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Online Resources

All source code and slides are available online

@ This talk available from my home page (see talks link on side).
o MATLAB examples in the 'oxford" toolbox (vrs 0.13).

o http://www.dcs.shef.ac.uk/"neil/oxford/
@ And the 'fgplvm’ toolbox (vrs 0.141).

e http://www.dcs.shef.ac.uk/"neil/fgplvm/.

@ MATLAB commands used for examples given in typewriter
font.
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Introduction to Gaussian Processes

Inference about functions

@ Many Machine Learning problems can be reduced to inference
about functions.
o We will see some examples later.

o Gaussian processes (GPs) are probabilistic models for
functions. O’Hagan [1978, 1992], Rasmussen and Williams [2006]

@ GPs allow inference about functions in the presence of
uncertainty.
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Defining a Distribution over Functions

Gaussian Process

@ What is meant by a distribution over functions?
@ Functions are infinite dimensional objects:

o Defining a distribution over functions seems non-sensical.

Gaussian Distribution

@ Start with a standard Gaussian distribution.

@ Consider the distribution over a fixed number of instantiations
of the function.
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Gaussian Distribution

Zero mean Gaussian distribution
@ A multi-variate Gaussian distribution is defined by a mean and

a covariance matrix.

(F— ) K (F—p)

1
N(FluK) = —5—exp - >
(2m)2 [K]2
@ We will consider the special case where the mean is zero,
1 fTK-1f
N (f|0,K) = ——F—— exp <—> .
(2r)2 |K| 2 ”
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Sampling a Function

Multi-variate Gaussians

@ We will consider a Gaussian with a particular structure of
covariance matrix.

@ Generate a single sample from this 25 dimensional Gaussian
distribution, f =[fi, > ... fa5].

@ We will plot these points against their index.
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Gaussian Distribution Sample

demGPSample
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Figure: (a) 25 instantiations of a function, f,, (b) greyscale covariance

matrix. g
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.

@ Less correlation if n is distant from m.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.

@ Less correlation if n is distant from m.

@ Our ordering of points means that the function appears
smooth.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.

@ Less correlation if n is distant from m.

@ Our ordering of points means that the function appears
smooth.

@ Let's focus on the joint distribution of two points form the 25.
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Prediction of £, from f;

demGPCov2D([1 2])

-1

Figure: Covariance for { ;1 ] is Kip = { 1 0.966 }
2

0.966 1
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Prediction of f5 from f;

demGPCov2D([1 5])

Figure: Covariance for { :;1 ] is Kis = { 1 0.574 }
5

0.574 1
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Covariance Functions

Where did this covariance matrix come from?

RBF Kernel Function

_me—x,,|]2

k (Xm,Xn) = cvexp T

@ Covariance matrix is built

using the inputs to the
function x,.

@ For the example above it
was based on Euclidean
distance.

@ The covariance function is
also know as a kernel.
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Different Covariance Functions

MLP Kernel Function

1 wxLx, + b
VWXExy, + b+ 1/ wxTx, + b+ 1

k (Xm,Xn) = asin™

@ A non-stationary
covariance matrix [Williams,
1997].

@ Derived from a multi-layer
perceptron (MLP).
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Different Covariance Functions

Linear Kernel Function

5
. 0.5
@ Allows for a linear trend. o
@ Note the anti-correlations " ’
in the matrix. N 0s
25| -1
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Different Covariance Functions

A
@ Where ,,,, is the 5
Kronecker delta. 1 5
@ Simply represents "1 ’
uncorrelated independent 20 05
noise. N .,
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Covariance Samples

demCovFuncSample

6 T T T

Figure: RBF kernel with v =10, a =1
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Covariance Samples

ovFuncSample

=il R 0I5! 0 0.5 1

Figure: RBF kernel with /=1, a =1
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Covariance Samples

demCovFuncSample

Figure: RBF kernel with / =0.3, o =4
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Covariance Samples

ovFuncSample
4§/
0

Figure: linear kernel with o = 16

N
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Covariance Samples

demCovFuncSample

6 T T

Figure:  MLP kernel with « =8, w = 100 and b = 100
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Covariance Samples

demCovFuncSample

6 T T T

Figure:  MLP kernel with « =8, b=10 and w = 100

Neil Lawrence Gaussian Processes



Introduction to Gaussian Processes
Distributions over Functions
Samples from a Gaussian Distribution
Covariance functions

Covariance Samples

ovFuncSample

=il R 0I5! 0 0.5 1

Figure: bias kernel with =1 and
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Covariance Samples

demCovFuncSample

=il -0.5 0 0.5 1

Figure: summed combination of: RBF kernel, o = 1, / = 0.3; bias
kernel, & =1; and white noise kernel, § = 100 g
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Joint Distribution

Making Predictions

@ Covariance function provides the joint distribution over the
instantiations.

o Conditional distribution provides predictions.
@ Denoting the training set as f and test set as f..

o Predict using p (f.|f).
e This conditional distribution is also Gaussian.
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Gaussian Process Interpolation

o
2
*
o
T T T
-2 -1 1 2
<] .
=l
-3
Figure: Real example: BACCO (see e.g. [Oakley and O'Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels). g
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Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. [Oakley and O'Hagan, 2002]).

Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. [Oakley and O'Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels). g
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Figure: Real example: BACCO (see e.g. [Oakley and O'Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels). g
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Figure: Real example: BACCO (see e.g. [Oakley and O'Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels). g
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Figure: Real example: BACCO (see e.g. [Oakley and O'Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels). g
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Figure: Real example: BACCO (see e.g. [Oakley and O'Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels). g
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Figure: Real example: BACCO (see e.g. [Oakley and O'Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels). g
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Noise Models

Graph of a GP ° 0

@ Relates input variables, X,
to vector, y, through f

given kernel parameters 6. 6

@ Plate notation indicates
independence of y,|f,.

o Noise model, p (y,|fy) can

take several forms. N

@ Simplest is Gaussian

. Figure: The Gaussian process
noise.

depicted graphically.
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Gaussian Process Regression
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-3

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Figure: Examples include WiFi localization, C14 callibration curve.

Neil Lawrence Gaussian Processes



Prediction with Gaussian Processes Interpolation with Gaussian Processes
Regression with Gaussian Processes
Learning Kernel Parameters

Gaussian Process Regression

-3

Figure: Examples include WiFi localization, C14 callibration curve.
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Figure: Examples include WiFi localization, C14 callibration curve.
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Figure: Examples include WiFi localization, C14 callibration curve.
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Figure: Examples include WiFi localization, C14 callibration curve.
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A Paradigm Shift from i.i.d.

Parameteric Model

P (Yn[Xn, W) = N (ys|wx,, 0?) Parameteric models normally
assume independence given

parameters.

N
p(y1X,w) = T p (valxn, w)
n=1
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A Paradigm Shift from i.i.d.

Gaussian process

p(y|X) = N(y|0,K) In GPs no i.i.d. assumption is made

the kernel expresses correlations.
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

log-likelihood
S

—11} 4

—12

10" 10° 10
o] length scale
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

°
g~ ]
= 0—0
L -8 1
T
8 -9 1
~10| d
—11l d
_12
10" 10° 10
o] length scale
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Can we determine length scales and noise levels from the data?

—4

5| 4

log-likelihood
S

—11} 4

—12

= 0

10 10
o] length scale

10
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Can we determine length scales and noise levels from the data?
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

log-likelihood

-10;
-11f
_12
10" 10° 10
o] length scale

Neil Lawrence Gaussian Processes



Prediction with Gaussian Processes Interpolation with Gaussian Processes
Regression with Gaussian Processes
Learning Kernel Parameters

Learning Kernel Parameters
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

—4 ‘
1
.
=5
0.5
-6
agemmm= mesmmmmmnn .
e PP P LT | -
- = 0—q
-15 -1 -0.5 . . <,
-0.5+ 2
....... mmmmmmmmen g V
* * N -10;
-11;
-1.5+
_10l
10" I =
- length scale
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High Dimensional Data

USPS Data Set Handwritten Digit

@ 3648 Dimensions

e 64 rows by 57 columns
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High Dimensional Data

USPS Data Set Handwritten Digit

@ 3648 Dimensions ?I' S _,.f-'J_'-Ln'i_l-_;_.
e 64 rows by 57 columns ;-l-r_‘_ag ;Ti.::-&ﬂ.l-"'?.;'

@ Space contains more than ""i_ i _-_-_ .;.':- L |:lf:'. ¥
just this digit. LR Dttt 5
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High Dimensional Data

USPS Data Set Handwritten Digit

vt L SR
@ 3648 Dimensions --:"":-. -"'..-#_. '.-._:'_r'
e 64 rows by 57 columns .- ..-‘l':.'i-"-h'; '!1:' ]
-. - l 7
@ Space contains more than f E!l_. . "'-':-'7
just this digit. -'" -.'--.- .
. l-l_ :--..- L
@ Even if we sample every | "';' ? -'l_.
nanosecond from now . l" P 1 1 _.-'l:.";‘-
until the end of the |_I" "' __ﬂ_ !
. : L I'— -_.‘i' s o
universe, you won't see I fag -|I-|-'-' e
the original six! e WL -:ﬁ
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High Dimensional Data

USPS Data Set Handwritten Digit

[ l. -. - L ] -

@ 3648 Dimensions = _a':f:-:'_:r Tl-l-r.'r" 3

i = ehagt
e 64 rows by 57 columns e i, A _"'::F_.'!_"_."i
. S N | SR
@ Space contains more than L 'l'___._:. I
just this digit. -._-._."-'::-_T:IJIH AR o
LT = 1T RS
@ Even if we sample every . _Fl . -.':._-l '_'af !
nanosecond from now ;I_.___'|_' - R '-'-l:.';:
until the end of the L PRI L LE |'l!-. a0
. ity T [ el el ww 1
universe, you won't see L, B b :."‘::
the original six! T AT e T
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Rotate a 'Prototype’
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MATLAB Demo

demDigitsManifold[2 3], ’all’)

60

400

201

PCno 3
o

-60 -40 -20 0 20 40 60

PCno 2 g
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MATLAB Demo

20} 2
e )
2 G
£ G )

-20

c
-40 < S o
060 40 20 0 20 40 60

PC no 2 g
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Low Dimensional Manifolds

Pure Rotation is too Simple

@ In practice the data may undergo several distortions.
e e.g. digits undergo 'thinning’, translation and rotation.
@ For data with 'structure’:

e we expect fewer distortions than dimensions;
e we therefore expect the data to live on a lower dimensional
manifold.

@ Conclusion: deal with high dimensional data by looking for
lower dimensional non-linear embedding.
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Existing Methods

Spectral Approaches

o Classical Multidimensional Scaling (MDS) [Mardia et al., 1979].
o Uses eigenvectors of similarity matrix.

@ Isomap [Tenenbaum et al., 2000] is MDS with a particular
proximity measure.
o Kernel PCA [Schélkopf et al., 1998]
@ Provides an low dimensional representation and a mapping.

@ Mapping is implied throught he use of a kernel function as a
similarity matrix.

o Locally Linear Embedding [Roweis and Saul, 2000].

@ Looks to preserve locally linear relationships in a low
dimensional space. g
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Existing Methods |l

Iterative Methods

e Multidimensional Scaling (MDS)

o lIterative optimisation of a stress function [Kruskal, 1964].
e Sammon Mappings [Sammon, 1969].

@ Strictly speaking not a mapping — similar to iterative MDS.
@ NeuroScale [Lowe and Tipping, 1997]

e Augmentation of iterative MDS methods with a mapping.
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Probabilistic Approaches

@ Probabilistic PCA [Tipping and Bishop, 1999, Roweis, 1998]

e A linear method.
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Existing Methods Il

Probabilistic Approaches

@ Probabilistic PCA [Tipping and Bishop, 1999, Roweis, 1998]

e A linear method.
@ Density Networks [MacKay, 1995]

e Use importance sampling and a multi-layer perceptron.
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Existing Methods Il

Probabilistic Approaches

@ Probabilistic PCA [Tipping and Bishop, 1999, Roweis, 1998]
e A linear method.
@ Density Networks [MacKay, 1995]
e Use importance sampling and a multi-layer perceptron.

@ Generative Topographic Mapping (GTM) [Bishop et al., 1998]

o Uses a grid based sample and an RBF network.
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Existing Methods Il

Probabilistic Approaches

@ Probabilistic PCA [Tipping and Bishop, 1999, Roweis, 1998]
e A linear method.
@ Density Networks [MacKay, 1995]
e Use importance sampling and a multi-layer perceptron.

@ Generative Topographic Mapping (GTM) [Bishop et al., 1998]

o Uses a grid based sample and an RBF network.

Difficulty for Probabilistic Approaches

Propagate a probability distribution through a non-linear mapping. g
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The New Model

A Probabilistic Non-linear PCA
@ PCA has a probabilistic interpretation [Tipping and Bishop, 1999].

o It is difficult to ‘non-linearise’.

Dual Probabilistic PCA

@ We present a new probabilistic interpretation of PCA [Lawrence,
2005].

@ This interpretation can be made non-linear.

@ The result is non-linear probabilistic PCA.
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Notation

g— dimension of latent/embedded space
d— dimension of data space
n— number of data points

centred data, Y = [y, ... 7y,,7;]T =[y.1,...,Y.d] € Rnxd
latent variables, X = [x1 ., ... ,x,,,;]T =[X.1,...,%. ] € R™I
mapping matrix, W € R9*49

a; . is a vector from the ith row of a given matrix A
a.j is a vector from the jth row of a given matrix A
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Reading Notation

X and Y are design matrices

o Covariance given by n=tYTY.

@ Inner product matrix given by YYT.
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Linear Dimensionality Reduction

Linear Latent Variable Model

@ Represent data, Y, with a lower dimensional set of latent
variables X.

@ Assume a linear relationship of the form
Yi: = Wxi,: + ni:

where
Ni,: ~ N(0,0'2|) .

)
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

n
p(YIX, W) =[N (yi:|Wx;.,o?1)
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

e Standard Latent variable
approach:

n
p(YIX, W) =[N (yi:|Wx;.,o?1)
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

e Standard Latent variable .
approach: p(YIX, W) = TN (yi:|Wx; ., 0%1)

. . . i=1
o Define Gaussian prior

over latent space, X.

p(X) =[N (xi:l0,1)
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

n

@ Standard Latent variable p(YIX,W) =T]N (yi.IWx.,o2l)
approach: =
o Define Gaussian prior z
p(X)=T][N (xi.|0,1
over latent space, X. b9 ,11 (xi.10.1)

o Integrate out /atent N
variables. p(YIW) =T N (y,-,:\O,WWT + 02|)
i=1
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Linear Latent Variable Model 1l

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

p(Y|W) = f[ N (y,-,;IO, ww ! 4 aZI)
i=1
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Linear Latent Variable Model 1l

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]
p(YIW) = H N (y;.0,C), C=wwT 142
i=1

1
log p(Y|W) = —g log |C| — Etr (C*IYTY> + const.

If Ug are first g principal eigenvectors of n=1YTY and the corresponding eigenvalues
are Aq,

Nl

W=ULVT, L= (A —0?)

where V is an arbitrary rotation matrix.
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Linear Latent Variable Model IlI

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

n
p(YIX,W) =[N (yi.IWx.,ol)
i=1
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Linear Latent Variable Model IlI

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable
approach:

n
p(YIX,W) =[N (yi.IWx.,ol)
i=1
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Linear Latent Variable Model IlI

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable

n
approach: p(YIX,W) =T]N (yi,IWx;.,o?l)
o 5 = =1l
e Define Gaussian prior

over parameteters, W.

d
p(W)=[]N (wi.[0,1)
i=1
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Linear Latent Variable Model IlI

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data. .

@ Novel Latent variable p(YIX,W) =[N (yi.[Wx.,o?l)

i=1
approach:
o o - d
e Define Gaussian prior p (W) = HN (w;.]0,1)
over parameteters, W. e
o Integrate out

d
parameters. p(YIX) =[N (y:,j|07 xxT + 02|>
j=1
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004]

d
p(YIX) =[N (y:,j|0,xxT + o'2|>
j=1
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004]

d
p(Y|X) = HN JI0K), K=XXT 402
d 1
log p (Y|X) = == log |K| — Etr (K’IYYT) + const.

If Ug are first q principal eigenvectors of d=1YYT and the corresponding eigenvalues
are Ag,

X=UT, L= (A,—o%)2

where V is an arbitrary rotation matrix.
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Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]
p(YIW) = H N (y;.0,C), C=wwT 142
i=1

1
log p(Y|W) = —g log |C| — Etr (C*IYTY> + const.

If Ug are first g principal eigenvectors of n=1YTY and the corresponding eigenvalues
are Aq,

Nl

W=ULVT, L= (A —0?)

where V is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent

@ Solution for Probabilistic PCA (solves for the mapping)

Y'yu,=u,A, W=u,Lv'
@ Solution for Dual Probabilistic PCA (solves for the latent
positions)
vwlu, =uA,  x=ulv’
e Equivalence is from
U, = YTUA,

Neil Lawrence Gaussian Processes
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data. .

@ Novel Latent variable p(YIX,W) =[N (yi.[Wx.,o?l)

i=1
approach:
o o - d
e Define Gaussian prior p (W) = HN (w;.]0,1)
over parameteters, W. e
o Integrate out

d
parameters. p(YIX) =[N (y:,j|07 xxT + 02|>
j=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

d
p(YIX) =[N (y:,j|0, xxT + a2|)
Jj=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance
function.

d
p(YIX) =N (v.;10,K)
j=1

K=xxT + 42
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance

d
function.
o p(Y|X)=]]N(y.;[0,K
o We recognise it as the ,1:[1 (1:410,)
‘linear kernel’.

K=xxT + 42

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance

function. d

o We recognise it as the p(YIX) :jl:[lN (v:,10,K)
‘linear kernel’.

o We call this the K=?
Gaussian Process
Latent Variable model Replace linear kernel with non-linear
(GP_LVM)_ kernel for non-linear model.
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Non-linear Latent Variable Models

RBF Kernel

@ For example, use the RBF kernel

k(xi:,xj.) = aexp ( (xi; = x;, )2/2(XI ,:)) ‘

@ No longer possible to optimise wrt X via an eigenvalue
problem.

e Instead find gradients with respect to X, a, / and 2 and
optimise using conjugate gradients.
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Oil Data |

Example Data set

@ Oil flow data [Bishop and James, 1993].

@ Three phases of flow (stratified, annular, homogenous).
@ Twelve measurement probes.

@ 1000 data points.

@ We sub-sampled to 100 data points

e Compare, with KPCA, MDS, Sammon mappings, PCA and
GTM.
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Oil Data Il
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Oil Data I
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Figure: Left PCA, right Non-metric MDS
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Oil Data I
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Figure: Left Sammon Mapping, right GTM
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Oil Data
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Figure: Left Kernel PCA, right GP-LVM
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Oil Data IV

Nearest neighbour errors in X space

@ Nearest neighbour classification in latent space.

Method | PCA | Non-metric MDS | Sammon Mapping
Errors 20 13 6
Method | GTM* Kernel PCA* GP-LVM
Errors 7 13 4

* These models require parameter selection.
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Full Oil Data Set |

-1 -0.5 0 0.5 1 g
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Full Oil Data Set Il

Nearest Neighbour error in X

@ Nearest neighbour classification in latent space.

Method | PCA | GTM | GP-LVM
Errors 162 11 1

cf 2 errors in data space.
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Stick Man

Generalization with less Data than Dimensions

@ Powerful uncertainly handling of GPs leads to suprising
properties.

@ Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

@ Example: Modelling a stick man in 102 dimensions with 55
data points!

Neil Lawrence Gaussian Processes
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Stick Man I

Figure: The latent space for the stick man motion capture data.
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Stick Man I

=il

Figure: The latent space for the stick man motion capture data.
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Applications

Style Based Inverse Kinematics

Facilitating animation through modelling human motion with the
GP-LVM [Grochow et al., 2004]

Tracking using models of human motion learnt with the GP-LVM
[Urtasun et al., 2005]

Face Animation

Modelling facial motion capture data for synthesis of emotion and

speech. g

Neil Lawrence Gaussian Processes




Dimensional Reduction
Examples
Extensions

Back Constraints |

Local Distance Preservation [Lawrence and Quifionero Candela, 2006]

@ Most dimensional reduction techniques preserve local
distances.

@ The GP-LVM does not.
@ GP-LVM maps smoothly from latent to data space.

e Points close in latent space are close in data space.
o This does not imply points close in data space are close in
latent space.
@ Kernel PCA maps smoothly from data to latent space.

e Points close in data space are close in latent space.
e This does not imply points close in latent space are close in

data space. g
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Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 1-D latent space to 2-D data space.

v = x? — 0.5, yo = —x2+05

15 0
1 -0
— o
= =N
0.5 -1
0 -1
- -1 0 1 a -1 [ 1
x x
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Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 1-D latent space to 2-D data space.

v = x? — 0.5, yo = —x2+05

15 0
1 -0
— o
= =N
0.5 -1
0 -1
- -1 0 1 a -1 [ 1
x x
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Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 1-D latent space to 2-D data space.

v = x? — 0.5, yo = —x2+05

S0
S0
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Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 2-D data space to 1-D latent.

x=05(yf +y5 +1)

IS
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Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 2-D data space to 1-D latent.

x=05(yf +y5 +1)

IS
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Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 2-D data space to 1-D latent.

x=05(yf +y5 +1)

0.
15 0
1 -05
— o
= >
05 -1
0 -15 :
-0 l\v\ = I\
Q 05 1 15 2 K 05 1 15 2
x x
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NeuroScale

Multi-Dimensional Scaling with a Mapping

@ Lowe and Tipping [1997] made latent positions a function of
the data.

xij = fi (yi; w)
@ Function was either multi-layer perceptron or a radial basis
function network.
@ Their motivation was different from ours:

e They wanted to add the advantages of a true mapping to
multi-dimensional scaling.
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Back Constraints in the GP-LVM

Back Constraints
@ We can use the same idea to force the GP-LVM to respect
local distances.

e By constraining each x; to be a ‘smooth’ mapping from y;
local distances can be respected.

@ This works because in the GP-LVM we maximise wrt latent
variables, we don't integrate out.
@ Can use any ‘smooth’ function:

@ Neural network.
@ RBF Network.
© Kernel based mapping.
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Optimising BC-GPLVM

Computing Gradients

@ GP-LVM normally proceeds by optimising
L(X) = log p(Y|X)

with respect to X using g—)L(.

@ The back constraints are of the form

Xij = fJ-'(YI,:; B)

where B are parameters.

@ We can compute % via chain rule and optimise parameters of
mapping. g
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Motion Capture Results

demStickl and demStick3

Figure: The latent space for the motion capture data with (right) and
without (/eft) dynamics. The dynamics us a Gaussian process with an
RBF kernel.
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Motion Capture Results

demStickl and demStick3

Figure: The latent space for the motion capture data with (right) and
without (/eft) dynamics. The dynamics us a Gaussian process with an
RBF kernel. o
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Stick Man Results

demStickResults

-0.6 -04 -02 0 0.2 0.4 0.6 0.8

= = -

A |

(a) b) (c) (d)

Projection into data space from four points in the latent space. The g
inclination of the runner changes becoming more upright.
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Vowel Data

Vocal Joystick Data

@ Vowel sounds from a vocal joystick system [Bilmes et al., 2006].

e http://ssli.ee.washington.edu/vj

@ Vowels are from a single speaker and represented as:

o cepstral coefficients (12 dimensions) and
o 'deltas’ (further 12 dimensions).

@ 2700 data points in total (300 for each vowel).

Neil Lawrence Gaussian Processes
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PCA Results

PCA (used as initialisation for GP-LVM

Ar

3,

The different vowels are

2r shown as follows: /a/
red cross /ae/ green

1 X circle /ao/ blue plus
/e/ cyan asterix /i/

o o DD pink square /ibar/
yellow diamond /o/ red
down triangle /schwa/

-1 green up triangle and
. /u/ blue left triangle.
—35 0 5 g
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GP-LVM Results

demVowels?2

The different vowels are
shown as follows: /a/
red cross /ae/ green
circle /ao/ blue plus

/e/ cyan asterix /i/
pink square /ibar/
yellow diamond /o/ red
down triangle /schwa/
green up triangle and
/u/ blue left triangle.
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Isomap Results

demVowelsIsomap

1.5¢
1,
The different vowels are
0.5 shown as follows: /a/
red cross /ae/ green
O circle /ao/ blue plus
/e/ cyan asterix /i/
-0.5- pink square /ibar/
yellow diamond /o/ red
-1r down triangle /schwa/
green up triangle and
-L.5; 2 /u/ blue left triangle.
_2,
-2 -1 0 1 g
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BC-GPLVM Results

demVowels3

The different vowels are
shown as follows: /a/
red cross /ae/ green
circle /ao/ blue plus
/e/ cyan asterix /i/
pink square /ibar/
yellow diamond /o/ red
down triangle /schwa/
green up triangle and
/u/ blue left triangle.
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1-Nearest Neighbour in X

Comparison of the Approaches

@ Nearest neighbour classification in latent space.

Method | GP-LVM | Isomap | BC-GP-LVM
Errors 226 458 155

cf 24 errors in data space.
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Adding Dynamics

MAP Solutions for Dynamics Models

@ Data often has a temporal ordering.

@ Markov-based dynamics are often used.
@ For the GP-LVM

e Marginalising such dynamics is intractable.
e But: MAP solutions are trivial to implement.

@ Many choices: Kalman filter, Markov chains etc..

e Wang et al. [2006] suggest using a Gaussian Process.
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Gaussian process mapping in latent space between time points.
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Gaussian process mapping in latent space between time points.

“

t+1
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Gaussian process mapping in latent space between time points.

&

t
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Motion Capture Results

demStickl and demStick?2

Figure: The latent space for the motion capture data with (right) and

without-(/eft)-back-constraints-based-on-an-RBFkernel-—————~
@
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Motion Capture Results

demStickl and demStick?2

without (/eft) back constraints based on an RBF kernel.
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Robot SLAM |

Navigating by WiFi
@ Wireless access point signal strengths measured by robot
moving around building.

e 215 separate signal strength readings.
o 30 separate access points.

@ Robot moves in two dimensions so we expect data to be
inherently 2-D.

@ Learn GP-LVM, GP-LVM with Dynamics, back constrained
GP-LVM and back constrained GP-LVM with dynamics.
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Robot SLAM I

05

-15 -1 -05 0 05 1 15 2

(c) Standard GP-LVM (d) Standard GP-LVM
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Summary

@ Gaussian Processes are a powerful flexible way to make
inference about functions.

e Applications in graphics, vision, speech, robotics ...
@ GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.

@ Works Effectively as a Probabilistic Model in High
Dimensional Spaces.

@ Back constraints can be introduced to force local distance
preservation.

@ Dynamics can be introduced for modelling data with a
temporal structure.

Applications in graphics, vision, speech, robotics.
And finally ... g
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Consistency of Gaussian Processes

Consistency

Consistency of a Gaussian Process

@ Predictions remain the same regardless of the number and
location of the test points.

p(EI) = [ p(E.L.I0)df..

@ For the system to be consistent this conditional probability
must be independent of the length of f,.

@ In other words.

pEIN = [ p(t.fii) dte = [ p (8. 1eiF) of:
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Predictive Distribution

Joint Distribution

Joint Distribution

@ The covariance function provides the joint distribution over
the instantiations.

@ Write down the conditional distribution provides predictions.

@ Denote the training set as f and test set as f,.

o Predict using p (f.|f).
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Predictive Distribution

The Conditional Distribution

Partioned Inverse

@ Use partitioned inverse to find conditional.

_ | Kese K
K= |: K*,f K*,*

@ Partitioned inverse is then

Kt Kif + KifKe I 'K K —K K T
—% K, oK} 1

where

L= K*,* - K*,fKFfle,*-
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Predictive Distribution

Joint Distribution

Take Log of the Joint

@ Logarithm of the joint distribution:
| FE) = —SFTK I — SFTK 1K, T 'K, (K
ogp(f.f) = D) LY £.f PNk g §
1
KK X — Eff ¥~ !f, + consty

e Conditional is found by dividing joint by the prior,
p(F) = N (F[0, Kr ).
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Predictive Distribution

Conditional Distribution

Deriving the Conditional

@ In log space this is equivalent to subtraction of
1
log p (f) = —EfTKEflf + consto
giving
log p(f.|f) = logp(f.,f) —logp(f) =log N (f.1f:,X).

where f = K, ¢K; }f and T = K., — K, ¢K; K¢ ..
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Predictive Distribution

Making Predictions

@ If we observe points from the function, f.

@ We can predict the locations of functions at as yet unseen
locations.

@ The prediction is also a Gaussian process, with mean f and
covariance .

@ Often observe corrupted version of function.
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