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Online Resources

All source code and slides are available online

This talk available from my home page (see talks link on side).
MATLAB examples in the 'oxford" toolbox (vrs 0.15).
» http://www.cs.man.ac.uk/ neill/oxford/.

@ Also the 'ivm’ toolbox (vrs 0.4).

» http://www.cs.man.ac.uk/"neill/ivm/.
And the 'gp’ toolbox (vrs 0.12)

» http://www.cs.man.ac.uk/"neill/gp/

MATLAB commands used for examples given in typewriter font.
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© Model Fitting
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g— dimension of input/feature space
d— dimension of data space
n— number of data points

centred target data, y or for d > 1
Y=1Iyi, - ¥n) = [y1,---,y.a] € R4
input variables, X = [x1.,... ,x,,7:]T =[x.1,...,X.q] € R™9
matrix of basis functions, ® = [¢; ... ,¢n7:]T =1, P 4] € R
mapping matrix, W € R9*49

a; . is a vector from the ith row of a given matrix A
a.j is a vector from the jth row of a given matrix A
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Reading Notation

X, ® and Y are design matrices

e Covariance given by n1XTX.

@ Inner product matrix given by XXT.
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Gaussian Distribution

e We will make use of (almost) only one distribution.

@ Gaussian distribution over z with mean m and covariance C is given
by

1 exp (_1
(27)? [C|2 2

@ Contours of two dimensional Gaussian are:

N (zlm,C) = (z-m)'Cl(z— m))
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Model Fitting

Inference about functions
@ Many Machine Learning problems can be reduced to inference about
functions/mappings.

» classification — map from input vector to binary class labels
(e.g. handwritten digits).

> regression — map from input vector to a real number (e.g. meat fat
content prediction).

@ Classical approach is to construct a parameteric function.
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Model Fitting

@ Normal approach to model fitting

@ Assume a functional relationship:
f(xis) = Y wixij + e
J
f(xi.) = wa;,; +€

w is the vector of the regression weights.
X; . is the ith data point.
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Use a Bases Set

@ Take several basis functions with different centres, j:
1 T
i (xi) = exp | =55 (i, =€) (xiz =€) | = 0y

@ Place them across the input space and replace treat them as your
input data:

f(xi.)= Z wjoij + €

J
f(xi.)= quS,-,: +e€

w is the vector of the regression weights.
@, . are the values of the bases functions at the ith data point.
€ is a noise term.
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Set of RBF Bases

-3

Figure: RBF Basis functions for non-linear fit.
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Least Squares

@ Minimise error. Concatanate f; into a vector f = ®w.
1 T
Ew)=s(—-f (y-1

1 1
E(w)=_yTy —y f+ fTf
2 2
differentiate with respect to f:

1 1
E(w)= EyTy —wloly + EWTCDTCDW

1 1
E(w)= EyTy — ny + EfTW

dE (w) T T
— =0 (O
dw y+ W
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Find Fixed Points

@ Finding fixed point for w means setting gradients to zero and solving
0=—-0"y+ o ow
oTow = 9Ty
w=(0T0) o7y
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Least Squares Regression

demLeastSquaresRegress
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Least Squares Regression
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© Bayesian Inference
o
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Bayesian Inference

@ Our line is smooth and fits exactly through the points.

» Even though we had more bases than data points.
» We used a little regularisation on the inverse of ®T .

@ Problem: the prediction gives us no error bars.

@ Solution: the Bayesian approach.
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Bayesian Approach

@ Take scaled error function, exponentiate and normalise:
Lex ——rE(W)
K €Xp o '

@ Gives a likelihood:

T
p(y|X,w) = #exp <_(y—f) (y —f)>

(7'(50'” 20'2

@ Physical interpretation of ¢ is standard deviation of noise
e~ N (O, 02)
f(xi)=w'g;. +e
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Least Squares is Maximum Likelihood

@ Maximise the likelihood and we recover least squares.
@ Bayesian approach:

» Place a prior over w and integrate over w.
» Base predictions on the posterior of w given the data: p(w|X,y).
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Whiteboard Derivation
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Bayesian Regression

demBayesRegress(2)
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Bayesian Regression

demBayesRegress(2)




Bayesian Regression
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Bayesian Regression

demBayesRegress(2)

Neil Lawrence () Gaussian Processes



Bayesian Regression (difference)

demBayesRegress(3)
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Bayesian Regression (difference)
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Bayesian Regression (difference)
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Bayesian Regression (difference)

demBayesRegress(3)
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Introduction to Gaussian Processes

Inference about functions

@ We have seen parameteric models of functions.

@ They suffer a problem when the size of the basis is fixed.

@ Gaussian processes (GPs) are probabilistic models for functions.
O'Hagan [1978, 1992], Rasmussen and Williams [2006]

@ They place a prior directly over the function.
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Defining a Distribution over Functions

Gaussian Process

@ What is meant by a distribution over functions?
@ Functions are infinite dimensional objects:
@ Defining a distribution over functions seems non-sensical.

Gaussian Distribution

@ Start with a standard Gaussian distribution.

@ Consider the distribution over a fixed number of instantiations of the
function.
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Gaussian Distribution

Zero mean Gaussian distribution

@ A multi-variate Gaussian distribution is defined by a mean and a
covariance matrix.

ot () KT ()
O p( 2 )

@ We will consider the special case where the mean is zero,

1 fTK-1f
N (f0,K) = ——x— exp (— ) :
(27)2 |K|>2 2
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Sampling a Function

Multi-variate Gaussians

@ We will consider a Gaussian with a particular structure of covariance
matrix.

@ Generate a single sample from this 25 dimensional Gaussian
distribution, f =[fi, f>... fs].

@ We will plot these points against their index.
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Gaussian Distribution Sample

demGPSample

0 5 10 15 20 25 5 10
n n

(a) (b)

15 20 25

Figure: (a) 25 instantiations of a function, f,, (b) greyscale covariance matrix.

Neil Lawrence () Gaussian Processes



Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f, if nis
near to m.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f, if nis
near to m.

@ Less correlation if n is distant from m.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f, if nis
near to m.
@ Less correlation if n is distant from m.

@ Our ordering of points means that the function appears smooth.
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Covariance Function

The covariance matrix
@ Covariance matrix shows correlation between points f,, and f, if nis
near to m.
@ Less correlation if n is distant from m.
@ Our ordering of points means that the function appears smooth.

@ Let's focus on the joint distribution of two points form the 25.
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Prediction of f, from f;

demGPCov2D([1 2])

-1

Figure: Covariance for [ :_1 ] is Kip = [ 1 0.966 ]
2

0.966 1
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Prediction of f, from f;

demGPCov2D([1 2])
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Figure: Covariance for [ :_1 ] is Kip = [ 1 0.966 ]
2

0.966 1
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Prediction of f, from f;

demGPCov2D([1 2])
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4 / g '
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Figure: Covariance for [ b | is Ky2 = { 0.966 1 ]
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Prediction of f5 from £,

demGPCov2D([1 5])

Figure: Covariance for [ :_1 ] is Kis = [ 1 0.574 ]
5

0.574 1
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Prediction of f5 from £,

demGPCov2D([1 5])

17
-1 fl !
fs
o . Al.. [ 1 0574
Figure: Covariance for [ f ] is Kis = { 0574 1 ]
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Prediction of f5 from £,

demGPCov2D([1 5])

]
1 0574 ]

o . i, _
Figure: Covariance for [ f ] is Kis = { 0574 1
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Covariance Functions

Where did this covariance matrix come from?

RBF Kernel Function

_||xm—x,,||2

k (Xm,Xn) = cvexp T

@ Covariance matrix is built
using the inputs to the
function x,.

@ For the example above it
was based on Euclidean
distance.

@ The covariance function is
also know as a kernel.
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Different Covariance Functions

MLP Kernel Function

T b
K (X, Xp) = asin™? WXmXn
VWXExm + b+ 1/ wxFx, + b+ 1

@ A non-stationary
covariance matrix [Williams,
1997].

@ Derived from a multi-layer
perceptron (MLP).
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Different Covariance Functions

Linear Kernel Function

k (Xm,Xn) = axﬁx,,

@ Allows for a linear trend.

@ Note the anti-correlations
in the matrix.
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Different Covariance Functions

White noise
k (xma xn) = a0mn
@ Where 9, is the s .
Kronecker delta. 1
@ Simply represents i ’
uncorrelated independent R o0
noise. 25 -
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Covariance Samples

demCovFuncSample

o

Figure: RBF kernel with v =10, a =1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with /=1, a =1
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Covariance Samples

demCovFuncSample

o

Figure: RBF kernel with / =0.3, a =4
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Covariance Samples

demCovFuncSample

o

Figure: linear kernel with o = 16
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Covariance Samples

demCovFuncSample

o

1S

o

Figure:  MLP kernel with « =8, w = 100 and b = 100
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Covariance Samples

demCovFuncSample

o

-1 -0.5 0 0.5 1

Figure:  MLP kernel with « =8, b =0 and w = 100
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Covariance Samples

demCovFuncSample

6
0
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Figure: bias kernel with o =1 and
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Covariance Samples

demCovFuncSample

o

Figure: summed combination of: RBF kernel, o = 1, | = 0.3; bias kernel, o =1,
and white noise kernel, 5 = 100
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Joint Distribution

Making Predictions
@ Covariance function provides the joint distribution over the
instantiations.
@ Conditional distribution provides predictions.
@ Denoting the training set as f and test set as f,.

» Predict using p (f.|f).
» This conditional distribution is also Gaussian.
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Joint Distribution

Joint Distribution

@ The covariance function provides the joint distribution over the
instantiations.

@ Write down the conditional distribution provides predictions.

@ Denote the training set as f and test set as f,.

» Predict using p (f.|f).
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The Conditional Distribution

Partioned Inverse

@ Use partitioned inverse to find conditional.

| Kes Krs
K= |: K*,f K*,* :|

@ Partitioned inverse is then

K1 Kif + KiK. DK K —K K 271
—% K K¢ -1

where
> = K*,* - K*,fo_,fle,*'
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Joint Distribution

Take Log of the Joint

@ Logarithm of the joint distribution:

logp (f.f.) = —%fTKfjflf — %fTK;’}Kf,*z—lk*,fK;’flf

1
K K Z T — Ef;f ¥ I, + consty

@ Conditional is found by dividing joint by the prior,
p(f) = N (Fl0, Ke).
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Conditional Distribution

Deriving the Conditional

@ In log space this is equivalent to subtraction of
1
log p (f) = —EfTKEflf + consto
giving
log p(f[f) = logp(fs.f) —logp(f) =log N (f.If:,X).

where f = K, ¢K;Hf and T = K, . — K, (K F K ..
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Making Predictions

@ If we observe points from the function, f.
@ We can predict the locations of functions at as yet unseen locations.

@ The prediction is also a Gaussian process, with mean
f =K. K f
(for those used to SVMs ax = Kf_flf —f= K. fa) and covariance

> = K*,* - K*,fofle,*-

)
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A Paradigm Shift from i.i.d.

Parameteric Model

P (Yn[Xn, W) = N (ys|wx,,07) Parameteric models normally
assume independence given

N parameters.
p(y1X,w) = T p (valxn, w)
n=1
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A Paradigm Shift from i.i.d.

Gaussian process

p(y|X) = N(y[0,K) In GPs no i.i.d. assumption is made

the kernel expresses correlations.
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Consistency of a Gaussian Process

@ Predictions remain the same regardless of the number and location of
the test points.

p(EI) = [ p(E.L.I0)df .

@ For the system to be consistent this conditional probability must be
independent of the length of f,.
> In other words.

ptI)= [ £ dr. = [p(r.FIF) of.
@ This is generally not true ... e.g. consider a mixture model

P (yalxn) = Y p (valxn,s*) P (s¥)

where s encodes the mixture component as 1 of k encoding (k —
number of components).
> In this case >° p (yal%n, s¥) P (s¥) # 3¢ p (va|Xn,s™) P (s™) for m # k



Gaussian Process Interpolation

demInterpolation
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-3

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation

demInterpolation
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Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels)
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Gaussian Process Interpolation

demInterpolation

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation

demInterpolation
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Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation

demInterpolation
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Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation

demInterpolation
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Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation

demInterpolation
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Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation

demInterpolation
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Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Noise Models
Graph of a GP e 0

@ Relates input variables, X,
to vector, y, through f

given kernel parameters 6. e

@ Plate notation indicates
independence of y,|f,.

o Noise model, p (y,|f,) can

take several forms. \ N
@ Simplest is Gaussian ) .
noisz Figure: The Gaussian process

depicted graphically.
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

demRegression

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

demRegression

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

demRegression

-3

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

demRegression

-3

Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

demOptimiseKern
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

demOptimiseKern
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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@ Non-Gaussian Noise Models
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Expectation Propagation

Local Moment Matching
o Easiest to consider a single previously unseen data point, yi, X.
@ Before seeing data point, prediction of £, is a GP, p (f|y, X, x.).
o Update prediction using Bayes' Rule,

p (v«lfe) p(f]y, X, %)
p (Y, y«|X, x)

P(f:kly,y*,X,X*) =

This posterior is not a Gaussian process if p (ys|f.) is non-Gaussian.
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Classification Noise Model

Probit Noise Model

p.If)

I

Figure: The probit model (classification). The plot shows p (y,|f,) for different
values of y,. For y, =1 p(yalfa) = ¢ () = /™ N(2[0,1)dz.
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Expectation Propagation Il

Match Moments

o Idea behind EP — approximate with a Gaussian process at this stage
by matching moments.

@ This is equivalent to minimizing the following KL divergence where
q (fly, ¥«, X, x,) is constrained to be a GP.

q (f;‘|y,y*xv x*) = argminq(f*|y,y*x,x*)KL (P (f;‘|y)y*x) x*) ||q (f*|y5.y*a X,x*))

@ This is equivalent to setting
) a(h e xoxe) = D p(fily,ye Xoxe)

2 /42
<f* >q(f*|y,y*,X,x*) o <f* >P(f*|y7}’*7X7X*)
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Expectation Propagation Il

Equivalent Gaussian
@ This is achieved by replacing p (y«|fi) with a Gaussian distribution

p(yslfo) p (fly, X, %)
p (Y7Y*|X,X*)

P(f*’ya}/*,X;X*) =

becomes

N (m.f, ") p (fily: X, )
Py, y«| X, x.) '

q(ﬁk|y’y*7x7x*) =
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Classification

epPointUpdate(’probit’, 1, -1, .1, .6, le-2)

3k
2.5r
2t
1.5r
1

0.5r

—03 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model. Biue: p (fi|X,x«,y).
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Classification

epPointUpdate(’probit’, 1, -1, .1, .6, le-2)

3t
2.5r

2ot
1.5f

1t

0.5r

93 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model. Biue: p (fi|X, x«,y),
Red: p(y« = 1|fy) .
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Classification

epPointUpdate(’probit’, 1, -1, .1, .6, le-2)

3t
2.5r

2ot
1.5f

1t

0.5r

93 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model. Biue: p (fi|X, x«,y),
Red: p(y« = 1|f.) , Magenta: p (fi|X, X« ¥, ys)-
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Classification

epPointUpdate(’probit’, 1, -1, .1, .6, le-2)

3t
2.5r

2ot
1.5f

1t

0.5r

93 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model. Biue: p (fi|X, x«,y),
Red: p(y« = 1|fi) , Magenta: p (f|X,x«,y,yx), Green: q(fi|X, x.,y).
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Ordinal Noise Model

Ordered Categories

pw, 1)

Figure: The ordered categorical noise model (ordinal regression). The plot shows
p (yal|f,) for different values of y,. Here we have assumed three categories.
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Ordinal Regression

epPointUpdate(’ordered’, 1, -1, .1, .6, 1le-3)

4.5}

a
35F
3t
2.5t
2l
15F

1+
0.5r
0 .

-3 -2 -1 0 1 2 3

Figure: An EP style update with an ordered category noise model. Blue:
P (filX, %, y).
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Ordinal Regression

epPointUpdate(’ordered’, 1, -1, .1, .6, 1le-3)

4.5}

4
35F
3t
2.5t
2l
15F

1+
0.5r
0,

-3 -2 -1 0 1 2 3

Figure: An EP style update with an ordered category noise model. Blue:
p (filX,xx,y), Red: p(y« = 0[f.) .
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Ordinal Regression

epPointUpdate(’ordered’, 1, -1, .1, .6, 1le-3)

4.5}

4
35F
3t
2.5t
2l
15F

1+
0.5r

93 -2 -1 0 1 2 3

Figure: An EP style update with an ordered category noise model. Blue:
P (£eIX,xx,y), Red: p(y« =0lfs) , Magenta: p (fu|X,x«,y, yx).
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Ordinal Regression

epPointUpdate(’ordered’, 1, -1, .1, .6, 1le-3)

4.5}

a
35F
3t
2.5t
2l
15F
4t
0.5F

93 -2 -1 0 1 2 3

Figure: An EP style update with an ordered category noise model. Biue:
p (| X, x«,y), Red: p(y« =0|fi) , Magenta: p (f«|X,x«,y,yx), Green: q(fi|X, xs,y).
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A Sparse Approximation
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The Informative Vector Machine

Reduce Complexity
e Including N data points through ADF still leads to an O (N3)
complexity.
@ IVM algorithm resolves these problems with a sparse representation
for the data set.
@ Inspiration: the support vector machine.

@ IVM use a simple selection heuristic to incorporate d most informative
points [Lawrence et al., 2003, Seeger, 2004, Lawrence et al., 2005]. B

o Computational complexity: O (N3) to O (d?N) .
@ Infromation theoretic [Chaloner and Verdinelli, 1995] criteria used to
select points.
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Data Point Selection

Entropy Criterion

@ Original IVM criterion inspired by support vectors being those that
reduce the size of the ‘version space’ most.

@ The equivalent Bayesian interpretation is volume of the posterior:
measured by entropy.

@ Entropy change associted with a data point is simple and quick to
compute.

@ For ith inclusion of nth data point:

1 1
AH, = 3 log |Xi,q| + 3 log |Xi—1]

—% log || — X;_1diag (vi)|

1
-5 log (1 = VinSi—1,n) - (1)
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IVM Parameter Updates

Optimising Kernel Parameters

@ Need to express the marginal likelihood for optimization.

@ Seeger [2004] achieves by expressing the likelihood in terms of both
the active and inactive sets.

@ We simply express the likelihood in terms of the active set only.

@ Given the active set, /, and the site parameters, m and 3, optimise
approximation wrt kernel parameters using gradient methods.

@ Active set and kernel parameters are interdependent: active set is
reselected between optimisations of kernel parameters.
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Toy Problems
@ Two toy data sets for classification with probit noise. First uses an
ARD set up and one irrelevant direction.

@ A second demonstation: sampled 500 data points uniformly from a
unit square in two dimensions.

@ Sample then made from a GP prior of a function at these points.

@ This function was 'squashed’ by a cumulative Gaussian and a class
assigned according to this probability.
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IVM Classification

Ordered Categorical

Figure: Contours: Red solid line at p(y|x) = 0.5, blue dashed lines at p (y|x) = 0.25
and p(y|x) = 0.75. Active points are blue dots. Left: data sampled from from a mixture
of Gaussians. Right: Data uniformly sampled on the 2—dimensional unit square. Class
labels are assigned by sampling from a known Gaussian process prior.
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Ordered Categories

Ordered Categories

@ Two results from two problems on ordered categorical data.
@ First example the categories are separable linearly.

@ Second example: sampled ordered categorical data in polar
co-ordinates.
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Ordered Categories

Toy Problems

10 v VVV 4
4 -Vv'u;.*_vv_.._
° S e % e
C SUSSRET S A s
o o I:I;g o i v ':':F o
0 * b T %**** **
*
+ +t+++#+ #A-% .
_5 -
R
-10 o 8 e egl% 060 °
3 =2 -1 o0 1 2 3

Figure: .Left: a linear solution is found. Right: this categories in this example
were sampled in polar co-ordinates.
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USPS digits

Large Data Set

@ USPS digit data set of 16 x 16 greyscale images.
@ Contains 7291 training images and 2007 test images.
@ Three different kernels with the IVM algorithm.

» For each data-set we used a ‘base kernel’ consisting of a linear part, a
white noise term and a bias part.

» Three variations on this base kernel were then used: it was changed by
adding first an RBF kernel, then an MLP kernel and finally a variant of
the RBF ARD kernel.

» Set d = 500.
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USPS digits

Classification error %

| (o [ [ 2]+« s ] 7] ] own]
RBF 0.65 0.70 1.40 1.05 1.49 1.25 0.75 0.60 1.20 0.75 4.58
MLP 0.55 0.70 1.49 1.20 1.64 1.25 0.80 0.60 1.20 0.75 4.78

RBF ARD 0.55 0.60 1.49 1.10 1.79 1.20 0.80 0.60 1.20 0.85 4.68

Table: Table of results on the USPS digit data. A comparison with a summary of
results on this data-set Schélkopf and Smola [2001, Table 7.4] shows that the
IVM is in line with other results on this data. Furthermore these results were
achieved with fully automated model selection.
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Incorporating Invariances

Virtual Support Vectors

@ Invariances present: rotations, translations.

Could augment the original data set with transformed data points.
This leads to a rapid expansion in the size of the data set.
Schélkopf et al. [1996] suggest augmenting only support vectors.
Augmented points known as ‘virtual support vectors'.

This algorithm gives state-of-the-art performance on the USPS data
set.

vV vy vy VvVYYy
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USPS with Virtual Informative Vectors

Virtual Informative Vectors

@ Scholkopf et al. [1996]: biggest improvement using translation
invariances.

@ Applied standard IVM classification algorithm to the data set using an
RBF kernel combined with a linear term.

@ Took the active set from these experiments and aumented it:

original active set plus four translations: up down lweft and right
results in an augmented active set of 2500 points.

@ Reselect active set of size d = 1000 for final results.
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Performance on USPS

Classification Error %

0 1 2 3 4
0.648 £ 0.00 0.389 4 0.03 0.967 £ 0.06 0.683 + 0.05 1.06 £ 0.02

5 6 7 8 9 Overall
0.747 4+ 0.06 0.523 + 0.03 0.399 + 0.00 0.638 & 0.04 0.523 4 0.04 3.30 +0.03

Table: Experiments are summarised by the mean and variance of the %
classification error across ten runs with different random seeds. Results match
those given by the virtual SVM but model selection was automatic here.
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Probabilistic Model

Semi-supervised Noise Model
@ New noise model: the null category noise model.

@ Derives from the general class of ordered categorical models (or
ordinal regression).

b (htg)  Torve=-1
plyalfa) = o (fat+ %) —d(h—%) for y,=0 ,
o(f—%) for y, =1
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Ordinal Noise Model

Ordered Categories

1)

Figure: The ordered categorical noise model (ordinal regression). The plot shows
p (ya|f,) for different values of y,. Here we have assumed three categories.
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Null Category Noise Model

Noise Model for Semi-supervised Learning
@ Indicator variable, z, = 1 if data point is unlabeled.
@ We impose the constraint:p (z, = 1|y, = 0) = 0.
@ Assign missing label probabilities p (z, = 1|y, = 1) = 7 and
p(zn=1ly,=—1)=~-.
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Null Category Noise Model

Noise Model for Semi-supervised Learning
@ From the graphical representation z, is d-separated from x,.

When y, is observed, the posterior process is updated by using p (y,|f,)-
When the data point is unlabeled the posterior process is updated by

P(Zn = 1|fn) = Zp(}/n“:n)p(zn = 1|yn) o

Yn

@ The “effective likelihood function” for a single data point, L(f,),
therefore takes one of three forms:

H(— (fn+ %)) for y,=-1,2,=0
L(f)=3 v-H(=(h+3)+nH(f—3) for zm=1
H(f,,—% for Yan=12z,=0
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Null Category Noise Model

Noise Model for Semi-supervised Learning
@ The constraint imposed by p(z, = 1|y, = 0) = 0 implies that:
@ An unlabeled data point never comes from the class y, = 0.

This is equivalent to a hard assumption that no data comes from the
region around the decision boundary.

The labeled data only comes from the classes y, = 1 and y, = —1, so
we never obtain any evidence for data with y, = 0. We therefore refer
to this category as the null category and the overall model as a null
category noise model (NCNM).
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Null Category Noise Model

Null Category

1)

Figure: The null category noise model (semi-supervised classification).Standard

noise model for labelled points (y, = 0 is never observed). y, marginalised for
unlabelled points.
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Null Category Noise Model

Null Category

p,If)

Figure: The null category noise model (semi-supervised classification). Effective
noise model with y, marginalised for unlabelled points.
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, -0.3, .1, 0, le-2)
ol
2
agl
il
aal
9% ) ) ) 1 2 3
Figure: An EP style update with a classification noise model. Blue: p (£f.|X,x«,y).
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, -0.3, .1, 0, le-2)

ol

al

asl

al

0.5

S 0 1 2 3
Figure: An EP style update with a classification noise model. Biue: p (fi|X, x«,y),
Red: p(y« #0|f.) .
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, -0.3, .1, 0, le-2)
25l
i
18l

1t

=3 =2 =l 0 1 2 3

Figure: An EP style update with a classification noise model. Biue: p (fi|X, x«,y),
Red: p(y« # O|fs) , Magenta: p (£i|X, xx,y, yx).
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, -0.3, .1, 0, le-2)
25l
i
18l

1t

=3 =2 =l 0 1 2 3

Figure: An EP style update with a classification noise model. Biue: p (fi|X, x«,y),
Red: p (y« # 0|f) , Magenta: p (fi|X, X«,Y, y«), Green: q (f|X,x.,y).
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, 0, .1, 0, le-2)
1.6r
1.4t
1.2
A
0.8
0.6/
0.4

0.2

93 -2 =il 0 1 2 3

Figure: An EP style update with a classification noise model. Biue: p (fi|X,x«,y).
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, 0, .1, 0, le-2)
1.6
1.4r
1.2r
A
0.81
0.6r
0.4r

0.2r

Figure: An EP style update with a classification noise model. Blue: p (£i|X, x«,y),
Red: p (y« # 0|f) .
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, 0, .1, 0, le-2)
1.6
1.4r
1.2r
A
0.81
0.6r
0.4r

0.2r

Figure: An EP style update with a classification noise model. Blue: p (£i|X, x«,y),
Red: p(y« # O|f) , Magenta: p (fi|X, X«, Y, ys)-
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, 0, .1, 0, le-2)
1.6
1.4r
1.2r
A
0.81
0.6r
0.4r

0.2r

Figure: An EP style update with a classification noise model. Biue: p (fi|X, x«,y),
Red: p(y« # 0|fy) , Magenta: p (f|X,x«,y,yx), Green: q(f|X,x.,y).
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The Null Category

Low Data Density at Decision Boundary

@ When a data point is unlabeled the effect will depend on the mean
and variance of p (f,|x,).

@ If this Gaussian has little mass in the null category region, the
posterior will be similar to the prior.

If the Gaussian has significant mass in the null category region, the
outcome may be loosely described in two ways:

© If p(fa|xn) “spans the likelihood”, leading to a bimodal posterior: the
variance of the posterior will be greater than the variance of the prior.

Q@ If p(fa]xn) is “rectified by the likelihood”, then the mass of the posterior
will be pushed in to one side of the null category.

@ Note that the posterior is pushed out to one side or both sides of the
null category region.
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Toy Problem

Crescent Data

@ We considered two-dimensional data in which two class-conditional
densities interlock.

@ There were 400 points in the original data set. Each point was labeled
with probability 0.1, leading to 37 labeled points.

o A standard IVM classifier was trained on the labeled data only.

@ We then used the null category approach to train a classifier that
incorporates the unlabeled data.

@ The resulting decision boundary finds a region of low data density and
more accurately reflects the underlying data distribution.
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Crescent Data

Standard IVM vs Semi-supervised

1

S ,

% 5 0 5 10 =0 5 0 5 10

Figure: Data points: small blue dots, are labeled with probability 0.1. Labelled
data-points: red circles and green crosses. Active set: large blue dots. Left:
Learning with standard IVM. Right: Learning with the NCNM. Lines show centre
and edge of null category.
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High-dimensional example

USPS Data 3 vs 5
@ As a higher dimensional example we return to the USPS data set.
@ Separate the digit 3 from 5: vary probability of unlabelled data
between 0.2 and 1.25 x 1072,
@ Compare four classifiers:

standard IVM
standard SVM
semi-supervised VM,
transductive SVM.

@ Each run was completed ten times with different random seeds.
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USPS Data

AUC Results

area under ROC curve

0.8

107 10"
prob. of label present

Figure: Mean and standard errors shown. IVM (red solid line), the NCNM (blue
dotted line), the SVM (green dash-dot line) and the transductive SVM (pink
dashed line).
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USPS Data

Digits Results
@ Below a label probability of 2.5 x 10~2 both the SVM and
transductive SVM outperform the NCNM.

@ In this region the estimate 6; provided by the NCNM was sometimes
very low leading to occasional very poor results (note the large error
bar).

@ Above 2.5 x 1072 a clear improvement is obtained for the NCNM
over the other models.
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Conclusions
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@ Bayesian methods deal with uncertainty in a principled way.

@ Gaussian Processes are a powerful flexible way to make inference
about functions.

@ Need to use approximations for non-Gaussian Likelihoods.
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