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Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

I 3648 Dimensions

I 64 rows by 57 columns
I Space contains more

than just this digit.
I Even if we sample

every nanosecond from
now until the end of
the universe, you won’t
see the original six!
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MATLAB Demo

demDigitsManifold([1 2], ’all’)
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MATLAB Demo

demDigitsManifold([1 2], ’sixnine’)
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Low Dimensional Manifolds

Pure Rotation is too Simple

I In practice the data may undergo several distortions.

I e.g. digits undergo ‘thinning’, translation and rotation.

I For data with ‘structure’:

I we expect fewer distortions than dimensions;
I we therefore expect the data to live on a lower dimensional

manifold.

I Conclusion: deal with high dimensional data by looking for
lower dimensional non-linear embedding.



Existing Methods

Spectral Approaches

I Classical Multidimensional Scaling (MDS) (Mardia et al., 1979).

I Uses eigenvectors of similarity matrix.

I Isomap (Tenenbaum et al., 2000) is MDS with a particular
proximity measure.

I Kernel PCA (Schölkopf et al., 1998)

I Provides a representation and a mapping — dimensional
expansion.

I Mapping is implied throught he use of a kernel function as a
similarity matrix.

I Locally Linear Embedding (Roweis and Saul, 2000).

I Looks to preserve locally linear relationships in a low
dimensional space.



Existing Methods II

Iterative Methods

I Multidimensional Scaling (MDS)

I Iterative optimisation of a stress function (Kruskal, 1964).

I Sammon Mappings (Sammon, 1969).

I Strictly speaking not a mapping — similar to iterative MDS.

I NeuroScale (Lowe and Tipping, 1997)

I Augmentation of iterative MDS methods with a mapping.



Existing Methods III

Probabilistic Approaches

I Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)

I A linear method.

I Density Networks (MacKay, 1995)

I Use importance sampling and a multi-layer perceptron.

I Generative Topographic Mapping (GTM) (Bishop et al., 1998)

I Uses a grid based sample and an RBF network.
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Existing Methods III

Probabilistic Approaches

I Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)

I A linear method.

I Density Networks (MacKay, 1995)

I Use importance sampling and a multi-layer perceptron.

I Generative Topographic Mapping (GTM) (Bishop et al., 1998)

I Uses a grid based sample and an RBF network.

Difficulty for Probabilistic Approaches

I Propagate a probability distribution through a non-linear
mapping.



The New Model

A Probabilistic Non-linear PCA

I PCA has a probabilistic interpretation (Tipping and Bishop, 1999).

I It is difficult to ‘non-linearise’.

Dual Probabilistic PCA

I We present a new probabilistic interpretation of PCA (Lawrence,

2005).

I This interpretation can be made non-linear.

I The result is non-linear probabilistic PCA.



Notation

q— dimension of latent/embedded space
p— dimension of data space
n— number of data points

centred data, Y = [y1,:, . . . , yn,:]
> = [y:,1, . . . , y:,p] ∈ <n×p

latent variables, X = [x1,:, . . . , xn,:]
> = [x:,1, . . . , x:,q] ∈ <n×q

mapping matrix, W ∈ <p×q

ai ,: is a vector from the ith row of a given matrix A
a:,j is a vector from the jth row of a given matrix A



Reading Notation

X and Y are design matrices

I Covariance given by n−1Y>Y.

I Inner product matrix given by YY>.



Linear Dimensionality Reduction

Linear Latent Variable Model

I Represent data, Y, with a lower dimensional set of latent
variables X.

I Assume a linear relationship of the form

yi ,: = Wxi ,: + ηi ,:,

where
ηi ,: ∼ N

(
0, σ2I

)
.



Linear Latent Variable Model

Probabilistic PCA

I Define linear-Gaussian
relationship between
latent variables and data.

I Standard Latent variable
approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

p (Y|X,W) =
n∏

i=1

N
(
yi,:|Wxi,:, σ

2I
)
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

x W

Y

p (Y|W) =
n∏

i=1

N
(

yi ,:|0,WW> + σ2I
)



Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =
n∏

i=1

N (yi ,:|0,C) , C = WW> + σ2I

log p (Y|W) = −n

2
log |C| − 1

2
tr
(

C−1Y>Y
)

+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

W

Y

X

p (Y|X) =

p∏
j=1

N
(

y:,j |0,XX> + σ2I
)



Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

p (Y|X) =

p∏
j=1

N
(
y:,j |0,K

)
, K = XX> + σ2I

log p (Y|X) = −
p

2
log |K| −

1

2
tr
(

K−1YY>
)

+ const.

If U′q are first q principal eigenvectors of p−1YY> and the corresponding eigenvalues
are Λq ,

X = U′qLR>, L =
(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.



Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =
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N
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)
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log p (Y|W) = −
n

2
log |C| −

1

2
tr
(
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)

+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the corresponding eigenvalues
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Equivalence of Formulations

The Eigenvalue Problems are equivalent
I Solution for Probabilistic PCA (solves for the mapping)

Y>YUq = UqΛq W = UqLR>

I Solution for Dual Probabilistic PCA (solves for the latent
positions)

YY>U′q = U′qΛq X = U′qLR>

I Equivalence is from

Uq = Y>U′qΛ
− 1

2
q



Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Define linear-Gaussian
relationship between
latent variables and data.

I Novel Latent variable
approach:

I Define Gaussian prior
over parameteters, W.

I Integrate out
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).
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(GP-LVM).
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Y

X

p (Y|X) =
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j=1

N
(
y:,j |0,K

)

K = XX> + σ2I

This is a product of Gaussian processes

with linear kernels.



Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =

p∏
j=1

N
(
y:,j |0,K

)
K =?

Replace linear kernel with non-linear

kernel for non-linear model.



Non-linear Latent Variable Models

RBF Kernel

I The RBF kernel has the form ki ,j = k (xi ,:, xj ,:) , where

k (xi ,:, xj ,:) = α exp

(
−

(xi ,: − xj ,:)
> (xi ,: − xj ,:)

2`2

)
.

I No longer possible to optimise wrt X via an eigenvalue
problem.

I Instead find gradients with respect to X, α, ` and σ2 and
optimise using conjugate gradients.



Applications

Style Based Inverse Kinematics

I Facilitating animation through modeling human motion with
the GP-LVM (Grochow et al., 2004)

Tracking

I Tracking using models of human motion learnt with the
GP-LVM (Urtasun et al., 2005, 2006)



Stick Man

Generalization with less Data than Dimensions

I Powerful uncertainly handling of GPs leads to suprising
properties.

I Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

I Example: Modelling a stick man in 102 dimensions with 55
data points!



Stick Man II

demStick1

Figure: The latent space for the stick man motion capture data.
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)
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Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)
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Equivalence of Formulations

The Eigenvalue Problems are equivalent
I Solution for Probabilistic PCA (solves for the mapping)
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I Solution for Dual Probabilistic PCA (solves for the latent
positions)

YY>U′q = U′qΛq X = U′qLR>

I Equivalence is from

Uq = Y>U′qΛ
− 1

2
q



Gaussian Process (GP)

Prior for Functions

I Probability Distribution over Functions

I Functions are infinite dimensional.
I Prior distribution over instantiations of the function: finite

dimensional objects.

I Can prove by induction that GP is ‘consistent’.

I Mean and Covariance Functions

I Instead of mean and covariance matrix, GP is defined by mean
function and covariance function.

I Mean function often taken to be zero or constant.
I Covariance function must be positive definite.
I Class of valid covariance functions is the same as the class of

Mercer kernels.



Gaussian Processes II

Zero mean Gaussian Process

I A (zero mean) Gaussian process likelihood is of the form

p (y|X) = N (y|0,K) ,

where K is the covariance function or kernel.

I The linear kernel with noise has the form

K = XX> + σ2I

I Priors over non-linear functions are also possible.

I To see what functions look like, we can sample from the prior
process.



Covariance Samples
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Figure: RBF kernel with γ = 10, α = 1
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Figure: RBF kernel with ` = 1, α = 1



Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: RBF kernel with ` = 0.3, α = 4
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Figure: MLP kernel with α = 8, w = 100 and b = 100



Covariance Samples
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Figure: MLP kernel with α = 8, b = 0 and w = 100



Covariance Samples
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Figure: bias kernel with α = 1 and



Covariance Samples
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Figure: summed combination of: RBF kernel, α = 1, ` = 0.3; bias
kernel, α =1; and white noise kernel, β = 100



Gaussian Process Regression

Posterior Distribution over Functions

I Gaussian processes are often used for regression.

I We are given a known inputs X and targets Y.

I We assume a prior distribution over functions by selecting a
kernel.

I Combine the prior with data to get a posterior distribution
over functions.



Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Define linear-Gaussian
relationship between
latent variables and data.

I Novel Latent variable
approach:

I Define Gaussian prior
over parameteters, W.

I Integrate out
parameters.

W

Y

X

p (Y|X,W) =
n∏

i=1

N
(
yi,:|Wxi,:, σ

2I
)

p (W) =

p∏
i=1

N
(
wi,:|0, I

)

p (Y|X) =

p∏
j=1

N
(

y:,j |0,XX> + σ2I
)
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Dual Probabilistic PCA

I Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
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(GP-LVM).

W

Y

X

p (Y|X) =

p∏
j=1

N
(

y:,j |0,XX> + σ2I
)



Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =

p∏
j=1

N
(
y:,j |0,K

)

K = XX> + σ2I



Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =

p∏
j=1

N
(
y:,j |0,K

)

K = XX> + σ2I

This is a product of Gaussian processes

with linear kernels.



Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =

p∏
j=1

N
(
y:,j |0,K

)
K =?

Replace linear kernel with non-linear

kernel for non-linear model.



Non-linear Latent Variable Models

RBF Kernel

I The RBF kernel has the form ki ,j = k (xi ,:, xj ,:) , where

k (xi ,:, xj ,:) = α exp

(
−

(xi ,: − xj ,:)
> (xi ,: − xj ,:)

2`2

)
.

I No longer possible to optimise wrt X via an eigenvalue
problem.

I Instead find gradients with respect to X, α, ` and σ2 and
optimise using conjugate gradients.



Applications

Style Based Inverse Kinematics

I Facilitating animation through modeling human motion with
the GP-LVM (Grochow et al., 2004)

Tracking

I Tracking using models of human motion learnt with the
GP-LVM (Urtasun et al., 2005, 2006)



Stick Man

Generalization with less Data than Dimensions

I Powerful uncertainly handling of GPs leads to suprising
properties.

I Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

I Example: Modelling a stick man in 102 dimensions with 55
data points!



Stick Man II

demStick1

Figure: The latent space for the stick man motion capture data.
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demStick1
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Outline

Dimensionality Reduction

GP-LVM

GP-LVM Extensions

Mechanistic Modeling

GPs and Differential Equations



Back Constraints I

Local Distance Preservation (Lawrence and Quiñonero Candela, 2006)

I Most dimensional reduction techniques preserve local
distances.

I The GP-LVM does not.

I GP-LVM maps smoothly from latent to data space.

I Points close in latent space are close in data space.
I This does not imply points close in data space are close in

latent space.

I Kernel PCA maps smoothly from data to latent space.

I Points close in data space are close in latent space.
I This does not imply points close in latent space are close in

data space.



Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)
I Mapping from 1-D latent space to 2-D data space.

y1 = x2 − 0.5, y2 = −x2 + 0.5
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Forward Mapping (demBackMapping in oxford toolbox)
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)
I Mapping from 2-D data space to 1-D latent.

x = 0.5
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)
I Mapping from 2-D data space to 1-D latent.
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NeuroScale

Multi-Dimensional Scaling with a Mapping

I Lowe and Tipping (1997) made latent positions a function of
the data.

xi ,j = fj (yi ,:; w)

I Function was either multi-layer perceptron or a radial basis
function network.

I Their motivation was different from ours:

I They wanted to add the advantages of a true mapping to
multi-dimensional scaling.



Back Constraints in the GP-LVM

Back Constraints

I We can use the same idea to force the GP-LVM to respect
local distances.(Lawrence and Quiñonero Candela, 2006)

I By constraining each xi to be a ‘smooth’ mapping from yi

local distances can be respected.

I This works because in the GP-LVM we maximise wrt latent
variables, we don’t integrate out.

I Can use any ‘smooth’ function:

1. Neural network.
2. RBF Network.
3. Kernel based mapping.



Optimising BC-GPLVM

Computing Gradients

I GP-LVM normally proceeds by optimising

L (X) = log p (Y|X)

with respect to X using dL
dX .

I The back constraints are of the form

xi ,j = fj (yi ,:; B)

where B are parameters.

I We can compute dL
dB via chain rule and optimise parameters of

mapping.



Motion Capture Results

demStick1 and demStick3

Figure: The latent space for the motion capture data with (right) and
without (left) back constraints.
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without (left) back constraints.



Stick Man Results

demStickResults
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(a) (b) (c) (d)

Projection into data space from four points in the latent space. The
inclination of the runner changes becoming more upright.



Adding Dynamics

MAP Solutions for Dynamics Models

I Data often has a temporal ordering.

I Markov-based dynamics are often used.

I For the GP-LVM

I Marginalising such dynamics is intractable.
I But: MAP solutions are trivial to implement.

I Many choices: Kalman filter, Markov chains etc..

I Wang et al. (2006) suggest using a Gaussian Process.



Gaussian Process Dynamics

GP-LVM with Dynamics

I Autoregressive Gaussian process mapping in latent space
between time points.

t
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Gaussian Process Dynamics

GP-LVM with Dynamics

I Autoregressive Gaussian process mapping in latent space
between time points.

t t + 1



Motion Capture Results

demStick1 and demStick2

Figure: The latent space for the motion capture data without dynamics
(left), with auto-regressive dynamics (right) based on an RBF kernel.



Motion Capture Results

demStick1 and demStick2
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Figure: The latent space for the motion capture data without dynamics
(left), with auto-regressive dynamics (right) based on an RBF kernel.



Regressive Dynamics

Inner Groove Distortion

I Autoregressive unimodal
dynamics, p (xt |xt−1) .

I Forces spiral visualisation.

I Poorer model due to inner
groove distortion.



Regressive Dynamics

Direct use of Time Variable

I Instead of auto-regressive dynamics, consider regressive
dynamics.

I Take t as an input, use a prior p (X|t).

I User a Gaussian process prior for p (X|t) .

I Also allows us to consider variable sample rate data.



Motion Capture Results

demStick1, demStick2 and demStick5

Figure: The latent space for the motion capture data without dynamics
(left), with auto-regressive dynamics (middle) and with regressive
dynamics (right) based on an RBF kernel.



Motion Capture Results

demStick1, demStick2 and demStick5
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Figure: The latent space for the motion capture data without dynamics
(left), with auto-regressive dynamics (middle) and with regressive
dynamics (right) based on an RBF kernel.



Hierarchical GP-LVM

Stacking Gaussian Processes

I Regressive dynamics provides a simple hierarchy.

I The input space of the GP is governed by another GP.

I By stacking GPs we can consider more complex hierarchies.

I Ideally we should marginalise latent spaces

I In practice we seek MAP solutions.



Two Correlated Subjects

demHighFive1

Figure: Hierarchical model of a ’high five’.



Within Subject Hierarchy

Decomposition of Body

Figure: Decomposition of a subject.



Single Subject Run/Walk

demRunWalk1

Figure: Hierarchical model of a walk and a run.



Bayesian GP-LVM

I GP-LVM optimizes latent variables and integrates out
parameters.

I Full Bayesian approach would also integrate latent variables.

I Cannot do analytically, but Michalis Titsias (Titsias and
Lawrence, 2010) developed a clever trick to do it variationally.



Bayesian Gaussian process latent variables model

I Latent variable model:

y = w(x) + ε

I Bayesian training: Integrate out both the
latent mapping and the latent space

I Exact Bayesian inference is intractable
I But variational Bayesian inference is

tractable

x

f

y



Bayesian Gaussian process latent variables model

Automatic selection of the latent dimensionality

I Squared exponential ARD kernel

k(x, x′) = σ2
f exp

(
−1

2

q∑
i=1

αi (xi − x ′i )2

)
I Maximizing the variational lower bound w.r.t. αi s allows to

remove redundant latent dimensions



Experiments: Visualization

I Oil flow data: 1000 training; 12 dimensions; 3 known classes

I Compare:

I Bayesian GP-LVM
I Standard sparse GP-LVM
I Probabilistic PCA



Experiments: Visualization

Oil flow data
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I Bayesian GP-LVM runs with 10 latent dimensions
I The red, green and blue points are the predicted means for

the latent variables labeled with the known class
I 7 out 10 latent dimensions are shrunk to zero
I Visualization is shown for the dominant (with the largest

inverse lengthscales) latent dimensions



Experiments: Visualization

Oil flow data
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Summary

I GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.

I Works Effectively as a Probabilistic Model in High
Dimensional Spaces.

I Back constraints can be introduced to force local distance
preservation.

I Dynamics can be introduced for modelling data with a
temporal structure.
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Styles of Machine Learning
Background: interpolation is easy, extrapolation is hard

I Urs Hölzle keynote talk at NIPS 2005.
I Emphasis on massive data sets.
I Let the data do the work—more data, less extrapolation.

I Alternative paradigm:
I Very scarce data: computational biology, human motion.
I How to generalize from scarce data?
I Need to include more assumptions about the data (e.g.

invariances).



General Approach
Broadly Speaking: Two approaches to modeling

data modeling mechanistic modeling
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Figure: Main modeling activity.
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Weakly Mechanistic vs Strongly Mechanistic

I Underlying data modeling techniques there are weakly
mechanistic principles (e.g. smoothness).

I In physics the models are typically strongly mechanistic.

I In principle we expect a range of models which vary in the
strength of their mechanistic assumptions.

I This work is one part of that spectrum: add further
mechanistic ideas to weakly mechanistic models.



Dimensionality Reduction

I Linear relationship between the data, X ∈ <n×p, and a
reduced dimensional representation, F ∈ <n×q, where q � p.

X = FW + ε,

ε ∼ N (0,Σ)

I Integrate out F, optimize with respect to W.
I For Gaussian prior, F ∼ N (0, I)

I and Σ = σ2I we have probabilistic PCA (Tipping and Bishop,

1999; Roweis, 1998).
I and Σ constrained to be diagonal, we have factor analysis.



Dimensionality Reduction: Temporal Data

I Deal with temporal data with a temporal latent prior.

I Independent Gauss-Markov priors over each fi (t) leads to :
Rauch-Tung-Striebel (RTS) smoother (Kalman filter).

I More generally consider a Gaussian process (GP) prior,

p (F|t) =

q∏
i=1

N
(
f:,i |0,Kf:,i ,f:,i

)
.

I Given the covariance functions for {fi (t)} we have an implied
covariance function across all {xi (t)}—(ML: semi-parametric
latent factor model (Teh et al., 2005), Geostatistics: linear
model of coregionalization).

I Rauch-Tung-Striebel smoother has been preferred
I linear computational complexity in n.
I Advances in sparse approximations have made the general GP

framework practical. (Titsias, 2009; Snelson and Ghahramani,

2006; Quiñonero Candela and Rasmussen, 2005).
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Mechanical Analogy

Back to Mechanistic Models!

I These models rely on the latent variables to provide the
dynamic information.

I We now introduce a further dynamical system with a
mechanistic inspiration.

I Physical Interpretation:

I the latent functions, fi (t) are q forces.
I We observe the displacement of p springs to the forces.,
I Interpret system as the force balance equation, XD = FS + ε.
I Forces act, e.g. through levers — a matrix of sensitivities,

S ∈ <q×p.
I Diagonal matrix of spring constants, D ∈ <p×p.
I Original System: W = SD−1.



Extend Model

I Add a damper and give the system mass.

FS = ẌM + ẊC + XD + ε.

I Now have a second order mechanical system.

I It will exhibit inertia and resonance.

I There are many systems that can also be represented by
differential equations.

I When being forced by latent function(s), {fi (t)}q
i=1, we call

this a latent force model.



Physical Analogy



Gaussian Process priors and Latent Force Models
Driven Harmonic Oscillator

I For Gaussian process we can compute the covariance matrices
for the output displacements.

I For one displacement the model is

mk ẍk(t) + ck ẋk(t) + dkxk(t) = bk +

q∑
i=0

sik fi (t), (1)

where, mk is the kth diagonal element from M and similarly
for ck and dk . sik is the i , kth element of S.

I Model the latent forces as q independent, GPs with
exponentiated quadratic covariances

kfi fl
(t, t ′) = exp

(
−(t − t ′)2

2`2
i

)
δil .



Covariance for ODE Model

I Exponentiated Quadratic Covariance function for f (t)

xj (t) =
1

mjωj

q∑
i=1

sji exp(−αj t)

∫ t

0
fi (τ) exp(αjτ) sin(ωj (t − τ))dτ

I Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:
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Covariance for ODE Model

I Analogy

x =
∑

i

e>i fi fi ∼ N (0,Σi )→ x ∼ N

(
0,
∑

i

e>i Σi ei

)

I Joint distribution
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Damping ratios:
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Joint Sampling of x (t) and f (t)

I lfmSample
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Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x2 (t) (overdamped), and blue: x3 (t)
(critically damped).
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Covariance for ODE

I Exponentiated Quadratic Covariance function for f (t)

xj (t) =
1

mjωj

q∑
i=1

sji exp(−αj t)

∫ t

0
fi (τ) exp(αjτ) sin(ωj (t−τ))dτ

I Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).

I Damping ratios:
ζ1 ζ2 ζ3
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009)

I Motion capture data: used for animating human motion.

I Multivariate time series of angles representing joint positions.

I Objective: generalize from training data to realistic motions.

I Use 2nd Order Latent Force Model with mass/spring/damper
(resistor inductor capacitor) at each joint.
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Prediction of Test Motion

I Model left arm only.

I 3 balancing motions (18, 19, 20) from subject 49.

I 18 and 19 are similar, 20 contains more dramatic movements.

I Train on 18 and 19 and testing on 20

I Data was down-sampled by 32 (from 120 fps).

I Reconstruct motion of left arm for 20 given other movements.

I Compare with GP that predicts left arm angles given other
body angles.



Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all apart
from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09



Mocap Results II
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Figure: Predictions from LFM (solid line, grey error bars) and direct
regression (crosses with stick error bars).



Example: Transcriptional Regulation

I First Order Differential Equation

dxj (t)

dt
= bj + sj f (t)− dj xj (t)

I Can be used as a model of gene transcription: Barenco et al.,
2006; Gao et al., 2008.

I xj (t) – concentration of gene j ’s mRNA

I f (t) – concentration of active transcription factor

I Model parameters: baseline bj , sensitivity sj and decay dj

I Application: identifying co-regulated genes (targets)

I Problem: how do we fit the model when f (t) is not observed?
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Covariance for Transcription Model

RBF covariance function for f (t)

xi (t) =
bi

di
+ si exp (−di t)

∫ t

0
f (u) exp (di u) du.

I Joint distribution
for x1 (t), x2 (t),
x3 (t), and f (t).

I Here:
d1 s1 d2 s2 d3 s3
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Covariance for Transcription Model

RBF covariance function for f (t)

x = b/d +
∑

i

e>i f f ∼ N (0,Σi )→ x ∼ N

(
b/d ,

∑
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e>i Σi ei
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Joint Sampling of f (t) and x (t)

I simSample
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Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (high decay/sensitivity), green: x2 (t) (medium
decay/sensitivity) and blue: x3 (t) (low decay/sensitivity).
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Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.
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Radiation Damage in the Cell

I Radiation can damages molecules including DNA.

I Most DNA damage is quickly repaired—single strand breaks,
backbone break.

I Double strand breaks are more serious—a complete disconnect
along the chromosome.

I Cell cycle stages:

I G1: Cell is not dividing.
I G2: Cell is preparing for meitosis, chromosomes have divided.
I S: Cell is undergoing meitosis (DNA synthesis).

I Main problem is in G1. In G2 there are two copies of the
chromosome. In G1 only one copy.



p53 “Guardian of the Cell”

I Responsible for Repairing DNA damage

I Activates DNA Repair proteins

I Pauses the Cell Cycle (prevents replication of damage DNA)

I Initiates apoptosis (cell death) in the case where damage can’t
be repaired.

I Large scale feeback loop with NF-κB.



p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the“Molecule of the Month”
feature).

http://www.rcsb.org/


p53

Figure: Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also governed by
SREBP-1a, Sp1, Sp3,... ).

hPA26/SESN1 sestrin 1 Cell Cycle arrest.

BIK BCL2-interacting killer. Induces cell death
(apoptosis)

TNFRSF10b tumor necrosis factor receptor superfamily, member
10b. A transducer of apoptosis signals.



Modelling Assumption

I Assume p53 affects targets as a single input module network
motif (SIM).

p53

p21

DDB2

PA26

BIK

TNFRSF10b

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.



Ordinary Differential Equation Model

I First Order Differential Equation

dxj (t)

dt
= bj + sj f (t)− dj xj (t)

I Proposed by Barenco et al. (2006).

I xj (t) – concentration of gene j ’s mRNA

I f (t) – concentration of active transcription factor

I Model parameters: baseline bj , sensitivity sj and decay dj

I Application: identifying co-regulated genes (targets)

I Problem: how do we fit the model when f (t) is not observed?
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Gaussian process modelling of latent chemical species:
applications to inferring transcription factor activities
Pei Gao1, Antti Honkela2, Magnus Rattray1 and Neil D. Lawrence1,∗
1School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL and
2Adaptive Informatics Research Centre, Helsinki University of Technology, PO Box 5400, FI-02015 TKK, Finland

ABSTRACT

Motivation: Inference of latent chemical species in biochemical
interaction networks is a key problem in estimation of the structure
and parameters of the genetic, metabolic and protein interaction
networks that underpin all biological processes. We present a
framework for Bayesian marginalization of these latent chemical
species through Gaussian process priors.
Results: We demonstrate our general approach on three different
biological examples of single input motifs, including both activation
and repression of transcription. We focus in particular on the problem
of inferring transcription factor activity when the concentration
of active protein cannot easily be measured. We show how the
uncertainty in the inferred transcription factor activity can be
integrated out in order to derive a likelihood function that can
be used for the estimation of regulatory model parameters. An
advantage of our approach is that we avoid the use of a coarse-
grained discretization of continuous time functions, which would lead
to a large number of additional parameters to be estimated. We
develop exact (for linear regulation) and approximate (for non-linear
regulation) inference schemes, which are much more efficient than
competing sampling-based schemes and therefore provide us with
a practical toolkit for model-based inference.
Availability: The software and data for recreating all the experiments
in this paper is available in MATLAB from http://www.cs.man.
ac.uk/∼neill/gpsim.
Contact: neill@cs.man.ac.uk

1 INTRODUCTION
Ordinary differential equations (ODEs) are the most common
framework in use for modelling biological sub-systems (Alon,
2006). Well established methodologies have been developed for
estimating the parameters of these equations in the context of a
particular experiment or set of experiments, using e.g. least squares
and maximum likelihood combined with an appropriate optimization
algorithm (Mendes and Kell, 1998). More recently, significant
progress has been made on Bayesian parameter estimation in the
context of ODEs (Coleman and Block, 2006). Through the use
of advanced Monte Carlo techniques it is even possible to, given
a specific data set, rank model structures through the use of
Bayes factors (Vyshemirsky and Girolami, 2008). This shows the
potential for ODE models to be closely integrated with biological
investigations, informing the process of biological experimental
design.

∗
To whom correspondence should be addressed.

A challenging problem for parameter estimation in ODE models
occurs where one or more chemical species influencing the dynamics
are controlled outside of the sub-system being modelled. For
example, a signalling pathway can be triggered by a signal external
to the pathway itself. In a regulatory sub-system, one or more
transcription factors (TFs) may influence the expression of a
set of target genes, but these TFs may not be regulated at the
transcriptional level, instead being activated by another sub-system
such as a signalling pathway. Similarly, in a metabolic pathway
external metabolites and enzymes will influence the dynamics of
the pathway. If these external chemical species have a constant
influence, e.g. as in the case of steady state behaviour of a
metabolic pathway, then they can simply be treated as additional
parameters of the model and their effect can be estimated along
with the other model parameters. However, more often these
external factors are time-varying quantities. In this case, they are
functional parameters and cannot be estimated by the standard
methods discussed above. One approach for dealing with this is to
discretize in time, treating the time-varying function as a sequence of
discrete parameters. However, this leaves the problem of choosing
the correct granularity for the discretization and either ignoring
temporal continuity, or assuming a simple Markovian relationship
and thereby introducing further parameters and assumptions. Here,
we propose an alternative approach. We deal with these parameters
as continuous functions of time, avoiding the need for arbitrary
discretization.

To further compound the problem of dealing with the time-varying
effects of these chemical species, their concentration is often not
directly observable and their dynamics must therefore be inferred
indirectly according to their influence on measured elements of the
system. This is a common problem and it is a natural consequence
of the fact that some quantities are relatively easy to measure
in a high throughput manner (e.g. mRNA concentrations with a
microarray), whereas others are much more difficult to measure
(e.g. the concentration of TFs located in the nucleus). In this article,
we advocate the use of Gaussian processes (GPs) to define prior
distributions over these latent chemical species. This allows us to
marginalize their contributions in the interaction network of interest.
We present a basic toolkit of algorithms based on GPs which allow
us to consider different response models (Michaelis Menten kinetics,
repression responses) and cascades of interactions in which chemical
species of interest are missing. The application domain we consider
is inference of TF activity in both developmental and signalling
networks.

Inference of TF activity in a given network is a well studied
problem with both genome wide approaches (Liao et al., 2003;
Sanguinetti et al., 2006a,b) and algorithms designed for a subset
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Cascaded Differential Equations

Model-based method for transcription factor
target identification with limited data
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We present a computational method for identifying potential tar-
gets of a transcription factor (TF) using wild-type gene expression
time series data. For each putative target gene we fit a simple dif-
ferential equation model of transcriptional regulation, and the
model likelihood serves as a score to rank targets. The expression
profile of the TF is modeled as a sample from a Gaussian process
prior distribution that is integrated out using a nonparametric
Bayesian procedure. This results in a parsimonious model with re-
latively few parameters that can be applied to short time series da-
tasets without noticeable overfitting. We assess our method using
genome-wide chromatin immunoprecipitation (ChIP-chip) and loss-
of-function mutant expression data for two TFs, Twist, and Mef2,
controlling mesoderm development in Drosophila. Lists of top-
ranked genes identified by our method are significantly enriched
for genes close to bound regions identified in the ChIP-chip data
and for genes that are differentially expressed in loss-of-function
mutants. Targets of Twist display diverse expression profiles, and in
this case a model-based approach performs significantly better
than scoring based on correlation with TF expression. Our ap-
proach is found to be comparable or superior to ranking based on
mutant differential expression scores. Also, we show how integrat-
ing complementary wild-type spatial expression data can further
improve target ranking performance.

Bayesian inference ∣ Gaussian process inference ∣ gene regulation ∣
gene regulatory network ∣ systems biology

Transcription factors are key nodes in the gene regulatory net-
works that determine the function and fate of cells. An impor-

tant first step in uncovering a gene regulatory network is the
identification of target genes regulated by a specific transcription
factor (TF). A common approach to this problem is to experi-
mentally locate physical binding of TF proteins to the DNA
sequence in vivo using a genome-wide chromatin immunopreci-
pitation (ChIP) experiment (1, 2). However, recent studies sug-
gest that many observed binding events are neutral and do not
regulate transcription, while regulatory binding events often oc-
cur at enhancers that are not proximal to the target gene that they
control (3, 4). Therefore, the task of identifying transcriptional
targets requires the integration of ChIP binding predictions with
evidence from expression data to help associate binding events
with target gene regulation. If there is access to expression data
from a mutant in which the TF has been knocked out or overex-
pressed, then differential expression of genes between wild type
and mutant is indicative of a potential regulatory interaction (5,
6). Available spatial expression data for the TF and the putative
target can also provide support for a hypothesized regulatory link.

A problem with the above approach is that the creation of mu-
tant strains is challenging or impossible for many TFs of interest.
Even when available, mutants may provide very limited informa-
tion because of redundancy or due to the confounding of signal
from indirect regulatory feedback (7). For these reasons it is use-
ful to seek other sources of evidence to complement ChIP bind-
ing predictions. In this contribution we demonstrate how a
dynamical model of wild-type transcriptional regulation can be

used for genome-wide scoring of putative target genes. All that
is required to apply our method is wild-type time series data col-
lected over a period where TF activity is changing. Our approach
allows for complementary evidence from expression data to be
integrated with ChIP binding data for a specific TF without carry-
ing out TF perturbations.

To score putative targets we use the data likelihood under a
simple cascaded differential equation model of transcriptional
regulation. The regulation model we apply is “open” in the sense
that we do not explicitly model regulation of the TF itself. To deal
with this technical issue we use a recently developed nonpara-
metric probabilistic inference methodology to effectively deal
with open differential equation systems (8). We model the TF
concentration as a function drawn from a Gaussian process prior
distribution (9, 10). This functional prior can either be placed on
the TF mRNA, for TFs primarily under transcriptional regula-
tion, or the TF protein, for TFs activated posttranslationally.
In the application considered here the TFs are transcriptionally
regulated, and we take the former approach. We use Bayesian
marginalization (also known as Bayesian model averaging) to
integrate out these functional degrees of freedom. This greatly
reduces the number of parameters required to model the data,
making a likelihood-based approach feasible even for short
time series.

There are many existing approaches to inferring gene regula-
tory networks from time series expression data, including dy-
namic Bayesian networks, information theoretic approaches,
and differential equation approaches (reviewed in ref. 11). These
methods typically require many more data from a greater diver-
sity of experimental conditions than are available from the short
unperturbed wild-type time series that we consider. Indeed, most
real gene expression time course data are short relative to the
simulated data used to assess computational methods for network
inference (12). However, our goal is more limited in scope since
we are primarily interested in providing additional support for
hypothesized targets of a specific TF. Again, most approaches
to this problem are designed for data containing large numbers
of diverse conditions, as exemplified by the DREAM 2 (Dialogue
for Reverse Engineering Assessments and Methods 2) target
identification challenge 1 (13). Others have addressed this target
identification problem using time series data with a regulation
model (14, 15). However, these approaches either require a
known target set for training (14) or they require measured TF
protein data (15). In addition to these differences in the assumed
prior knowledge and available data, it is also difficult to validate
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Cascaded Differential Equations

(Honkela et al., 2010)

I Transcription factor protein also has governing mRNA.

I This mRNA can be measured.

I In signalling systems this measurement can be misleading
because it is activated (phosphorylated) transcription factor
that counts.

I In development phosphorylation plays less of a role.



Drosophila Mesoderm Development

Collaboration with Furlong Lab in EMBL Heidelberg.

I Mesoderm development in Drosophila melanogaster (fruit fly).

I Mesoderm forms in triplobastic animals (along with ectoderm
and endoderm). Mesoderm develops into muscles, and
circulatory system.

I The transcription factor Twist initiates Drosophila mesoderm
development, resulting in the formation of heart, somatic
muscle, and other cell types.

I Wildtype microarray experiments publicly available.

I Can we use the cascade model to predict viable targets of
Twist?



Cascaded Differential Equations

(Honkela et al., 2010)

We take the production rate of active transcription factor to be
given by

df (t)

dt
= σy (t)− δf (t)

dxj (t)

dt
= bj + sj f (t)− dj xj (t)

The solution for f (t), setting transient terms to zero, is

f (t) = σ exp (−δt)

∫ t

0
y(u) exp (δu) du .



Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f (t) = σ exp (−δt)

∫ t

0

y(u) exp (δu) du

xi (t) =
bi

di
+ si exp (−di t)

∫ t

0

f (u) exp (diu) du.

I Joint distribution
for x1 (t), x2 (t),
f (t) and y (t).

I Here:
δ d1 s1 d2 s2

1 5 5 0.5 0.5

y(t) f (t) x1(t) x2(t)

y(t)

f (t)

x1(t)

x2(t)



Joint Sampling of y (t), f (t), and x (t)
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x1 (t) (high decay
target) and green: x2 (t) (low decay target)
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Twist Results

I Use mRNA of Twist as driving input.

I For each gene build a cascade model that forces Twist to be
the only TF.

I Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

I Rank according to the likelihood above the baseline.

I Compare with correlation, knockouts and time series network
identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Evaluation methods

I Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

I targets with ChIP-chip binding sites within 2 kb of gene
I (targets differentially expressed in TF knock-outs)

I Compare against
I Ranking by correlation of expression profiles
I Ranking by q-value of differential expression in knock-outs

I Optionally focus on genes with annotated expression in tissues
of interest



Results
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Summary

I Cascade models allow genomewide analysis of potential
targets given only expression data.

I Once a set of potential candidate targets have been identified,
they can be modelled in a more complex manner.

I We don’t have ground truth, but evidence indicates that the
approach can perform as well as knockouts.
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Discussion and Future Work

I Integration of probabilistic inference with mechanistic models.

I Ongoing/other work:

I Non linear response and non linear differential equations.
I Scaling up to larger systems Álvarez et al. (2010); Álvarez and

Lawrence (2009).
I Discontinuities through Switched Gaussian Processes Álvarez

et al. (2011)
I Robotics applications.
I Applications to other types of system, e.g. spatial systems.
I Stochastic differential equations Álvarez et al. (2010).
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