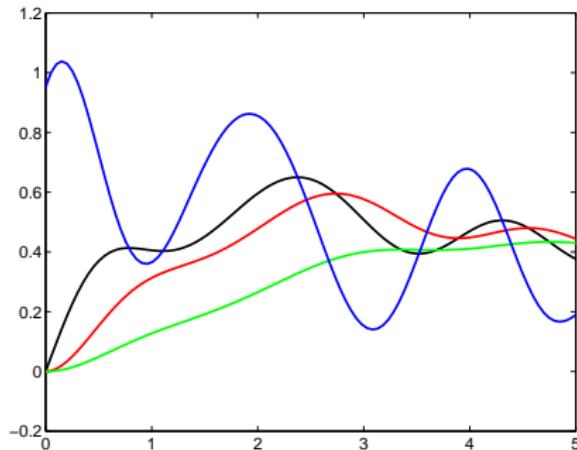


Figure: Joint samples from the ODE covariance, *blue*: $y(t)$ (mRNA of TF), *black*: $f(t)$ (TF concentration), *red*: $x_1(t)$ (high decay target) and *green*: $x_2(t)$ (low decay target)

Joint Sampling of $y(t)$, $f(t)$, and $x(t)$

► `disimSample`

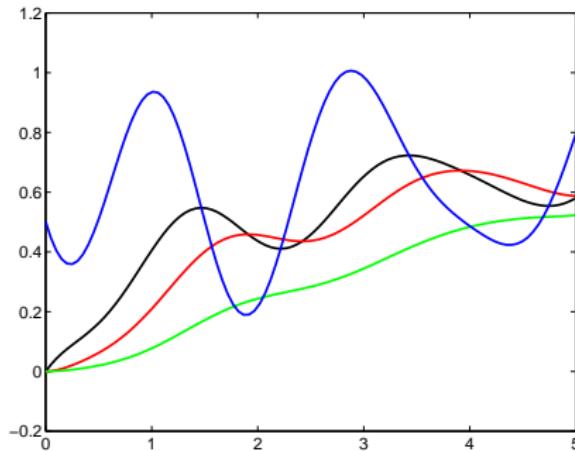


Figure: Joint samples from the ODE covariance, *blue*: $y(t)$ (mRNA of TF), *black*: $f(t)$ (TF concentration), *red*: $x_1(t)$ (high decay target) and *green*: $x_2(t)$ (low decay target)

Joint Sampling of $y(t)$, $f(t)$, and $x(t)$

- `disimSample`

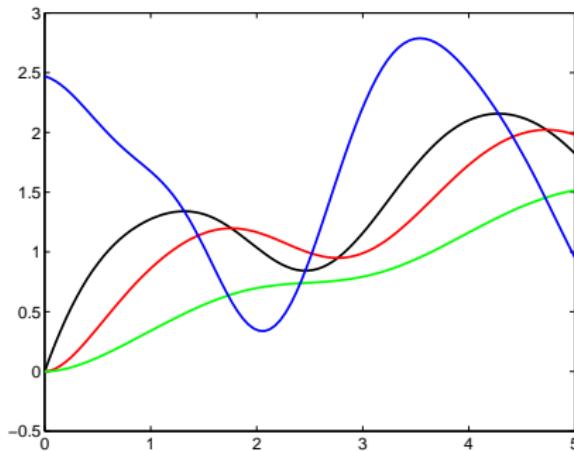


Figure: Joint samples from the ODE covariance, *blue*: $y(t)$ (mRNA of TF), *black*: $f(t)$ (TF concentration), *red*: $x_1(t)$ (high decay target) and *green*: $x_2(t)$ (low decay target)

Joint Sampling of $y(t)$, $f(t)$, and $x(t)$

- `disimSample`

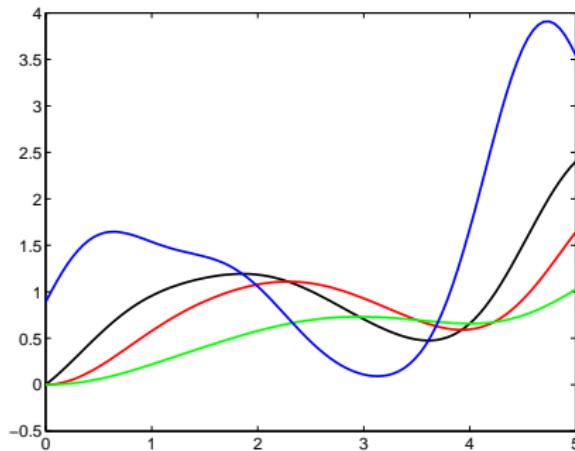


Figure: Joint samples from the ODE covariance, *blue*: $y(t)$ (mRNA of TF), *black*: $f(t)$ (TF concentration), *red*: $x_1(t)$ (high decay target) and *green*: $x_2(t)$ (low decay target)

Twist Results

- ▶ Use mRNA of Twist as driving input.
- ▶ For each gene build a cascade model that forces Twist to be the only TF.
- ▶ Compare fit of this model to a baseline (e.g. similar model but sensitivity zero).
- ▶ Rank according to the likelihood above the baseline.
- ▶ Compare with correlation, knockouts and time series network identification (TSNI) (Della Gatta et al., 2008).

Results for Twi using the Cascade model

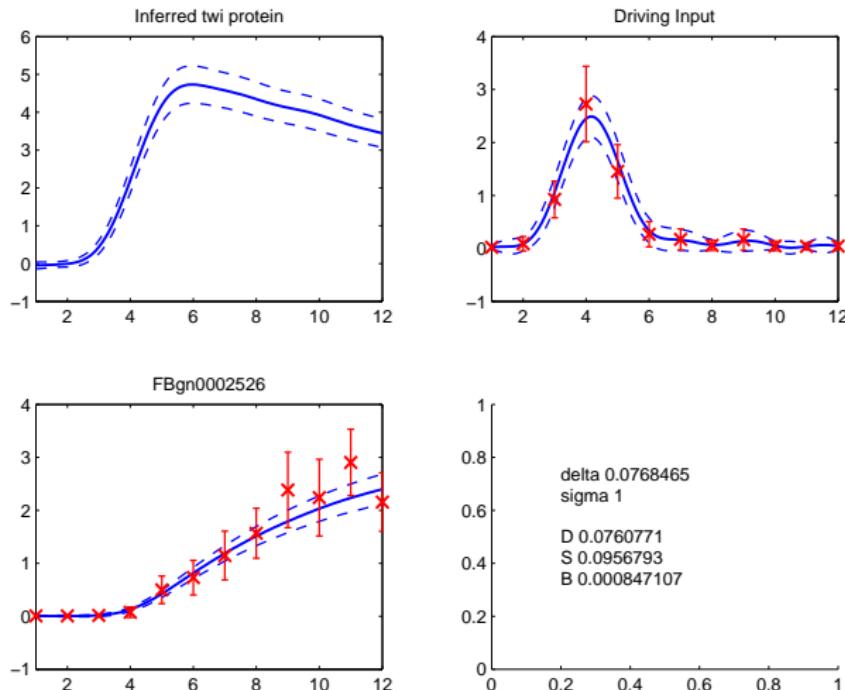


Figure: Model for flybase gene identity FBgn0002526.

Results for Twi using the Cascade model

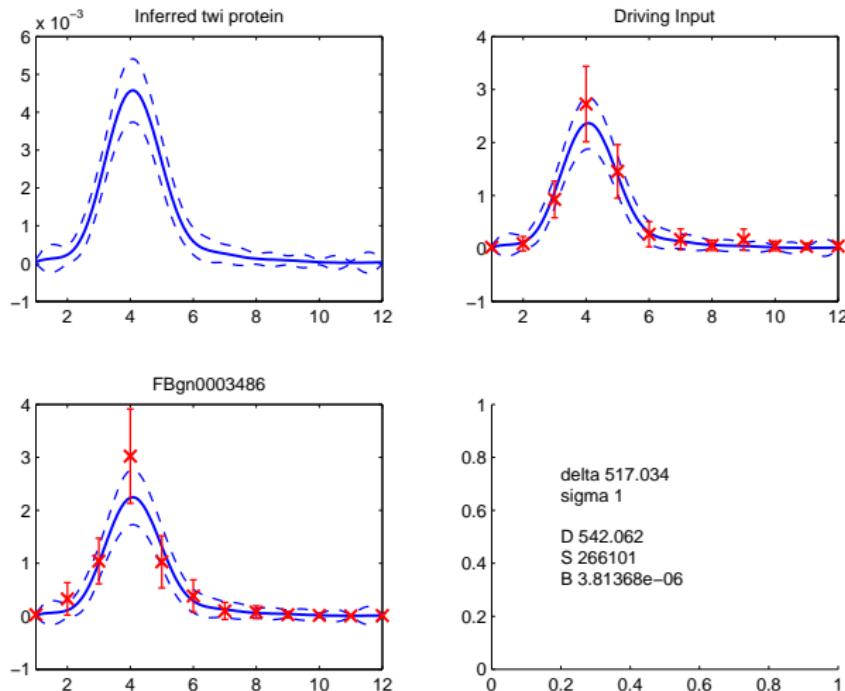


Figure: Model for flybase gene identity FBgn0003486.

Results for Twi using the Cascade model

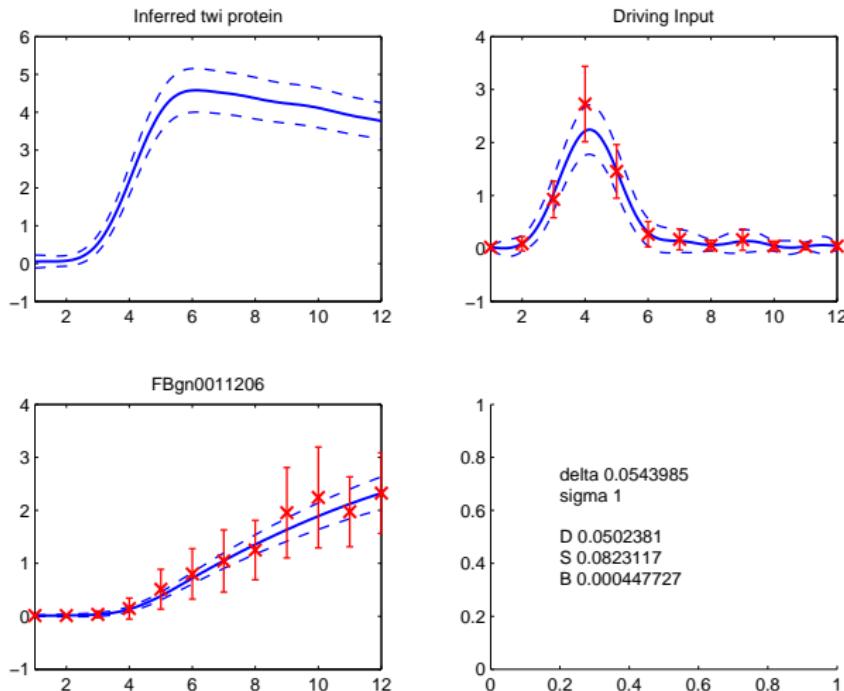


Figure: Model for flybase gene identity FBgn0011206.

Results for Twi using the Cascade model

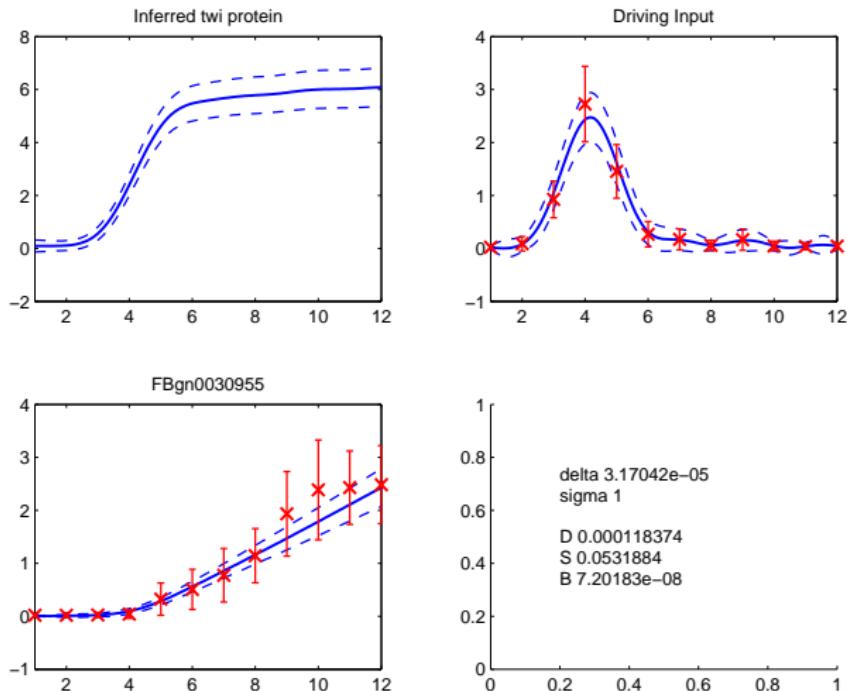


Figure: Model for flybase gene identity FBgn0030955.

Results for Twi using the Cascade model

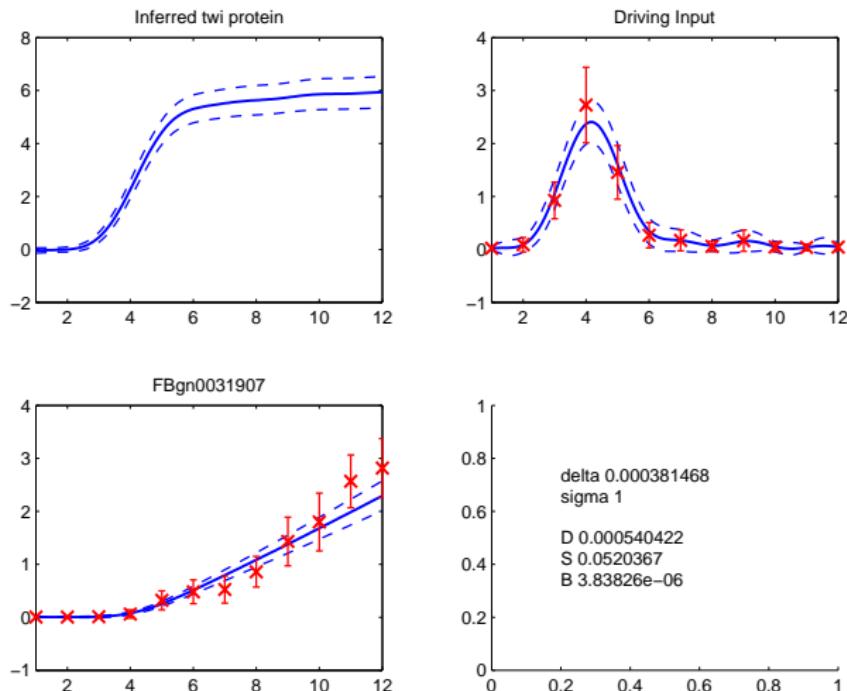


Figure: Model for flybase gene identity FBgn0031907.

Results for Twi using the Cascade model

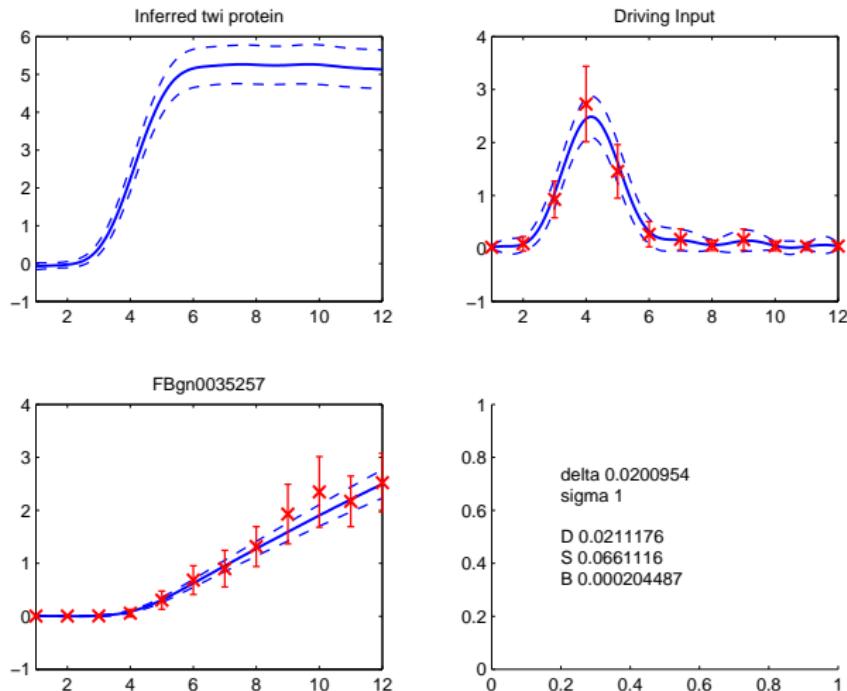


Figure: Model for flybase gene identity FBgn0035257.

Results for Twi using the Cascade model

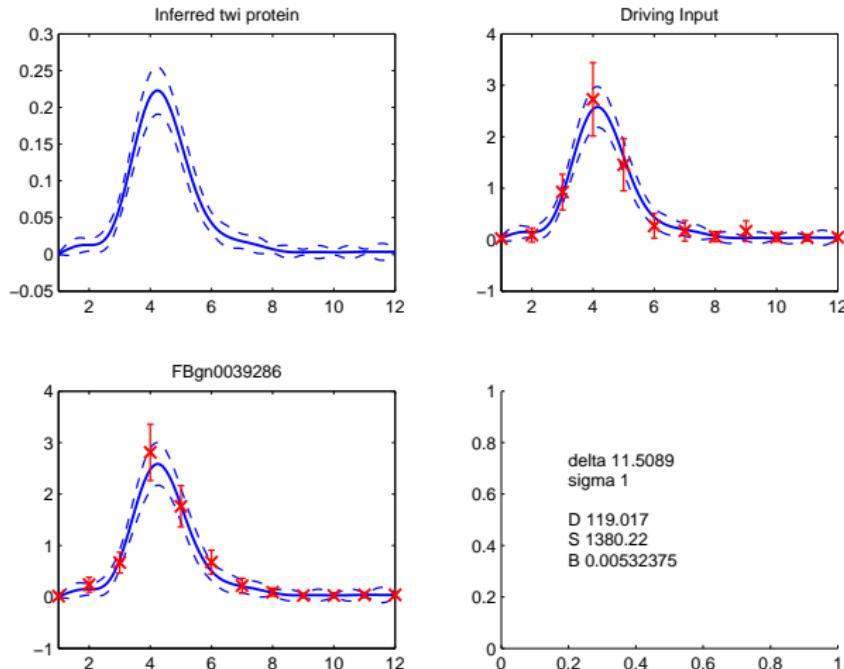
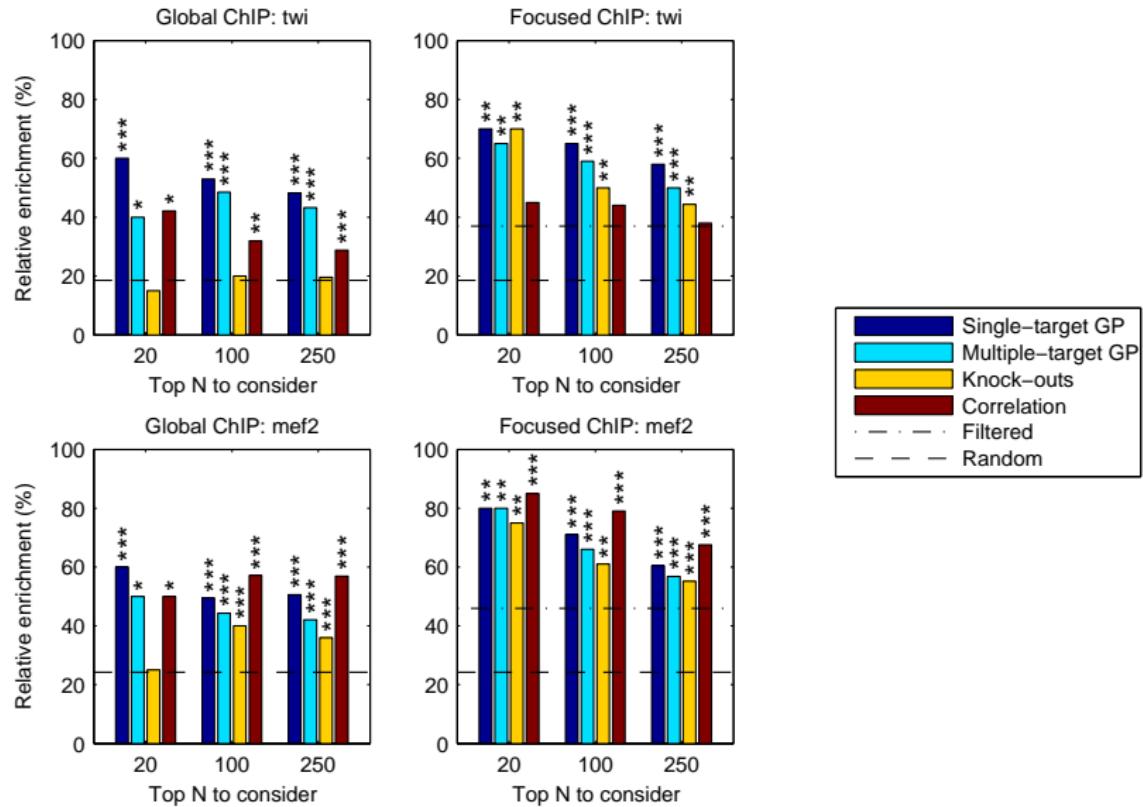


Figure: Model for flybase gene identity FBgn0039286.

Evaluation methods

- ▶ Evaluate the ranking methods by taking a number of top-ranked targets and record the number of "positives" (Zinzen et al., 2009):
 - ▶ targets with ChIP-chip binding sites within 2 kb of gene
 - ▶ (targets differentially expressed in TF knock-outs)
- ▶ Compare against
 - ▶ Ranking by correlation of expression profiles
 - ▶ Ranking by *q*-value of differential expression in knock-outs
- ▶ Optionally focus on genes with annotated expression in tissues of interest

Results



****: $p < 0.001$, **: $p < 0.01$, *: $p < 0.05$

Summary

- ▶ Cascade models allow genomewide analysis of potential targets given only expression data.
- ▶ Once a set of potential candidate targets have been identified, they can be modelled in a more complex manner.
- ▶ We don't have ground truth, but evidence indicates that the approach *can* perform as well as knockouts.

Outline

Dimensionality Reduction

GP-LVM

GP-LVM Extensions

Mechanistic Modeling

GPs and Differential Equations

Discussion and Future Work

- ▶ Integration of probabilistic inference with mechanistic models.
- ▶ Ongoing/other work:
 - ▶ Non linear response and non linear differential equations.
 - ▶ Scaling up to larger systems Álvarez et al. (2010); Álvarez and Lawrence (2009).
 - ▶ Discontinuities through Switched Gaussian Processes Álvarez et al. (2011)
 - ▶ Robotics applications.
 - ▶ Applications to other types of system, e.g. spatial systems.
 - ▶ Stochastic differential equations Álvarez et al. (2010).

Acknowledgements

Investigators Neil Lawrence and Magnus Rattray

Researchers Mauricio Álvarez, Pei Gao, Antti Honkela, David Luengo, Guido Sanguinetti, Michalis Titsias, and Jennifer Withers

p53 pathway Martino Barenco and Mike Hubank at UCL Institute of Child Health.

D. Melanogaster Charles Girardot and Eileen Furlong of EMBL in Heidelberg.

Lawrence/Ratray Funding BBSRC award "Improved Processing of microarray data using probabilistic models", EPSRC award "Gaussian Processes for Systems Identification with applications in Systems Biology", University of Manchester, Computer Science Studentship, and **Google Research Award**: "Mechanistically Inspired Convolution Processes for Learning".

Other funding David Luengo's visit to Manchester was financed by the Comunidad de Madrid (project PRO-MULTIDIS-CM, S-0505/TIC/0233), and by the Spanish government (CICYT project TEC2006-13514-C02-01 and research grant JC2008-00219).

Antti Honkela visits to Manchester funded by PASCAL I & II

References I

M. Álvarez and N. D. Lawrence. Sparse convolved Gaussian processes for multi-output regression. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, *Advances in Neural Information Processing Systems*, volume 21, pages 57–64, Cambridge, MA, 2009. MIT Press. [\[PDF\]](#).

M. Álvarez, D. Luengo, and N. D. Lawrence. Latent force models. In van Dyk and Welling (2009), pages 9–16. [\[PDF\]](#).

M. A. Álvarez, D. Luengo, M. K. Titsias, and N. D. Lawrence. Efficient multioutput Gaussian processes through variational inducing kernels. In Teh and Titterington (2010), pages 25–32. [\[PDF\]](#).

M. A. Álvarez, J. Peters, B. Schölkopf, and N. D. Lawrence. Switched latent force models for movement segmentation. In J. Shawe-Taylor, R. Zemel, C. Williams, and J. Lafferty, editors, *Advances in Neural Information Processing Systems*, volume 23, Cambridge, MA, 2011. MIT Press. To appear.

M. Barenco, D. Tomescu, D. Brewer, R. Callard, J. Stark, and M. Hubank. Ranked prediction of p53 targets using hidden variable dynamic modeling. *Genome Biology*, 7(3):R25, 2006.

C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: the Generative Topographic Mapping. *Neural Computation*, 10(1):215–234, 1998. [\[DOI\]](#).

G. Della Gatta, M. Bansal, A. Ambesi-Impiombato, D. Antonini, C. Missero, and D. di Bernardo. Direct targets of the trp63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. *Genome Research*, 18(6):939–948, Jun 2008. [\[URL\]](#). [\[DOI\]](#).

P. Gao, A. Honkela, M. Rattray, and N. D. Lawrence. Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities. *Bioinformatics*, 24:i70–i75, 2008. [\[PDF\]](#). [\[DOI\]](#).

D. S. Goodsell. The molecular perspective: p53 tumor suppressor. *The Oncologist*, Vol. 4, No. 2, 138-139, April 1999, 4(2):138–139, 1999.

K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovic. Style-based inverse kinematics. In *ACM Transactions on Graphics (SIGGRAPH 2004)*, pages 522–531, 2004.

A. Honkela, C. Girardot, E. H. Gustafson, Y.-H. Liu, E. E. M. Furlong, N. D. Lawrence, and M. Rattray. Model-based method for transcription factor target identification with limited data. *Proc. Natl. Acad. Sci. USA*, 107(17):7793–7798, Apr 2010. [\[DOI\]](#).

References II

J. B. Kruskal. Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. *Psychometrika*, 29(1):1–28, 1964. [\[DOI\]](#).

N. D. Lawrence. Gaussian process models for visualisation of high dimensional data. In S. Thrun, L. Saul, and B. Schölkopf, editors, *Advances in Neural Information Processing Systems*, volume 16, pages 329–336, Cambridge, MA, 2004. MIT Press.

N. D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. *Journal of Machine Learning Research*, 6:1783–1816, 11 2005.

N. D. Lawrence and J. Quiñonero Candela. Local distance preservation in the GP-LVM through back constraints. In W. Cohen and A. Moore, editors, *Proceedings of the International Conference in Machine Learning*, volume 23, pages 513–520. Omnipress, 2006. [\[Google Books\]](#) . [\[PDF\]](#).

D. Lowe and M. E. Tipping. Neuroscale: Novel topographic feature extraction with radial basis function networks. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, *Advances in Neural Information Processing Systems*, volume 9, pages 543–549, Cambridge, MA, 1997. MIT Press.

D. J. C. MacKay. Bayesian neural networks and density networks. *Nuclear Instruments and Methods in Physics Research*, A, 354(1):73–80, 1995. [\[DOI\]](#).

K. V. Mardia, J. T. Kent, and J. M. Bibby. *Multivariate analysis*. Academic Press, London, 1979. [\[Google Books\]](#) .

J. Quiñonero Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression. *Journal of Machine Learning Research*, 6:1939–1959, 2005.

S. T. Roweis. EM algorithms for PCA and SPCA. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, *Advances in Neural Information Processing Systems*, volume 10, pages 626–632, Cambridge, MA, 1998. MIT Press.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. *Science*, 290(5500):2323–2326, 2000. [\[DOI\]](#).

J. W. Sammon. A nonlinear mapping for data structure analysis. *IEEE Transactions on Computers*, C-18(5):401–409, 1969. [\[DOI\]](#).

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. *Neural Computation*, 10:1299–1319, 1998. [\[DOI\]](#).

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Weiss et al. (2006).

References III

Y. W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. In R. G. Cowell and Z. Ghahramani, editors, *Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics*, pages 333–340, Barbados, 6–8 January 2005. Society for Artificial Intelligence and Statistics.

Y. W. Teh and D. M. Titterington, editors. *Artificial Intelligence and Statistics*, volume 9, Chia Laguna Resort, Sardinia, Italy, 13–16 May 2010. JMLR W&CP 9.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. *Science*, 290(5500):2319–2323, 2000. [\[DOI\]](#).

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. *Journal of the Royal Statistical Society, B*, 6(3):611–622, 1999. [\[PDF\]](#). [\[DOI\]](#).

M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In van Dyk and Welling (2009), pages 567–574.

M. K. Titsias and N. D. Lawrence. Bayesian Gaussian process latent variable model. In Teh and Titterington (2010), pages 844–851. [\[PDF\]](#).

R. Urtasun, D. J. Fleet, and P. Fua. 3D people tracking with Gaussian process dynamical models. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, pages 238–245, New York, U.S.A., 17–22 Jun. 2006. IEEE Computer Society Press.

R. Urtasun, D. J. Fleet, A. Hertzmann, and P. Fua. Priors for people tracking from small training sets. In *IEEE International Conference on Computer Vision (ICCV)*, pages 403–410, Beijing, China, 17–21 Oct. 2005. IEEE Computer Society Press.

D. van Dyk and M. Welling, editors. *Artificial Intelligence and Statistics*, volume 5, Clearwater Beach, FL, 16–18 April 2009. JMLR W&CP 5.

J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynamical models. In Weiss et al. (2006).

Y. Weiss, B. Schölkopf, and J. C. Platt, editors. *Advances in Neural Information Processing Systems*, volume 18, Cambridge, MA, 2006. MIT Press.

R. P. Zinzen, C. Girardot, J. Gagneur, M. Braun, and E. E. M. Furlong. Combinatorial binding predicts spatio-temporal cis-regulatory activity. *Nature*, 462(7269):65–70, Nov 2009. [\[URL\]](#). [\[DOI\]](#).