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Motivation for Non-Linear Dimensionality Reduction
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MATLAB Demo

demDigitsManifold([1 2], ’all’)
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MATLAB Demo
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Low Dimensional Manifolds

Pure Rotation is too Simple
> In practice the data may undergo several distortions.
» e.g. digits undergo ‘thinning’, translation and rotation.
» For data with ‘structure’:

» we expect fewer distortions than dimensions;
» we therefore expect the data to live on a lower dimensional
manifold.

» Conclusion: deal with high dimensional data by looking for
lower dimensional non-linear embedding.



Existing ds

Spectral Approaches
» Classical Multidimensional Scaling (MDS) (Mardia et al., 1979).
» Uses eigenvectors of similarity matrix.

> Isomap (Tenenbaum et al., 2000) is MDS with a particular
proximity measure.

» Kernel PCA (Schélkopf et al., 1998)

> Provides a representation and a mapping — dimensional
expansion.

> Mapping is implied throught he use of a kernel function as a
similarity matrix.

> Locally Linear Embedding (Roweis and Saul, 2000).

> Looks to preserve locally linear relationships in a low
dimensional space.



Existing Methods Il

Iterative Methods
» Multidimensional Scaling (MDS)

» lterative optimisation of a stress function (Kruskal, 1964).
» Sammon Mappings (Sammon, 1969).

» Strictly speaking not a mapping — similar to iterative MDS.
» NeuroScale (Lowe and Tipping, 1997)

» Augmentation of iterative MDS methods with a mapping.
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Probabilistic Approaches
» Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)

> A linear method.
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Existing Methods Il

Probabilistic Approaches
» Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)
> A linear method.
> Density Networks (MacKay, 1995)
» Use importance sampling and a multi-layer perceptron.
» Generative Topographic Mapping (GTM) (Bishop et al., 1998)
» Uses a grid based sample and an RBF network.
Difficulty for Probabilistic Approaches

> Propagate a probability distribution through a non-linear
mapping.



The New Model

A Probabilistic Non-linear PCA
» PCA has a probabilistic interpretation (Tipping and Bishop, 1999).
> It is difficult to ‘non-linearise’.

Dual Probabilistic PCA

» We present a new probabilistic interpretation of PCA (Lawrence,
2005).

» This interpretation can be made non-linear.

» The result is non-linear probabilistic PCA.



Notation

g— dimension of latent/embedded space
p— dimension of data space
n— number of data points

centred data, Y = [y1,;, ... ,y,,y;]T =[y.1,...,¥.p] € R"*P
latent variables, X = [x1 ., ... ,x,,’:]T =[x.1,...,%.q] € R™I
mapping matrix, W € RP*9

a; . is a vector from the ith row of a given matrix A
a.j is a vector from the jth row of a given matrix A



Reading Notation

X and Y are design matrices

» Covariance given by n=1YTY.

» Inner product matrix given by YY T



Linear Dimensionality Reduction

Linear Latent Variable Model

> Represent data, Y, with a lower dimensional set of latent
variables X.

» Assume a linear relationship of the form
Yi. = Wxi,: + ni,:,

where

i, NN(O,Uzl) .
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Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and data.

p(YIX,W) =[N (vi:|Wxi,., o)
i=1
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Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and data.

» Standard Latent variable

approach: .,
P(Y|X,W) = HN (Yi,:|WXi,:,02|)

» Define Gaussian prior
i=1

over latent space, X.

p(X) =[N (xi.]0.1)
i=1



Linear Latent Variable Model

Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and data.

» Standard Latent variable

n
approach: p(YIX, W) = TN (yi:[Wx; ., o1)
i=1
» Define Gaussian prior
over latent space, X. z
P p(X) =TTV (xi.10,1)
> Integrate out /atent paley
variables.

p(YIW) = [TA (yi:10, WWT +0?1)
i=1



Linear Latent Variable Model Il

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YIW) =TT (y::0, WW ™ + o21)
i=1



Linear Latent Variable Model Il

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YIW) =][N(y:.10.C), C=ww'+52
i=1

1
log p(Y|W) = —g log |C| — Etr (C_IYTY) + const.

If U, are first g principal eigenvectors of n1YTY and the
corresponding eigenvalues are Ag,

W =U,LR", L= (Aq— 02|)%

where R is an arbitrary rotation matrix.
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Dual Probabilistic PCA
» Define linear-Gaussian
relationship between
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Linear Latent Variable Model |

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and data.

> Novel Latent variable n
approach: p(YIX,W) = TN (yi:|Wx; ., o1)
i=1
» Define Gaussian prior
over parameters, W.
> Integrate out

parameters.

)
p(W) =[N (wi.[0,1)

i=1

P
p(YIX) =]V (y:,j|0, xxT + 0'2I)

Jj=1



Linear Latent Variable Model 1V

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

P
p(YX) = [T (1.)10,XXT + 021
j=1
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Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)
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1
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Linear Latent Variable Model 1V

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

n
p(YIW) =T[N (vi:l0,C), C=ww' +52
i=1

1
log p (Y|W) = 7% log |C| — Etr (C_lYTY) + const.

If Uq are first g principal eigenvectors of n~1YTY and the corresponding eigenvalues
are Ag,

W=UGLR", L= (Aq— Uzl)%

where R is an arbitrary rotation matrix.



Equivalence of Formulations

The Eigenvalue Problems are equivalent
» Solution for Probabilistic PCA (solves for the mapping)

Y'YU,=U,A, W=U,LR"

» Solution for Dual Probabilistic PCA (solves for the latent
positions)
YYTU,=U,A;, X=U,LR'

» Equivalence is from
_1
U, =Y U,A, 2



Non-Linear Latent Variable Model

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and data.
> Novel Latent variable p(YIX,W) = TN (y::|Wxi,., 1)
approach: i=1
» Define Gaussian prior p
over parameteters, W. p(W) = HN (wi,:[0,1)
» Integrate out -

P
parameters. p(Y|X) = HN— (y;,jIO, xxT + azl)
j=1



Non-Linear Latent Variable Model

Dual Probabilistic PCA

> Inspection of the marginal
likelihood shows ...

P
p(YIX) =]V (y:,j|0, xxT + 0'2I)

Jj=1



Non-Linear Latent Variable Model

Dual Probabilistic PCA

> Inspection of the marginal
likelihood shows ...

» The covariance matrix
is a covariance
function.

p
p(YIX) =N (v.510,K)

=1

K =XXT + o2l



Non-Linear Latent Variable Model

Dual Probabilistic PCA

> Inspection of the marginal
likelihood shows ...

» The covariance matrix
is a covariance

function. P
» We recognise it as the p(YIX) = HN(Y:,jlo’ K)
‘linear kernel’. !
K=XXT + 52l

This is a product of Gaussian processes

with linear kernels.



Non-Linear Latent Variable Model

Dual Probabilistic PCA

> Inspection of the marginal
likelihood shows ...

» The covariance matrix
is a covariance

function. P
» We recognise it as the p(YIX) = HN(y;,,—IO, K)
‘linear kernel'. =
» We call this the K =2
Gaussian Process
Latent Variable model Replace linear kernel with non-linear

(GP—LVM). kernel for non-linear model.



Non-linear Latent Variable Models

RBF Kernel
» The RBF kernel has the form k; j = k (x;.,X;.), where

T
Xiyp — Xj,: Xi: — Xj:
k(xj.,xj.) = aexp (—( : S5 )262( ; S, )) .

» No longer possible to optimise wrt X via an eigenvalue
problem.

» Instead find gradients with respect to X, a, ¢ and o and
optimise using conjugate gradients.



Applications

Style Based Inverse Kinematics

» Facilitating animation through modeling human motion with
the GP-LVM (Grochow et al., 2004)

Tracking

» Tracking using models of human motion learnt with the
GP-LVM (urtasun et al., 2005, 2006)



Generalization with less Data than Dimensions

» Powerful uncertainly handling of GPs leads to suprising
properties.

> Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

> Example: Modelling a stick man in 102 dimensions with 55
data points!



Stick Man I

demStickl

Figure: The latent space for the stick man motion capture data.
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Dual Probabilistic PCA
» Define linear-Gaussian
relationship between
latent variables and data.
» Novel Latent variable
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Linear Latent Variable Model |

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and data.

> Novel Latent variable n
approach: p(YIX,W) = TN (yi:|Wx; ., o1)
i=1
» Define Gaussian prior
over parameters, W.
> Integrate out

parameters.

)
p(W) =[N (wi.[0,1)

i=1

P
p(YIX) =]V (y:,j|0, xxT + 0'2I)

Jj=1
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Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)
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Gaussian Process (GP)

Prior for Functions

» Probability Distribution over Functions

>

>

Functions are infinite dimensional.
Prior distribution over instantiations of the function: finite
dimensional objects.

» Can prove by induction that GP is ‘consistent’.

» Mean and Covariance Functions

>

Instead of mean and covariance matrix, GP is defined by mean
function and covariance function.

» Mean function often taken to be zero or constant.
» Covariance function must be positive definite.
» Class of valid covariance functions is the same as the class of

Mercer kernels.



Gaussian Processes |l

Zero mean Gaussian Process

> A (zero mean) Gaussian process likelihood is of the form

p(y|X) = N(y|0,K),

where K is the covariance function or kernel.

» The linear kernel with noise has the form
K=XX"+%l

» Priors over non-linear functions are also possible.

» To see what functions look like, we can sample from the prior
process.



Covariance Samples

demCovFuncSample
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Figure: linear kernel, K = XX T



Covariance Samples

demCovFuncSample

Figure: RBF kernel with v =10, a =1



Covariance Samples
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demCovFuncSample
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RBF kernel with ¢ = 0.3, «

Figure:



Covariance Samples

demCovFuncSample

Figure:  MLP kernel with a = 8, w = 100 and b = 100



Covariance Samples
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Figure:  MLP kernel with « =8, b=10 and w = 100



Covariance Samples

demCovFuncSample
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Figure: bias kernel with =1 and



Covariance Samples

demCovFuncSample

Figure: summed combination of: RBF kernel, a = 1, £ = 0.3; bias
kernel, o =1; and white noise kernel, 5 = 100



Gaussian Process Regression

Posterior Distribution over Functions
» Gaussian processes are often used for regression.
> We are given a known inputs X and targets Y.

> We assume a prior distribution over functions by selecting a
kernel.

v

Combine the prior with data to get a posterior distribution
over functions.



Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

demRegression

-3

Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

demRegression

-3

Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

demRegression

-3

Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

demRegression

-3

Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

demRegression

-3

Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

demRegression

-3

Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

demRegression

-3

Figure: Examples include WiFi localization, C14 callibration curve.



Non-Linear Latent Variable Model

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and data.
> Novel Latent variable p(YIX,W) = TN (y::|Wxi,., 1)
approach: i=1
» Define Gaussian prior p
over parameteters, W. p(W) = HN (wi,:[0,1)
» Integrate out -

P
parameters. p(Y|X) = HN— (y;,jIO, xxT + azl)
j=1



Non-Linear Latent Variable Model

Dual Probabilistic PCA

> Inspection of the marginal
likelihood shows ...
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Jj=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

> Inspection of the marginal
likelihood shows ...

» The covariance matrix
is a covariance

function. P
» We recognise it as the p(YIX) = HN(y;,,—IO, K)
‘linear kernel'. =
» We call this the K =2
Gaussian Process
Latent Variable model Replace linear kernel with non-linear

(GP—LVM). kernel for non-linear model.



Non-linear Latent Variable Models

RBF Kernel
» The RBF kernel has the form k; j = k (x;.,X;.), where

T
Xiyp — Xj,: Xi: — Xj:
k(xj.,xj.) = aexp (—( : S5 )262( ; S, )) .

» No longer possible to optimise wrt X via an eigenvalue
problem.

» Instead find gradients with respect to X, a, ¢ and o and
optimise using conjugate gradients.



Applications

Style Based Inverse Kinematics

» Facilitating animation through modeling human motion with
the GP-LVM (Grochow et al., 2004)

Tracking

» Tracking using models of human motion learnt with the
GP-LVM (urtasun et al., 2005, 2006)



Generalization with less Data than Dimensions

» Powerful uncertainly handling of GPs leads to suprising
properties.

> Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

> Example: Modelling a stick man in 102 dimensions with 55
data points!



Stick Man I

demStickl

Figure: The latent space for the stick man motion capture data.
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Figure: The latent space for the stick man motion capture data.



GP-LVM Extensions



Back Constraints |

Local Distance Preservation (Lawrence and Quifionero Candela, 2006)
» Most dimensional reduction techniques preserve local
distances.
» The GP-LVM does not.
> GP-LVM maps smoothly from latent to data space.

» Points close in latent space are close in data space.
» This does not imply points close in data space are close in
latent space.

» Kernel PCA maps smoothly from data to latent space.

> Points close in data space are close in latent space.
» This does not imply points close in latent space are close in
data space.



Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)
» Mapping from 1-D latent space to 2-D data space.

yi= x? - 0.5, Yo = —x?>+05
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» Mapping from 1-D latent space to 2-D data space.
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Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)
» Mapping from 1-D latent space to 2-D data space.

y=x2-05 y»=-x>+05

Ko
Ko



Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)
» Mapping from 2-D data space to 1-D latent.

x=05(yf +y5 +1)
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Backward Mapping (demBackMapping in oxford toolbox)
» Mapping from 2-D data space to 1-D latent.

x=05(yf +y5 +1)




Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)
» Mapping from 2-D data space to 1-D latent.

x=05(y2+y3+1)
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NeuroScale

Multi-Dimensional Scaling with a Mapping

» Lowe and Tipping (1997) made latent positions a function of
the data.

Xij = 1 (¥i;; W)
» Function was either multi-layer perceptron or a radial basis
function network.
» Their motivation was different from ours:

» They wanted to add the advantages of a true mapping to
multi-dimensional scaling.



Back Constraints in the GP-LVM

Back Constraints

» We can use the same idea to force the GP-LVM to respect
local distances.(Lawrence and Quifionero Candela, 2006)
» By constraining each x; to be a ‘smooth’ mapping from y;
local distances can be respected.
» This works because in the GP-LVM we maximise wrt latent
variables, we don't integrate out.
» Can use any ‘smooth’ function:

1. Neural network.
2. RBF Network.
3. Kernel based mapping.



Optimising BC-GPLVM

Computing Gradients
» GP-LVM normally proceeds by optimising

L(X) = log p(Y|X)

with respect to X using 3—)’2.
» The back constraints are of the form

xij = fi (¥i:: B)

where B are parameters.

» We can compute j—é via chain rule and optimise parameters of
mapping.



Motion Capture Results

demStickl and demStick3

Figure: The latent space for the motion capture data with (right) and
without (left) back constraints.



Motion Capture Results

demStickl and demStick3

-06 -04 -02 0

Figure: The latent space for the motion capture data with (right) and
without (/eft) back constraints.



Stick Man Results

demStickResults

_ - - -

CA |

(a) (b) (c) (d)

Projection into data space from four points in the latent space. The
inclination of the runner changes becoming more upright.



Adding Dynamics

MAP Solutions for Dynamics Models
» Data often has a temporal ordering.
» Markov-based dynamics are often used.
» For the GP-LVM

» Marginalising such dynamics is intractable.
» But: MAP solutions are trivial to implement.

» Many choices: Kalman filter, Markov chains etc..

» Wang et al. (2006) suggest using a Gaussian Process.



Gaussian Process Dynamics

GP-LVM with Dynamics

> Autoregressive Gaussian process mapping in latent space
between time points.
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Gaussian Process Dynamics

GP-LVM with Dynamics

» Autoregressive Gaussian process mapping in latent space
between time points.
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Motion Capture Results

demStickl and demStick?2

Figure: The latent space for the motion capture data without dynamics
(left), with auto-regressive dynamics (right) based on an RBF kernel.



Motion Capture Results

demStickl and demStick?2

-1 -05 0 05 1 -4 -2 0 2 4

Figure: The latent space for the motion capture data without dynamics
(left), with auto-regressive dynamics (right) based on an RBF kernel.



Regressive Dynamics

Inner Groove Distortion
> Autoregressive unimodal
dynamics, p (x¢|x¢—1) -
» Forces spiral visualisation.

» Poorer model due to inner
groove distortion.



Regressive Dynamics

Direct use of Time Variable

> Instead of auto-regressive dynamics, consider regressive
dynamics.

» Take t as an input, use a prior p (X|t).
» User a Gaussian process prior for p (X]t).
> Also allows us to consider variable sample rate data.



Motion Capture Results

demStickl, demStick2 and demStick5

Figure: The latent space for the motion capture data without dynamics
(eft), with auto-regressive dynamics (middle) and with regressive
dynamics (right) based on an RBF kernel.



Motion Capture Results

demStickl, demStick2 and demStickb

-1 ~05 0 05 1 -4 -2 0 2 4 ~0.05 o 0.05

Figure: The latent space for the motion capture data without dynamics
(left), with auto-regressive dynamics (middle) and with regressive
dynamics (right) based on an RBF kernel.



Hierarchical GP-LVM

Stacking Gaussian Processes
> Regressive dynamics provides a simple hierarchy.
» The input space of the GP is governed by another GP.
» By stacking GPs we can consider more complex hierarchies.
> |deally we should marginalise latent spaces

> In practice we seek MAP solutions.
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Within Subject Hierarchy

Decomposition of Body
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Figure: Decomposition of a subject.



Single Subject Run/Walk
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Bayesian GP-LVM

» GP-LVM optimizes latent variables and integrates out
parameters.

» Full Bayesian approach would also integrate latent variables.

» Cannot do analytically, but Michalis Titsias (Titsias and
Lawrence, 2010) developed a clever trick to do it variationally.



Bayesian Gaussian process latent variables model

» Latent variable model:

y=w(x)+e

» Bayesian training: Integrate out both the
latent mapping and the latent space
» Exact Bayesian inference is intractable

» But variational Bayesian inference is
tractable



Bayesian Gaussian process latent variables model

Automatic selection of the latent dimensionality

» Squared exponential ARD kernel

19
k(x,x') = 0% exp (—5 Z ai(xi — x,{)z)
i=1

> Maximizing the variational lower bound w.r.t. a;s allows to
remove redundant latent dimensions



Experiments: Visualization

> Qil flow data: 1000 training; 12 dimensions; 3 known classes
» Compare:

» Bayesian GP-LVM
» Standard sparse GP-LVM
» Probabilistic PCA



Experiments: Visualization

Qil flow data

Tt 2 a 4 5 6 7 8 9 10

(cegs) (Bayesian GP-LVM)

v

Bayesian GP-LVM runs with 10 latent dimensions

The red, green and blue points are the predicted means for
the latent variables labeled with the known class

7 out 10 latent dimensions are shrunk to zero
Visualization is shown for the dominant (with the largest
inverse lengthscales) latent dimensions

v

v

v



Experiments: Visualization

Qil flow data

-2 1 0 1 2

E) E B

(PPCA)

-2 -1 0 1 2

(Bayesian GP-LVM) (GP-LVM)

GP-LVM and Bayesian GP-LVM are both initialized based on PCA



» GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.

» Works Effectively as a Probabilistic Model in High
Dimensional Spaces.

» Back constraints can be introduced to force local distance
preservation.

» Dynamics can be introduced for modelling data with a
temporal structure.



Mechanistic Modeling



Styles of Machine Learning

Background: interpolation is easy, extrapolation is hard

» Urs Holzle keynote talk at NIPS 2005.
» Emphasis on massive data sets.
> Let the data do the work—more data, less extrapolation.
> Alternative paradigm:
» Very scarce data: computational biology, human motion.
» How to generalize from scarce data?

> Need to include more assumptions about the data (e.g.
invariances).



General Approach

Broadly Speaking: Two approaches to modeling
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Weakly Mechanistic vs Strongly Mechanistic

> Underlying data modeling techniques there are weakly
mechanistic principles (e.g. smoothness).

> In physics the models are typically strongly mechanistic.
> In principle we expect a range of models which vary in the
strength of their mechanistic assumptions.

» This work is one part of that spectrum: add further
mechanistic ideas to weakly mechanistic models.



Dimensionality Reduction

» Linear relationship between the data, X € R"*P, and a
reduced dimensional representation, F € 79, where g < p.

X =FW +¢,

e~N(0,X)

> Integrate out F, optimize with respect to W.
» For Gaussian prior, F ~ N (0,1)
» and ¥ = ol we have probabilistic PCA (Tipping and Bishop,

1999; Roweis, 1998).
» and ¥ constrained to be diagonal, we have factor analysis.



Dimensionality Reduction: Temporal Data

» Deal with temporal data with a temporal latent prior.

» Independent Gauss-Markov priors over each f;(t) leads to :
Rauch-Tung-Striebel (RTS) smoother (Kalman filter).

» More generally consider a Gaussian process (GP) prior,

q
p(F’t) = HN (f%i’Ov Kf;,i,f:,i) :

i=1

» Given the covariance functions for {f;(t)} we have an implied
covariance function across all {x;(t)}—(ML: semi-parametric
latent factor model (Teh et al., 2005), Geostatistics: linear
model of coregionalization).

» Rauch-Tung-Striebel smoother has been preferred

» linear computational complexity in n.

» Advances in sparse approximations have made the general GP
framework practical. (Titsias, 2009; Snelson and Ghahramani,
2006; Quifionero Candela and Rasmussen, 2005).



GPs and Differential Equations



Mechanical Analogy

Back to Mechanistic Models!

> These models rely on the latent variables to provide the
dynamic information.

» We now introduce a further dynamical system with a
mechanistic inspiration.

» Physical Interpretation:

» the latent functions, f;(t) are g forces.

» We observe the displacement of p springs to the forces.,

» Interpret system as the force balance equation, XD = FS + €.
» Forces act, e.g. through levers — a matrix of sensitivities,

S € RI*P.

Diagonal matrix of spring constants, D € RP*P.

» Original System: W = SD!.

v



Extend Model

v

Add a damper and give the system mass.

FS = XM + XC + XD + .

v

Now have a second order mechanical system.

It will exhibit inertia and resonance.

v

v

There are many systems that can also be represented by
differential equations.

» When being forced by latent function(s), {fi(t)}7_,, we call
this a latent force model.



Physical Analogy
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Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

» For Gaussian process we can compute the covariance matrices
for the output displacements.

» For one displacement the model is

q

myXe(t) + cexi(t) + dixi(t) = br + Z sikfi(t), (1)
i=0

where, my is the kth diagonal element from M and similarly
for ¢, and dk. sj is the i, kth element of S.

» Model the latent forces as g independent, GPs with
exponentiated quadratic covariances

(t—t)?
keh(t,t) = exp (_2—&2 Oil-



Covariance for ODE Model

» Exponentiated Quadratic Covariance function for f (t)

- t .
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» Joint distribution
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Covariance for ODE Model

> Analogy

X = Ze,—-rf,' f,' NN(O,Z,‘) S x~N <0,Ze,~TZ;e;>

\

» Joint distribution
for x1 (t), x2 (1),
x3 (t) and f (t).
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Covariance for ODE Model
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Joint Sampling of x (t) and f (t)

» 1lfmSample

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x; (t) (overdamped), and blue: x3 (t)
(critically damped).
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» 1lfmSample
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Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x; (t) (overdamped), and blue: x3 (t)
(critically damped).



Covariance for ODE

» Exponentiated Quadratic Covariance function for f (t)
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009)

» Motion capture data: used for animating human motion.
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» Motion capture data: used for animating human motion.
» Multivariate time series of angles representing joint positions.

» Objective: generalize from training data to realistic motions.



Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009)

» Motion capture data: used for animating human motion.

v

Multivariate time series of angles representing joint positions.

v

Objective: generalize from training data to realistic motions.

v

Use 2nd Order Latent Force Model with mass/spring/damper
(resistor inductor capacitor) at each joint.



Prediction of Test Motion

> Model left arm only.

» 3 balancing motions (18, 19, 20) from subject 49.

> 18 and 19 are similar, 20 contains more dramatic movements.
> Train on 18 and 19 and testing on 20

» Data was down-sampled by 32 (from 120 fps).

» Reconstruct motion of left arm for 20 given other movements.

» Compare with GP that predicts left arm angles given other
body angles.



Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all apart
from the radius's angle.

Latent Force | Regression

Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14
Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09




Mocap Results Il

1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9

(a) Inferred Latent Force (b) Wrist (c) Hand X Rotation

l

° 1 2 3 4 5 6 7 8 © 1 2 3 4 5 6 7 8 9 © 1 2 3 4 5 6 7 8 9

(d) Hand Z Rotation (e) Thumb X Rotation  (f) Thumb Z Rotation

Figure: Predictions from LFM (solid line, grey error bars) and direct
regression (crosses with stick error bars).
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Example: Transcriptional Regulation

» First Order Differential Equation
dx; (t)
S = b5 ()= dg ()

» Can be used as a model of gene transcription: Barenco et al.,
2006; Gao et al., 2008.

» x;j(t) — concentration of gene j's mMRNA

» f(t) — concentration of active transcription factor

» Model parameters: baseline bj, sensitivity s; and decay d;

» Application: identifying co-regulated genes (targets)

» Problem: how do we fit the model when f(t) is not observed?



Covariance for Transcription Model

RBF covariance function for f (t)
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Covariance for Transcription Model

RBF covariance function for f (t)
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Covariance for Transcription Model

RBF covariance function for f (t)
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Joint Sampling of f (t) and x (t)

> simSample

0.8

0.6

0.4

0.2

0

-0.2
0

1 2 3 4 5

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (high decay/sensitivity), green: x; (t) (medium
decay/sensitivity) and blue: x3 (t) (low decay/sensitivity).
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Radiation Damage in the Cell

» Radiation can damages molecules including DNA.

» Most DNA damage is quickly repaired—single strand breaks,
backbone break.

» Double strand breaks are more serious—a complete disconnect
along the chromosome.

> Cell cycle stages:

» Gy: Cell is not dividing.
» Gy: Cell is preparing for meitosis, chromosomes have divided.
» S: Cell is undergoing meitosis (DNA synthesis).

» Main problem is in G1. In Gy there are two copies of the
chromosome. In G; only one copy.



p53 “Guardian of the Cell”

v

Responsible for Repairing DNA damage

v

Activates DNA Repair proteins

v

Pauses the Cell Cycle (prevents replication of damage DNA)

v

Initiates apoptosis (cell death) in the case where damage can't
be repaired.

v

Large scale feeback loop with NF-xB.



p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the'Molecule of the Month”
feature).


http://www.rcsb.org/

Figure: Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also governed by
SREBP-1a, Spl, Sp3,... ).
hPA26/SESNI sestrin 1 Cell Cycle arrest.
BIK BCL2-interacting killer. Induces cell death
(apoptosis)
TNFRSF10b tumor necrosis factor receptor superfamily, member
10b. A transducer of apoptosis signals.



Modelling Assumption

> Assume pb3 affects targets as a single input module network
motif (SIM).

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.



Ordinary Differential Equation Model

» First Order Differential Equation

dx; (1)

5 by f ()~ dpg (1)
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» First Order Differential Equation

dx; (1)

5 by f ()~ dpg (1)

» Proposed by Barenco et al. (2006).



Ordinary Differential Equation Model

» First Order Differential Equation

dx; (t)
S = by () = o (1)
» Proposed by Barenco et al. (2006).

» x;j(t) — concentration of gene j's mRNA



Ordinary Differential Equation Model

» First Order Differential Equation
dx; (t)
—5 = b s (6) —dix (1)
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Ordinary Differential Equation Model

» First Order Differential Equation
dx; (t
% = bj + sif (t) — dx; (1)

v

Proposed by Barenco et al. (2006).

xj(t) — concentration of gene j's mMRNA

v

v

f(t) — concentration of active transcription factor

v

Model parameters: baseline b;, sensitivity s; and decay d;

v

Application: identifying co-regulated genes (targets)

v

Problem: how do we fit the model when f(t) is not observed?



p53 Results with GP

Vol. 24 ECCB 2008, pages i70~i75
doi:10.1093/bioinformatics/btn278

Gaussian process modelling of latent chemical species:
applications to inferring transcription factor activities

Pei Gao', Antti Honkela?, Magnus Rattray' and Neil D. Lawrence™*

1School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL and
2Adaptive Informatics Research Centre, Helsinki University of Technology, PO Box 5400, FI-02015 TKK, Finland

ABSTRACT A challenging problem for p imation in ODE models
Motivation: Inference of latent chemical species in biochemical ~ occurs where one or more ical species i ing the dy
interaction networks is a key problem in estimation of the structure are controlled outside of the sub-system being modelled. For




p53 Results with GP

(Gao et al., 2008)

Inferred p53 protein gene TNFRSF20b mRNA gene DDB2 mMRNA

o 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
gene BIK mRNA gene hPA26 mRNA

B8=022518
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We present a computational method for identifying potential tar-  used for genome-wide scoring of putative target gen
gets of a transcription factor (TF) using wild-type gene expression  is required to apply our method is wild-type time seri
time series data. For each putative target gene we fit a simple dif-  lected over a period where TF activity is changing. Ou
ferential equation model of transcriptional regulation, and the allows for complementary evidence from expression




Cascaded Differential Equations

(Honkela et al., 2010)

v

Transcription factor protein also has governing mRNA.
This mRNA can be measured.
In signalling systems this measurement can be misleading

because it is activated (phosphorylated) transcription factor
that counts.

v

v

v

In development phosphorylation plays less of a role.



Drosophila Mesoderm Development

Collaboration with Furlong Lab in EMBL Heidelberg.
» Mesoderm development in Drosophila melanogaster (fruit fly).

» Mesoderm forms in triplobastic animals (along with ectoderm
and endoderm). Mesoderm develops into muscles, and
circulatory system.

» The transcription factor Twist initiates Drosophila mesoderm
development, resulting in the formation of heart, somatic
muscle, and other cell types.

» Wildtype microarray experiments publicly available.

» Can we use the cascade model to predict viable targets of
Twist?



Cascaded Differential Equations

(Honkela et al., 2010)

We take the production rate of active transcription factor to be

given by
dfdsf) oy (t) - 0F (1)
Pl _ st () - dg ()

The solution for f(t), setting transient terms to zero, is

f(t) = oexp(—dt) /oty(u) exp (0u)du .



Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f(t) = oexp(—dt) /Ot y(u)exp (du)du

. t
xi(t) =2 +s,-exp(—d,-t)/0 F (u) exp (djur) du.

» Joint distribution y(8) \ \ .

for x1 (t), x2 (),

f () and y (1) 0 Mg Ny N

» Here:

(5[ [s] b | = | Xl(t)\ \ \

1|5 5105 |05
Is[slosios]

y(t) (1) x(t)  x(t)



Joint Sampling of y (t), f (t), and x (t)
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t) (high decay
target) and green: x; (t) (low decay target)
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> disimSample
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t) (high decay
target) and green: x; (t) (low decay target)



Twist Results

> Use mRNA of Twist as driving input.

» For each gene build a cascade model that forces Twist to be
the only TF.

» Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

» Rank according to the likelihood above the baseline.

» Compare with correlation, knockouts and time series network
identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0002526.



Results for Twi using the Cascade model

x107° Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0003486.



Results for Twi using the Cascade model

Inferred twi protein
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Figure: Model for flybase gene identity FBgn0011206.



Results for Twi using the Cascade model

Inferred twi protein Driving Input

1
0.8
delta 3.17042e-05
sigma 1
0.6
D 0.000118374
0.4 $0.0531884
B 7.20183e-08
0.2
0

Figure: Model for flybase gene identity FBgn00309055.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0031907.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0035257.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0039286.



Evaluation methods

» Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

» targets with ChlIP-chip binding sites within 2 kb of gene
> (targets differentially expressed in TF knock-outs)
» Compare against
» Ranking by correlation of expression profiles
» Ranking by g-value of differential expression in knock-outs
» Optionally focus on genes with annotated expression in tissues
of interest



Relative enrichment (%)

Relative enrichment (%)

100

Global ChIP: twi

Focused ChIP: twi

20 100 250
Top N to consider

Global ChIP: mef2

100

X %
* g ¥

20 100 250
Top N to consider

Focused ChlIP: mef2

20 100 250
Top N to consider

TRRR p < 0.001, "**: p < 0.01, '*: p < 0.05

I Single-target GP
[ Muliiple-target GP|
[ Knock-outs
I Correlation
<<<<< Filtered

— — — Random

20 100 250
Top N to consider



» Cascade models allow genomewide analysis of potential
targets given only expression data.

> Once a set of potential candidate targets have been identified,
they can be modelled in a more complex manner.

» We don't have ground truth, but evidence indicates that the
approach can perform as well as knockouts.



GPs and Differential Equations



Discussion and Future Work

> Integration of probabilistic inference with mechanistic models.
» Ongoing/other work:

» Non linear response and non linear differential equations.

» Scaling up to larger systems Alvarez et al. (2010); Alvarez and
Lawrence (2009).

» Discontinuities through Switched Gaussian Processes Alvarez
et al. (2011)

» Robotics applications.

» Applications to other types of system, e.g. spatial systems.

» Stochastic differential equations Alvarez et al. (2010).
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