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Online Resources

All source code and slides are available online

This talk available from my home page (see talks link on side).

MATLAB examples in the ’oxford’ toolbox (vrs 0.15).

I http://www.cs.man.ac.uk/~neill/oxford/.

Also the ’ivm’ toolbox (vrs 0.4).

I http://www.cs.man.ac.uk/~neill/ivm/.

And the ’gp’ toolbox (vrs 0.12)

I http://www.cs.man.ac.uk/~neill/gp/

MATLAB commands used for examples given in typewriter font.
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Notation

q— dimension of input/feature space
d— dimension of data space
n— number of data points

centred target data, y or for d > 1
Y = [y1,:, . . . , yn,:]

T = [y:,1, . . . , y:,d ] ∈ <n×d

input variables, X = [x1,:, . . . , xn,:]
T = [x:,1, . . . , x:,q] ∈ <n×q

matrix of basis functions, Φ =
[
φ1,:, . . . ,φn,:

]T
=
[
φ:,1, . . . ,φ:,q

]
∈ <n×q

mapping matrix, W ∈ <d×q

ai ,: is a vector from the ith row of a given matrix A
a:,j is a vector from the jth row of a given matrix A
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Reading Notation

X, Φ and Y are design matrices

Covariance given by n−1XTX.

Inner product matrix given by XXT.
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Gaussian Distribution

We will make use of (almost) only one distribution.

Gaussian distribution over z with mean m and covariance C is given
by

N (z|m,C) =
1

(2π)
k
2 |C|

1
2

exp

(
−1

2
(z−m)T C−1 (z−m)

)
Contours of two dimensional Gaussian are:
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Model Fitting

Inference about functions

Many Machine Learning problems can be reduced to inference about
functions/mappings.

I classification — map from input vector to binary class labels
(e.g. handwritten digits).

I regression — map from input vector to a real number (e.g. meat fat
content prediction).

Classical approach is to construct a parameteric function.
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Model Fitting

Normal approach to model fitting

Assume a functional relationship:

f (xi ,:) =
∑

j

wjxi ,j + ε

f (xi ,:) = wTxi ,: + ε

w is the vector of the regression weights.
xi ,: is the ith data point.
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Use a Bases Set

Take several basis functions with different centres, j :

φi ,j (xi ,:) = exp

(
− 1

2w2
(xi ,: − cj )

T (xi ,: − cj )

)
= φi ,j

Place them across the input space and replace treat them as your
input data:

f (xi ,:) =
∑

j

wjφi ,j + ε

f (xi ,:) = wTφi ,: + ε

w is the vector of the regression weights.
φi ,: are the values of the bases functions at the ith data point.
ε is a noise term.
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Set of RBF Bases
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Figure: RBF Basis functions for non-linear fit.
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Least Squares

Minimise error. Concatanate fi into a vector f = Φw.

E (w) =
1

2
(y − f)T (y − f)

E (w) =
1

2
yTy − yTf +

1

2
fTf

differentiate with respect to f:

E (w) =
1

2
yTy −wTΦTy +

1

2
wTΦTΦw

E (w) =
1

2
yTy − fTy +

1

2
fTW

dE (w)

dw
= −ΦTy + ΦTΦw

Neil Lawrence () Gaussian Processes 1st April 2008 12 / 88



Find Fixed Points

Finding fixed point for w means setting gradients to zero and solving

0 = −ΦTy + ΦTΦw

ΦTΦw = ΦTy

w =
(
ΦTΦ

)−1
ΦTy
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Least Squares Regression

demLeastSquaresRegress
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Bayesian Inference

Our line is smooth and fits exactly through the points.

I Even though we had more bases than data points.
I We used a little regularisation on the inverse of ΦTΦ.

Problem: the prediction gives us no error bars.

Solution: the Bayesian approach.
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Bayesian Approach

Take scaled error function, exponentiate and normalise:
1
K exp

(
−E(w)

σ2

)
.

Gives a likelihood:

p (y|X,w) =
1

(2π)
n
2 σn

exp

(
−(y − f)T (y − f)

2σ2

)

Physical interpretation of σ is standard deviation of noise
ε ∼ N

(
0, σ2

)
f (xi ,:) = wTφi ,: + ε
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Least Squares is Maximum Likelihood

Maximise the likelihood and we recover least squares.

Bayesian approach:

I Place a prior over w and integrate over w.
I Base predictions on the posterior of w given the data: p (w|X, y) .
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Whiteboard Derivation
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Bayesian Regression
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Bayesian Regression (difference)
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Introduction to Gaussian Processes

Inference about functions

We have seen parameteric models of functions.

They suffer a problem when the size of the basis is fixed.

Gaussian processes (GPs) are probabilistic models for functions.
O’Hagan [1978, 1992], Rasmussen and Williams [2006]

They place a prior directly over the function.
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Defining a Distribution over Functions

Gaussian Process

What is meant by a distribution over functions?

Functions are infinite dimensional objects:

Defining a distribution over functions seems non-sensical.

Gaussian Distribution

Start with a standard Gaussian distribution.

Consider the distribution over a fixed number of instantiations of the
function.
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Gaussian Distribution

Zero mean Gaussian distribution

A multi-variate Gaussian distribution is defined by a mean and a
covariance matrix.

N (f|µ,K) =
1

(2π)
N
2 |K|

1
2

exp

(
−(f − µ)T K−1 (f − µ)

2

)
.

We will consider the special case where the mean is zero,

N (f|0,K) =
1

(2π)
N
2 |K|

1
2

exp

(
− fTK−1f

2

)
.
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Sampling a Function

Multi-variate Gaussians

We will consider a Gaussian with a particular structure of covariance
matrix.

Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

We will plot these points against their index.
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Gaussian Distribution Sample

demGPSample
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Figure: (a) 25 instantiations of a function, fn, (b) greyscale covariance matrix.
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Covariance Function

The covariance matrix

Covariance matrix shows correlation between points fm and fn if n is
near to m.

Less correlation if n is distant from m.

Our ordering of points means that the function appears smooth.

Let’s focus on the joint distribution of two points form the 25.
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Prediction of f2 from f1

demGPCov2D([1 2])
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Figure: Covariance for

[
f1
f2

]
is K12 =

[
1 0.966

0.966 1

]
.
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Prediction of f5 from f1
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Covariance Functions
Where did this covariance matrix come from?

RBF Kernel Function

k (xm, xn) = α exp

(
−||xm − xn||2

2l2

)

Covariance matrix is built
using the inputs to the
function xn.

For the example above it
was based on Euclidean
distance.

The covariance function is
also know as a kernel.
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Different Covariance Functions

MLP Kernel Function

k (xm, xn) = αsin−1

(
wxT

mxn + b√
wxT

mxm + b + 1
√

wxT
n xn + b + 1

)

A non-stationary
covariance matrix [Williams,

1997].

Derived from a multi-layer
perceptron (MLP).
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Different Covariance Functions

Linear Kernel Function

k (xm, xn) = αxT
mxn

Allows for a linear trend.

Note the anti-correlations
in the matrix.
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Different Covariance Functions

White noise

k (xm, xn) = αδmn

Where δmn is the
Kronecker delta.

Simply represents
uncorrelated independent
noise.
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with γ = 10, α = 1
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Covariance Samples
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Figure: RBF kernel with l = 1, α = 1
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Covariance Samples
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Figure: RBF kernel with l = 0.3, α = 4
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Covariance Samples
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Figure: linear kernel with α = 16
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Covariance Samples
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Figure: MLP kernel with α = 8, w = 100 and b = 100
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Covariance Samples
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Figure: MLP kernel with α = 8, b = 0 and w = 100
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Covariance Samples
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Figure: bias kernel with α = 1 and
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Covariance Samples
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Figure: summed combination of: RBF kernel, α = 1, l = 0.3; bias kernel, α =1;
and white noise kernel, β = 100
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Joint Distribution

Making Predictions

Covariance function provides the joint distribution over the
instantiations.

Conditional distribution provides predictions.

Denoting the training set as f and test set as f∗.

I Predict using p (f∗|f).
I This conditional distribution is also Gaussian.
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Joint Distribution

Joint Distribution

The covariance function provides the joint distribution over the
instantiations.

Write down the conditional distribution provides predictions.

Denote the training set as f and test set as f∗.

I Predict using p (f∗|f).
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The Conditional Distribution

Partioned Inverse

Use partitioned inverse to find conditional.

K =

[
Kf,f Kf,∗
K∗,f K∗,∗

]
Partitioned inverse is then

K−1 =

[
K−1

f,f + K−1
f,f Kf,∗Σ

−1K∗,fK
−1
f,f −K−1

f,f Kf,∗Σ
−1

−Σ−1K∗,fK
−1
f,f

−̊1

]

where
Σ = K∗,∗ −K∗,fK

−1
f,f Kf,∗.
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Joint Distribution

Take Log of the Joint

Logarithm of the joint distribution:

log p (f, f∗) = −1

2
fTK−1

f,f f − 1

2
fTK−1

f,f Kf,∗Σ
−1K∗,fK

−1
f,f f

+fK−1
f,f Kf,∗Σ

−1f∗ −
1

2
fT
∗ Σ−1f∗ + const1

Conditional is found by dividing joint by the prior,
p (f) = N (f|0,Kf,f).
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Conditional Distribution

Deriving the Conditional

In log space this is equivalent to subtraction of

log p (f) = −1

2
fTK−1

f,f f + const2

giving

log p (f∗|f) = log p (f∗, f)− log p (f) = log N (f∗|—f∗,Σ) .

where f̄ = K∗,fK
−1
f,f f and Σ = K∗,∗ −K∗,fK

−1
f,f Kf,∗.
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Making Predictions

If we observe points from the function, f.

We can predict the locations of functions at as yet unseen locations.

The prediction is also a Gaussian process, with mean

f̄ = K∗,fK
−1
f,f f

(for those used to SVMs α = K−1
f,f f → f̄ = K∗,fα) and covariance

Σ = K∗,∗ −K∗,fK
−1
f,f Kf,∗.
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A Paradigm Shift from i.i.d.

Parameteric Model

p (yn|xn,w) = N
(
yn|wTxn, σ

2
)

p (y|X,w) =
N∏

n=1

p (yn|xn,w)

Parameteric models normally
assume independence given
parameters.
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A Paradigm Shift from i.i.d.

Gaussian process

p (y|X) = N (y|0,K)
In GPs no i.i.d. assumption is made
the kernel expresses correlations.
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Consistency

Consistency of a Gaussian Process

Predictions remain the same regardless of the number and location of
the test points.

p (f∗|f) =

∫
p (f∗, f+|f) df+,

For the system to be consistent this conditional probability must be
independent of the length of f+.

I In other words.

p (f∗|f) =

∫
p (f∗, f+|f) df+ =

∫
p
(

f∗, f̂+|f
)

d f̂+

This is generally not true ... e.g. consider a mixture model

p (yn|xn) =
∑

s

p
(
yn|xn, s

k
)
P
(
sk
)

where s encodes the mixture component as 1 of k encoding (k —
number of components).

I In this case
∑

s p
(
yn|xn, sk

)
P
(
sk
)
6=
∑

s p (yn|xn, sm) P (sm) for m 6= k
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Gaussian Process Interpolation

demInterpolation
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Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Neil Lawrence () Gaussian Processes 1st April 2008 47 / 88



Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Neil Lawrence () Gaussian Processes 1st April 2008 47 / 88



Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Neil Lawrence () Gaussian Processes 1st April 2008 47 / 88



Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Neil Lawrence () Gaussian Processes 1st April 2008 47 / 88



Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Neil Lawrence () Gaussian Processes 1st April 2008 47 / 88



Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Neil Lawrence () Gaussian Processes 1st April 2008 47 / 88



Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Neil Lawrence () Gaussian Processes 1st April 2008 47 / 88



Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Neil Lawrence () Gaussian Processes 1st April 2008 47 / 88



Noise Models

Graph of a GP

Relates input variables, X,
to vector, y, through f
given kernel parameters θ.

Plate notation indicates
independence of yn|fn.

Noise model, p (yn|fn) can
take several forms.

Simplest is Gaussian
noise.

�� �
�� �

Figure: The Gaussian process
depicted graphically.
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern
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Outline

1 Model Fitting

2 Bayesian Inference

3 Gaussian Processes

4 Non-Gaussian Noise Models

5 A Sparse Approximation
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Expectation Propagation

Local Moment Matching

Easiest to consider a single previously unseen data point, y∗, x∗.

Before seeing data point, prediction of f∗ is a GP, p (f∗|y,X, x∗).

Update prediction using Bayes’ Rule,

p (f∗|y, y∗,X, x∗) =
p (y∗|f∗) p (f∗|y,X, x∗)

p (y, y∗|X, x∗)
.

This posterior is not a Gaussian process if p (y∗|f∗) is non-Gaussian.

Neil Lawrence () Gaussian Processes 1st April 2008 52 / 88



Classification Noise Model

Probit Noise Model

f�
p(y

�|f�)
y�=1y�=-1

Figure: The probit model (classification). The plot shows p (yn|fn) for different

values of yn. For yn = 1 p (yn|fn) = φ (fn) =
∫ fn

−∞ N (z |0, 1) dz .
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Expectation Propagation II

Match Moments

Idea behind EP — approximate with a Gaussian process at this stage
by matching moments.

This is equivalent to minimizing the following KL divergence where
q (f∗|y, y∗,X, x∗) is constrained to be a GP.

q (f∗|y, y∗X, x∗) = argminq(f∗|y,y∗X,x∗)KL (p (f∗|y, y∗X, x∗) ||q (f∗|y, y∗,X, x∗))

This is equivalent to setting

〈f∗〉q(f∗|y,y∗,X,x∗) = 〈f∗〉p(f∗|y,y∗,X,x∗)〈
f 2
∗
〉

q(f∗|y,y∗,X,x∗) =
〈
f 2
∗
〉

p(f∗|y,y∗,X,x∗)
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Expectation Propagation III

Equivalent Gaussian

This is achieved by replacing p (y∗|f∗) with a Gaussian distribution

p (f∗|y, y∗,X, x∗) =
p (y∗|f∗) p (f∗|y,X, x∗)

p (y, y∗|X, x∗)

becomes

q (f∗|y, y∗,X, x∗) =
N
(
m∗|f∗, β−1

m

)
p (f∗|y,X, x∗)

p (y, y∗|X, x∗)
.
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Classification

epPointUpdate(’probit’, 1, -1, .1, .6, 1e-2)
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Figure: An EP style update with a classification noise model. Blue: p (f∗|X, x∗, y).
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Ordinal Noise Model

Ordered Categories

f�

p(y
�|f�)

y�=1
y�=0y�=-1

Figure: The ordered categorical noise model (ordinal regression). The plot shows
p (yn|fn) for different values of yn. Here we have assumed three categories.
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Ordinal Regression

epPointUpdate(’ordered’, 1, -1, .1, .6, 1e-3)
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Figure: An EP style update with an ordered category noise model. Blue:

p (f∗|X, x∗, y).
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Figure: An EP style update with an ordered category noise model. Blue:
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Neil Lawrence () Gaussian Processes 1st April 2008 58 / 88



Ordinal Regression

epPointUpdate(’ordered’, 1, -1, .1, .6, 1e-3)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure: An EP style update with an ordered category noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ = 0|f∗) , Magenta: p (f∗|X, x∗, y, y∗).

Neil Lawrence () Gaussian Processes 1st April 2008 58 / 88



Ordinal Regression

epPointUpdate(’ordered’, 1, -1, .1, .6, 1e-3)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure: An EP style update with an ordered category noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ = 0|f∗) , Magenta: p (f∗|X, x∗, y, y∗), Green: q (f∗|X, x∗, y).

Neil Lawrence () Gaussian Processes 1st April 2008 58 / 88



Outline

1 Model Fitting

2 Bayesian Inference

3 Gaussian Processes

4 Non-Gaussian Noise Models

5 A Sparse Approximation

6 Conclusions

Neil Lawrence () Gaussian Processes 1st April 2008 59 / 88



The Informative Vector Machine

Reduce Complexity

Including N data points through ADF still leads to an O
(
N3
)

complexity.

IVM algorithm resolves these problems with a sparse representation
for the data set.

Inspiration: the support vector machine.

IVM use a simple selection heuristic to incorporate d most informative
points [Lawrence et al., 2003, Seeger, 2004, Lawrence et al., 2005]. B

Computational complexity: O
(
N3
)

to O
(
d2N

)
.

Infromation theoretic [Chaloner and Verdinelli, 1995] criteria used to
select points.
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Data Point Selection

Entropy Criterion

Original IVM criterion inspired by support vectors being those that
reduce the size of the ‘version space’ most.

The equivalent Bayesian interpretation is volume of the posterior:
measured by entropy.

Entropy change associted with a data point is simple and quick to
compute.

For ith inclusion of nth data point:

∆Hin = −1

2
log |Σi,n|+

1

2
log |Σi−1|

= −1

2
log |I− Σi−1diag (ν i )|

= −1

2
log (1− νinςi−1,n) . (1)
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IVM Parameter Updates

Optimising Kernel Parameters

Need to express the marginal likelihood for optimization.

Seeger [2004] achieves by expressing the likelihood in terms of both
the active and inactive sets.

We simply express the likelihood in terms of the active set only.

Given the active set, I , and the site parameters, m and β, optimise
approximation wrt kernel parameters using gradient methods.

Active set and kernel parameters are interdependent: active set is
reselected between optimisations of kernel parameters.
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Results

Toy Problems

Two toy data sets for classification with probit noise. First uses an
ARD set up and one irrelevant direction.

A second demonstation: sampled 500 data points uniformly from a
unit square in two dimensions.

Sample then made from a GP prior of a function at these points.

This function was ’squashed’ by a cumulative Gaussian and a class
assigned according to this probability.
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IVM Classification

Ordered Categorical
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Figure: Contours: Red solid line at p (y |x) = 0.5 , blue dashed lines at p (y |x) = 0.25

and p (y |x) = 0.75. Active points are blue dots. Left: data sampled from from a mixture

of Gaussians. Right: Data uniformly sampled on the 2–dimensional unit square. Class

labels are assigned by sampling from a known Gaussian process prior.
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Ordered Categories

Ordered Categories

Two results from two problems on ordered categorical data.

First example the categories are separable linearly.

Second example: sampled ordered categorical data in polar
co-ordinates.
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Ordered Categories

Toy Problems
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Figure: .Left: a linear solution is found. Right: this categories in this example
were sampled in polar co-ordinates.
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USPS digits

Large Data Set

USPS digit data set of 16× 16 greyscale images.

Contains 7291 training images and 2007 test images.

Three different kernels with the IVM algorithm.

I For each data-set we used a ‘base kernel’ consisting of a linear part, a
white noise term and a bias part.

I Three variations on this base kernel were then used: it was changed by
adding first an RBF kernel, then an MLP kernel and finally a variant of
the RBF ARD kernel.

I Set d = 500.
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USPS digits

Classification error %

0 1 2 3 4 5 6 7 8 9 Overall

RBF 0.65 0.70 1.40 1.05 1.49 1.25 0.75 0.60 1.20 0.75 4.58

MLP 0.55 0.70 1.49 1.20 1.64 1.25 0.80 0.60 1.20 0.75 4.78

RBF ARD 0.55 0.60 1.49 1.10 1.79 1.20 0.80 0.60 1.20 0.85 4.68

Table: Table of results on the USPS digit data. A comparison with a summary of
results on this data-set Schölkopf and Smola [2001, Table 7.4] shows that the
IVM is in line with other results on this data. Furthermore these results were
achieved with fully automated model selection.
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Incorporating Invariances

Virtual Support Vectors

Invariances present: rotations, translations.

I Could augment the original data set with transformed data points.
I This leads to a rapid expansion in the size of the data set.
I Schölkopf et al. [1996] suggest augmenting only support vectors.
I Augmented points known as ‘virtual support vectors’.
I This algorithm gives state-of-the-art performance on the USPS data

set.
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USPS with Virtual Informative Vectors

Virtual Informative Vectors

Schölkopf et al. [1996]: biggest improvement using translation
invariances.

Applied standard IVM classification algorithm to the data set using an
RBF kernel combined with a linear term.

Took the active set from these experiments and aumented it:

I original active set plus four translations: up down lweft and right
I results in an augmented active set of 2500 points.

Reselect active set of size d = 1000 for final results.
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Performance on USPS

Classification Error %

0 1 2 3 4

0.648± 0.00 0.389± 0.03 0.967± 0.06 0.683± 0.05 1.06± 0.02

5 6 7 8 9 Overall

0.747± 0.06 0.523± 0.03 0.399± 0.00 0.638± 0.04 0.523± 0.04 3.30± 0.03

Table: Experiments are summarised by the mean and variance of the %
classification error across ten runs with different random seeds. Results match
those given by the virtual SVM but model selection was automatic here.
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Probabilistic Model

Semi-supervised Noise Model

New noise model: the null category noise model.

Derives from the general class of ordered categorical models (or
ordinal regression).

p (yn|fn) =


φ
(
−
(
fn + w

2

))
for yn = −1

φ
(
fn + w

2

)
− φ

(
fn − w

2

)
for yn = 0

φ
(
fn − w

2

)
for yn = 1

,
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Ordinal Noise Model

Ordered Categories

f�

p(y
�|f�)

y�=1
y�=0y�=-1

Figure: The ordered categorical noise model (ordinal regression). The plot shows
p (yn|fn) for different values of yn. Here we have assumed three categories.
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Null Category Noise Model

Noise Model for Semi-supervised Learning

Indicator variable, zn = 1 if data point is unlabeled.

We impose the constraint:p (zn = 1|yn = 0) = 0.

Assign missing label probabilities p (zn = 1|yn = 1) = γ+ and
p (zn = 1|yn = −1) = γ−.

�� � � ����
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Null Category Noise Model

Noise Model for Semi-supervised Learning

From the graphical representation zn is d-separated from xn.

I When yn is observed, the posterior process is updated by using p (yn|fn).
I When the data point is unlabeled the posterior process is updated by

p (zn = 1|fn) =
∑

yn

p (yn|fn) p (zn = 1|yn) .

The “effective likelihood function” for a single data point, L (fn),
therefore takes one of three forms:

L (fn) =

8<:
H
`
−
`
fn + 1

2

´´
for yn = −1, zn = 0

γ−H
`
−
`
fn + 1

2

´´
+ γ+H

`
fn − 1

2

´
for zn = 1

H
`
fn − 1

2

´
for yn = 1 zn = 0

.
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Null Category Noise Model

Noise Model for Semi-supervised Learning

The constraint imposed by p (zn = 1|yn = 0) = 0 implies that:

An unlabeled data point never comes from the class yn = 0.

I This is equivalent to a hard assumption that no data comes from the
region around the decision boundary.

I The labeled data only comes from the classes yn = 1 and yn = −1, so
we never obtain any evidence for data with yn = 0. We therefore refer
to this category as the null category and the overall model as a null
category noise model (NCNM).
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Null Category Noise Model

Null Category

f�

p(y
�|f�)

y�=1
y�=0y�=-1

Figure: The null category noise model (semi-supervised classification).Standard
noise model for labelled points (yn = 0 is never observed). yn marginalised for
unlabelled points.
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Null Category Noise Model

Null Category

fnp(y
n|f n) yn=1

yn=0yn=-1
Figure: The null category noise model (semi-supervised classification). Effective
noise model with yn marginalised for unlabelled points.
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, -0.3, .1, 0, 1e-2)
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Figure: An EP style update with a classification noise model. Blue: p (f∗|X, x∗, y).
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Figure: An EP style update with a classification noise model. Blue: p (f∗|X, x∗, y),
Red: p (y∗ 6= 0|f∗) .
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Figure: An EP style update with a classification noise model. Blue: p (f∗|X, x∗, y),
Red: p (y∗ 6= 0|f∗) , Magenta: p (f∗|X, x∗, y, y∗).
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The Null Category

Low Data Density at Decision Boundary

When a data point is unlabeled the effect will depend on the mean
and variance of p (fn|xn).

If this Gaussian has little mass in the null category region, the
posterior will be similar to the prior.

I If the Gaussian has significant mass in the null category region, the
outcome may be loosely described in two ways:

1 If p (fn|xn) “spans the likelihood”, leading to a bimodal posterior: the
variance of the posterior will be greater than the variance of the prior.

2 If p (fn|xn) is “rectified by the likelihood”, then the mass of the posterior
will be pushed in to one side of the null category.

Note that the posterior is pushed out to one side or both sides of the
null category region.
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Toy Problem

Crescent Data

We considered two-dimensional data in which two class-conditional
densities interlock.

There were 400 points in the original data set. Each point was labeled
with probability 0.1, leading to 37 labeled points.

A standard IVM classifier was trained on the labeled data only.

We then used the null category approach to train a classifier that
incorporates the unlabeled data.

The resulting decision boundary finds a region of low data density and
more accurately reflects the underlying data distribution.
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Crescent Data

Standard IVM vs Semi-supervised
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Figure: Data points: small blue dots, are labeled with probability 0.1. Labelled
data-points: red circles and green crosses. Active set: large blue dots. Left:
Learning with standard IVM. Right: Learning with the NCNM. Lines show centre
and edge of null category.
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High-dimensional example

USPS Data 3 vs 5

As a higher dimensional example we return to the USPS data set.

Separate the digit 3 from 5: vary probability of unlabelled data
between 0.2 and 1.25× 10−2.

Compare four classifiers:

I standard IVM
I standard SVM
I semi-supervised IVM,
I transductive SVM.

Each run was completed ten times with different random seeds.
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USPS Data

AUC Results
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Figure: Mean and standard errors shown. IVM (red solid line), the NCNM (blue
dotted line), the SVM (green dash-dot line) and the transductive SVM (pink
dashed line).
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USPS Data

Digits Results

Below a label probability of 2.5× 10−2 both the SVM and
transductive SVM outperform the NCNM.

In this region the estimate θ1 provided by the NCNM was sometimes
very low leading to occasional very poor results (note the large error
bar).

Above 2.5× 10−2 a clear improvement is obtained for the NCNM
over the other models.

Neil Lawrence () Gaussian Processes 1st April 2008 85 / 88



Outline

1 Model Fitting

2 Bayesian Inference

3 Gaussian Processes

4 Non-Gaussian Noise Models

5 A Sparse Approximation
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Summary

Bayesian methods deal with uncertainty in a principled way.

Gaussian Processes are a powerful flexible way to make inference
about functions.

Need to use approximations for non-Gaussian Likelihoods.
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