
Introduction to Gaussian Processes

Neil D. Lawrence

University of Siena

6th April 2011

Outline

Gaussian Distributions and Processes

Covariance from Basis Functions

Basis Function Representations

Bayesian Review

Building on Regression

Conclusions

Outline

Gaussian Distributions and Processes

Covariance from Basis Functions

Basis Function Representations

Bayesian Review

Building on Regression

Conclusions

Gaussian Distribution

Zero mean Gaussian distribution

I A multi-variate Gaussian distribution is defined by a mean and
a covariance matrix.

N (f|µ,K) =
1

(2π)
n
2 |K|

1
2

exp

(
−(f − µ)>K−1 (f − µ)

2

)
.

I We will consider the special case where the mean is zero,

N (f|0,K) =
1

(2π)
n
2 |K|

1
2

exp

(
− f>K−1f

2

)
.

Two Dimensional Gaussian

I Consider height, h/m and weight, w/kg .

I Could sample height from a distribution:

p(h) ∼ N (1.7, 0.0225)

I And similarly weight:

p(w) ∼ N (75, 36)

Height and Weight Models

1

2

3

1.25 1.7 2.15

p
(h

)

h/m

0.02

0.04

0.06

55 75 95
p

(w
)

w/kg

Figure: Gaussian distributions for height and weight.

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Independence Assumption

I This assumes height and weight are independent.

p(h,w) = p(h)p(w)

I In reality they are dependent (body mass index) = w
h2 .

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Sampling Two Dimensional Variables
w
/k

g

h/m

p
(h

)
p

(w
)

Correlated Gaussian

I Second Gaussian correlated.

I Form from original Gaussian by elongating one direction and
rotating.

I For rotation matrix R and scaling matrix

L =

[
`1 0
0 `2

]
this gives a covariance matrix:

K = RL2R>

Sampling a Function

Multi-variate Gaussians

I We will consider a Gaussian with a particular structure of
covariance matrix.

I Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

I We will plot these points against their index.

Gaussian Distribution Sample

n

f
n

5 10 15 20 25

−1

−0.5

0.5

1

1.5

2

(a) A 25 dimensional correlated ran-
dom variable (values ploted against
index)

n

m

5 10 15 20 25

5

10

15

20

25

0.2

0.4

0.6

0.8

(b) colormap showing correlations
between dimensions

Figure: A sample from a 25 dimensional Gaussian distribution.

Covariance Function

The covariance matrix

I Covariance matrix shows correlation between points fi and fj if
i is near to j .

I Less correlation if i is distant from j .

I Our ordering of points means that the function appears
smooth.

I Let’s focus on the joint distribution of two points from the 25.

Covariance Function

The covariance matrix

I Covariance matrix shows correlation between points fi and fj if
i is near to j .

I Less correlation if i is distant from j .

I Our ordering of points means that the function appears
smooth.

I Let’s focus on the joint distribution of two points from the 25.

Covariance Function

The covariance matrix

I Covariance matrix shows correlation between points fi and fj if
i is near to j .

I Less correlation if i is distant from j .

I Our ordering of points means that the function appears
smooth.

I Let’s focus on the joint distribution of two points from the 25.

Covariance Function

The covariance matrix

I Covariance matrix shows correlation between points fi and fj if
i is near to j .

I Less correlation if i is distant from j .

I Our ordering of points means that the function appears
smooth.

I Let’s focus on the joint distribution of two points from the 25.

Prediction of f2 from f1

demGpCov2D([1 2])

f
1

f
2

−1 1

−1

1

Figure: Covariance for

[
f1

f2

]
is K12 =

[
1 0.966

0.966 1

]
.

Prediction of f2 from f1

demGpCov2D([1 2])

f
1

f
2

−1 1

−1

1

Figure: Covariance for

[
f1

f2

]
is K12 =

[
1 0.966

0.966 1

]
.

Prediction of f2 from f1

demGpCov2D([1 2])

f
1

f
2

−1 1

−1

1

Figure: Covariance for

[
f1

f2

]
is K12 =

[
1 0.966

0.966 1

]
.

Prediction of f5 from f1

demGpCov2D([1 5])

f
1

f
5

−1 1

−1

1

Figure: Covariance for

[
f1

f5

]
is K15 =

[
1 0.574

0.574 1

]
.

Prediction of f5 from f1

demGpCov2D([1 5])

f
1

f
5

−1 1

−1

1

Figure: Covariance for

[
f1

f5

]
is K15 =

[
1 0.574

0.574 1

]
.

Prediction of f5 from f1

demGpCov2D([1 5])

f
1

f
5

−1 1

−1

1

Figure: Covariance for

[
f1

f5

]
is K15 =

[
1 0.574

0.574 1

]
.

Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k
(
x, x′

)
= α exp

(
−||x− x′||2

2`2

)

I Covariance matrix is built
using the inputs to the
function t.

I For the example above it
was based on Euclidean
distance.

I The covariance function is
also know as a kernel.

n

m

5 10 15 20 25

5

10

15

20

25 −1

−0.5

0

0.5

1

Outline

Gaussian Distributions and Processes

Covariance from Basis Functions

Basis Function Representations

Bayesian Review

Building on Regression

Conclusions

Basis Function Form

Radial basis functions commonly have the form

φk (xi) = exp

(
−|xi − µk |2

2`2

)
.

I Basis function maps data
into a “feature space” in
which a linear sum is a
non linear function.

0

0.2

0.4

0.6

0.8

1

-6 -4 -2 0 2 4 6

φ
(x

)

x
Figure: A set of radial basis functions with width
` = 2 and location parameters µ = [−4 0 4]>.

Basis Function Representations

I Represent a function by a linear sum over a basis,

f (xi ,:; w) =
M∑

k=1

wkφk(xi ,:), (1)

I Here: M basis functions and φk(·) is kth basis function and

w = [w1, . . . ,wM]> .

I For standard linear model: φk(xi ,:) = xi ,k .

Random Functions

Functions derived using:

f (x) =
M∑

k=1

wkφk(x),

where W is sampled
from a Gaussian density,

wk ∼ N (0, α) .

-2

-1

0

1

2

-6 -4 -2 0 2 4 6

f
(x

)

x

Figure: Functions sampled using the basis set from
figure 5. Each line is a separate sample, generated by
a weighted sum of the basis set. The weights, w are
sampled from a Gaussian density with variance α = 1.

Outline

Gaussian Distributions and Processes

Covariance from Basis Functions

Basis Function Representations

Bayesian Review

Building on Regression

Conclusions

Model Likelihood

I There are two components to a Bayesian probabilistic model.

1. the likelihood
2. the prior

I The likelihood p(y|x,w) depends on the data and the
parameters.

I The prior p(w) represents our a priori belief about parameters.

I Compute posterior with Bayes rule:

p(w|x, y) =
p(y|x,w)p(w)

p(y|x)

The Likelihood

I Form likelihood by adding noise:

y (xi) = f (xi ; w) + εi ,

εi is the noise associated with the ith data point.

εi ∼ N
(
0, σ2

)
,

I The likelihood is not equivalent to a loss.

I For Gaussian distributed noise

p
(
y|x,w, σ2

)
=

M∏
i=1

N
(
yi |fi , σ

2
)
,

I Mean of this Gaussian distributions given by fi = f (xi ; w).

Prior and Posterior Distribution

I Prior over w is Gaussian with covariance matrix γ′I,

p(w) = N
(
w|0, γ′I

)
.

I Combine prior with likelihood to get posterior distribution:

p(w|y, x, σ2) = N (w|µw ,Cw)

with
µw = σ−2CwΦ

>y

and

Cw =

[
σ−2Φ>Φ +

1

γ′
I

]−1

.

Prior and Posterior Distribution

I Prior over w is Gaussian with covariance matrix γ′I,

p(w) = N
(
w|0, γ′I

)
.

I Combine prior with likelihood to get posterior distribution:

p(w|y, x, σ2) = N (w|µw ,Cw)

with
µw = σ−2CwΦ

>y

and

Cw =

[
σ−2Φ>Φ +

1

γ′
I

]−1

.

Prior and Posterior Distribution

I Prior over w is Gaussian with covariance matrix γ′I,

p(w) = N
(
w|0, γ′I

)
.

I Combine prior with likelihood to get posterior distribution:

p(w|y, x, σ2) = N (w|µw ,Cw)

with
µw = σ−2CwΦ

>y

and

Cw =

[
σ−2Φ>Φ +

1

γ′
I

]−1

.

Prior and Posterior Distribution

I Prior over w is Gaussian with covariance matrix γ′I,

p(w) = N
(
w|0, γ′I

)
.

I Combine prior with likelihood to get posterior distribution:

p(w|y, x, σ2) = N (w|µw ,Cw)

with
µw = σ−2CwΦ

>y

and

Cw =

[
σ−2Φ>Φ +

1

γ′
I

]−1

.

Notation Aside

I Constructed a “design matrix” from our basis functions

Φ = [φ1, . . . ,φM] ,

where
φj = [φj (x1) , . . . , φj (xn)]>

Notation Aside

I Constructed a “design matrix” from our basis functions

Φ = [φ1, . . . ,φM] ,

where
φj = [φj (x1) , . . . , φj (xn)]>

Marginal Likelihood

I Can also compute marginal likelihood of data:

p(y|x, σ2) = N (y|0,K)

where
K = γ′ΦΦ> + σ2I.

I This is a joint Gaussian density across observations y.

I If
f ∼ N

(
0, αΦΦ>

)
and

ε ∼ N
(
0, σ2I

)
then y = f + ε is

y ∼ N
(

0, αΦΦ> + σ2I
)

Marginal Likelihood

I Can also compute marginal likelihood of data:

p(y|x, σ2) = N (y|0,K)

where
K = γ′ΦΦ> + σ2I.

I This is a joint Gaussian density across observations y.

I If
f ∼ N

(
0, αΦΦ>

)
and

ε ∼ N
(
0, σ2I

)
then y = f + ε is

y ∼ N
(

0, αΦΦ> + σ2I
)

Marginal Likelihood

I Can also compute marginal likelihood of data:

p(y|x, σ2) = N (y|0,K)

where
K = γ′ΦΦ> + σ2I.

I This is a joint Gaussian density across observations y.

I If
f ∼ N

(
0, αΦΦ>

)
and

ε ∼ N
(
0, σ2I

)
then y = f + ε is

y ∼ N
(

0, αΦΦ> + σ2I
)

Marginal Likelihood

I Can also compute marginal likelihood of data:

p(y|x, σ2) = N (y|0,K)

where
K = γ′ΦΦ> + σ2I.

I This is a joint Gaussian density across observations y.

I If
f ∼ N

(
0, αΦΦ>

)
and

ε ∼ N
(
0, σ2I

)
then y = f + ε is

y ∼ N
(

0, αΦΦ> + σ2I
)

Marginal Likelihood

I Can also compute marginal likelihood of data:

p(y|x, σ2) = N (y|0,K)

where
K = γ′ΦΦ> + σ2I.

I This is a joint Gaussian density across observations y.

I If
f ∼ N

(
0, αΦΦ>

)
and

ε ∼ N
(
0, σ2I

)
then y = f + ε is

y ∼ N
(

0, αΦΦ> + σ2I
)

Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi ; w) =
M∑

k=1

wkφk (xi)

computed at training data gives a vector

f = Φw.

I w and f are only related by a inner product.

I Φ is fixed and non-stochastic for a given training set.

I f is Gaussian distributed.

I it is straightforward to compute distribution for f

Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi ; w) =
M∑

k=1

wkφk (xi)

computed at training data gives a vector

f = Φw.

I w and f are only related by a inner product.

I Φ is fixed and non-stochastic for a given training set.

I f is Gaussian distributed.

I it is straightforward to compute distribution for f

Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi ; w) =
M∑

k=1

wkφk (xi)

computed at training data gives a vector

f = Φw.

I w and f are only related by a inner product.

I Φ is fixed and non-stochastic for a given training set.

I f is Gaussian distributed.

I it is straightforward to compute distribution for f

Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi ; w) =
M∑

k=1

wkφk (xi)

computed at training data gives a vector

f = Φw.

I w and f are only related by a inner product.

I Φ is fixed and non-stochastic for a given training set.

I f is Gaussian distributed.

I it is straightforward to compute distribution for f

Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi ; w) =
M∑

k=1

wkφk (xi)

computed at training data gives a vector

f = Φw.

I w and f are only related by a inner product.

I Φ is fixed and non-stochastic for a given training set.

I f is Gaussian distributed.

I it is straightforward to compute distribution for f

Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi ; w) =
M∑

k=1

wkφk (xi)

computed at training data gives a vector

f = Φw.

I w and f are only related by a inner product.

I Φ is fixed and non-stochastic for a given training set.

I f is Gaussian distributed.

I it is straightforward to compute distribution for f

Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi ; w) =
M∑

k=1

wkφk (xi)

computed at training data gives a vector

f = Φw.

I w and f are only related by a inner product.

I Φ is fixed and non-stochastic for a given training set.

I f is Gaussian distributed.

I it is straightforward to compute distribution for f

Expectations

I We use 〈·〉 to denote expectations under prior distributions.

I We have
〈f〉 = φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈

ff>
〉
− 〈f〉 〈f〉>

〈
ff>
〉

= Φ
〈

ww>
〉
Φ>,

giving
K = γ′ΦΦ>.

Expectations

I We use 〈·〉 to denote expectations under prior distributions.

I We have
〈f〉 = φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈

ff>
〉
− 〈f〉 〈f〉>

〈
ff>
〉

= Φ
〈

ww>
〉
Φ>,

giving
K = γ′ΦΦ>.

Expectations

I We use 〈·〉 to denote expectations under prior distributions.

I We have
〈f〉 = φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈

ff>
〉
− 〈f〉 〈f〉>

〈
ff>
〉

= Φ
〈

ww>
〉
Φ>,

giving
K = γ′ΦΦ>.

Expectations

I We use 〈·〉 to denote expectations under prior distributions.

I We have
〈f〉 = φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈

ff>
〉
− 〈f〉 〈f〉>

〈
ff>
〉

= Φ
〈

ww>
〉
Φ>,

giving
K = γ′ΦΦ>.

Expectations

I We use 〈·〉 to denote expectations under prior distributions.

I We have
〈f〉 = φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈

ff>
〉
− 〈f〉 〈f〉>

〈
ff>
〉

= Φ
〈

ww>
〉
Φ>,

giving
K = γ′ΦΦ>.

Covariance between Two Points

I The prior covariance between two points xi and xj is

k (xi , xj) = γ′
M∑
`

φ` (xi)φ` (xj)

or in vector form

k (xi , xj) = φ: (xi)
> φ: (xj) ,

I For the radial basis used this gives

k (xi , xj) = γ′
M∑

k=1

exp

(
−
|xi − µk |2 + |xj − µk |2

2`2

)
.

Covariance between Two Points

I The prior covariance between two points xi and xj is

k (xi , xj) = γ′
M∑
`

φ` (xi)φ` (xj)

or in vector form

k (xi , xj) = φ: (xi)
> φ: (xj) ,

I For the radial basis used this gives

k (xi , xj) = γ′
M∑

k=1

exp

(
−
|xi − µk |2 + |xj − µk |2

2`2

)
.

Covariance between Two Points

I The prior covariance between two points xi and xj is

k (xi , xj) = γ′
M∑
`

φ` (xi)φ` (xj)

or in vector form

k (xi , xj) = φ: (xi)
> φ: (xj) ,

I For the radial basis used this gives

k (xi , xj) = γ′
M∑

k=1

exp

(
−
|xi − µk |2 + |xj − µk |2

2`2

)
.

Covariance between Two Points

I The prior covariance between two points xi and xj is

k (xi , xj) = γ′
M∑
`

φ` (xi)φ` (xj)

or in vector form

k (xi , xj) = φ: (xi)
> φ: (xj) ,

I For the radial basis used this gives

k (xi , xj) = γ′
M∑

k=1

exp

(
−
|xi − µk |2 + |xj − µk |2

2`2

)
.

Selecting Number and Location of Basis

I Need to choose

1. location of centers
2. number of basis functions

I Consider uniform spacing over a region:

k (xi , xj) = γ∆µ
M∑

k=1

exp

(
−

x2
i + x2

j − 2µk (xi + xj) + 2µ2
k

2`2

)
,

Selecting Number and Location of Basis

I Need to choose

1. location of centers
2. number of basis functions

I Consider uniform spacing over a region:

k (xi , xj) = γ∆µ
M∑

k=1

exp

(
−

x2
i + x2

j − 2µk (xi + xj) + 2µ2
k

2`2

)
,

Selecting Number and Location of Basis

I Need to choose

1. location of centers
2. number of basis functions

I Consider uniform spacing over a region:

k (xi , xj) = γ∆µ
M∑

k=1

exp

(
−

x2
i + x2

j − 2µk (xi + xj) + 2µ2
k

2`2

)
,

Selecting Number and Location of Basis

I Need to choose

1. location of centers
2. number of basis functions

I Consider uniform spacing over a region:

k (xi , xj) = γ∆µ
M∑

k=1

exp

(
−

x2
i + x2

j − 2µk (xi + xj) + 2µ2
k

2`2

)
,

Uniform Basis Functions

I Set each center location to

µk = a + ∆µ · (k − 1).

I Specify the bases in terms of their indices,

k (xi , xj) =γ∆µ
M∑

k=1

exp

(
−

x2
i + x2

j

2`2

−
2 (a + ∆µ · k) (xi + xj) + 2 (a + ∆µ · k)2

2`2

)
.

Uniform Basis Functions

I Set each center location to

µk = a + ∆µ · (k − 1).

I Specify the bases in terms of their indices,

k (xi , xj) =γ∆µ
M∑

k=1

exp

(
−

x2
i + x2

j

2`2

−
2 (a + ∆µ · k) (xi + xj) + 2 (a + ∆µ · k)2

2`2

)
.

Infinite Basis Functions

I Take µ0 = a and µM = b so b = a + ∆µ · (M − 1).

I Take limit as ∆µ→ 0 so M →∞

k(xi , xj) =γ

∫ b

a
exp

(
−

x2
i + x2

j

2`2

+
2
(
µ− 1

2 (xi + xj)
)2 − 1

2 (xi + xj)
2

2`2

)
dµ,

where we have used k ·∆µ→ µ.

Infinite Basis Functions

I Take µ0 = a and µM = b so b = a + ∆µ · (M − 1).

I Take limit as ∆µ→ 0 so M →∞

k(xi , xj) =γ

∫ b

a
exp

(
−

x2
i + x2

j

2`2

+
2
(
µ− 1

2 (xi + xj)
)2 − 1

2 (xi + xj)
2

2`2

)
dµ,

where we have used k ·∆µ→ µ.

Infinite Basis Functions

I Take µ0 = a and µM = b so b = a + ∆µ · (M − 1).

I Take limit as ∆µ→ 0 so M →∞

k(xi , xj) =γ

∫ b

a
exp

(
−

x2
i + x2

j

2`2

+
2
(
µ− 1

2 (xi + xj)
)2 − 1

2 (xi + xj)
2

2`2

)
dµ,

where we have used k ·∆µ→ µ.

Infinite Basis Functions

I Take µ0 = a and µM = b so b = a + ∆µ · (M − 1).

I Take limit as ∆µ→ 0 so M →∞

k(xi , xj) =γ

∫ b

a
exp

(
−

x2
i + x2

j

2`2

+
2
(
µ− 1

2 (xi + xj)
)2 − 1

2 (xi + xj)
2

2`2

)
dµ,

where we have used k ·∆µ→ µ.

Result

I Performing the integration leads to

k(xi ,xj) = γ

√
π`2

2
exp

(
−

(xi − xj)
2

4`2

)

×

[
erf

((
b − 1

2 (xi + xj)
)

`

)
− erf

((
a− 1

2 (xi + xj)
)

`

)]
,

I Now take limit as a→ −∞ and b →∞

k (xi , xj) = α exp

(
−

(xi − xj)
2

4`2

)
.

where α = γ
√
π`2.

Result

I Performing the integration leads to

k(xi ,xj) = γ

√
π`2

2
exp

(
−

(xi − xj)
2

4`2

)

×

[
erf

((
b − 1

2 (xi + xj)
)

`

)
− erf

((
a− 1

2 (xi + xj)
)

`

)]
,

I Now take limit as a→ −∞ and b →∞

k (xi , xj) = α exp

(
−

(xi − xj)
2

4`2

)
.

where α = γ
√
π`2.

Result

I Performing the integration leads to

k(xi ,xj) = γ

√
π`2

2
exp

(
−

(xi − xj)
2

4`2

)

×

[
erf

((
b − 1

2 (xi + xj)
)

`

)
− erf

((
a− 1

2 (xi + xj)
)

`

)]
,

I Now take limit as a→ −∞ and b →∞

k (xi , xj) = α exp

(
−

(xi − xj)
2

4`2

)
.

where α = γ
√
π`2.

Infinite Feature Space

I A RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is the exponentiated quadratic.
I Note: The functional form for the covariance function and

basis functions are similar.
I this is a special case,
I in general they are very different

I Similar results can obtained for multi-dimensional input
networks Williams (1998).

Infinite Feature Space

I A RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is the exponentiated quadratic.
I Note: The functional form for the covariance function and

basis functions are similar.
I this is a special case,
I in general they are very different

I Similar results can obtained for multi-dimensional input
networks Williams (1998).

Infinite Feature Space

I A RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is the exponentiated quadratic.
I Note: The functional form for the covariance function and

basis functions are similar.
I this is a special case,
I in general they are very different

I Similar results can obtained for multi-dimensional input
networks Williams (1998).

Infinite Feature Space

I A RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is the exponentiated quadratic.
I Note: The functional form for the covariance function and

basis functions are similar.
I this is a special case,
I in general they are very different

I Similar results can obtained for multi-dimensional input
networks Williams (1998).

Nonparametric Gaussian Processes

I This work takes us from parametric to non-parametric.

I The limit implies infinite dimensional w.

I Gaussian processes are generally non-parametric: combine
data with covariance function to get model.

I This representation cannot be summarized by a parameter
vector of a fixed size.

The Parametric Bottleneck

I Parametric models have a representation that does not
respond to increasing training set size.

I Bayesian posterior distributions over parameters contain the
information about the training data.

I Use Bayes’ rule from training data, p (w|y, x),
I Make predictions on test data

p (y∗|x∗, y, x) =

∫
p (y∗|w, x∗) p (w|y, x)dw) .

I w becomes a bottleneck for information about the training set
to pass to the test set.

I Solution: increase M so that the bottleneck is so large that it
no longer presents a problem.

I How big is big enough for M? Non-parametrics says M →∞.

The Parametric Bottleneck

I Now no longer possible to manipulate the model through the
standard parametric form given in (1).

I However, it is possible to express parametric as GPs:

k (xi , xj) = φ: (xi)
> φ: (xj) .

I These are known as degenerate covariance matrices.

I Their rank is at most M, non-parametric models have full
rank covariance matrices.

I Most well known is the “linear kernel”, k(xi , xj) = x>i xj .

The Parametric Bottleneck

I Now no longer possible to manipulate the model through the
standard parametric form given in (1).

I However, it is possible to express parametric as GPs:

k (xi , xj) = φ: (xi)
> φ: (xj) .

I These are known as degenerate covariance matrices.

I Their rank is at most M, non-parametric models have full
rank covariance matrices.

I Most well known is the “linear kernel”, k(xi , xj) = x>i xj .

The Parametric Bottleneck

I Now no longer possible to manipulate the model through the
standard parametric form given in (1).

I However, it is possible to express parametric as GPs:

k (xi , xj) = φ: (xi)
> φ: (xj) .

I These are known as degenerate covariance matrices.

I Their rank is at most M, non-parametric models have full
rank covariance matrices.

I Most well known is the “linear kernel”, k(xi , xj) = x>i xj .

The Parametric Bottleneck

I Now no longer possible to manipulate the model through the
standard parametric form given in (1).

I However, it is possible to express parametric as GPs:

k (xi , xj) = φ: (xi)
> φ: (xj) .

I These are known as degenerate covariance matrices.

I Their rank is at most M, non-parametric models have full
rank covariance matrices.

I Most well known is the “linear kernel”, k(xi , xj) = x>i xj .

The Parametric Bottleneck

I Now no longer possible to manipulate the model through the
standard parametric form given in (1).

I However, it is possible to express parametric as GPs:

k (xi , xj) = φ: (xi)
> φ: (xj) .

I These are known as degenerate covariance matrices.

I Their rank is at most M, non-parametric models have full
rank covariance matrices.

I Most well known is the “linear kernel”, k(xi , xj) = x>i xj .

Making Predictions

I For non-parametrics prediction at new points f∗ is made by
conditioning on f in the joint distribution.

I In GPs this involves combining the training data with the
covariance function and the mean function.

I Parametric is a special case when conditional prediction can
be summarized in a fixed number of parameters.

I Complexity of parametric model remains fixed regardless of
the size of our training data set.

I For a non-parametric model the required number of
parameters grows with the size of the training data.

Making Predictions

I For non-parametrics prediction at new points f∗ is made by
conditioning on f in the joint distribution.

I In GPs this involves combining the training data with the
covariance function and the mean function.

I Parametric is a special case when conditional prediction can
be summarized in a fixed number of parameters.

I Complexity of parametric model remains fixed regardless of
the size of our training data set.

I For a non-parametric model the required number of
parameters grows with the size of the training data.

Making Predictions

I For non-parametrics prediction at new points f∗ is made by
conditioning on f in the joint distribution.

I In GPs this involves combining the training data with the
covariance function and the mean function.

I Parametric is a special case when conditional prediction can
be summarized in a fixed number of parameters.

I Complexity of parametric model remains fixed regardless of
the size of our training data set.

I For a non-parametric model the required number of
parameters grows with the size of the training data.

Making Predictions

I For non-parametrics prediction at new points f∗ is made by
conditioning on f in the joint distribution.

I In GPs this involves combining the training data with the
covariance function and the mean function.

I Parametric is a special case when conditional prediction can
be summarized in a fixed number of parameters.

I Complexity of parametric model remains fixed regardless of
the size of our training data set.

I For a non-parametric model the required number of
parameters grows with the size of the training data.

Making Predictions

I For non-parametrics prediction at new points f∗ is made by
conditioning on f in the joint distribution.

I In GPs this involves combining the training data with the
covariance function and the mean function.

I Parametric is a special case when conditional prediction can
be summarized in a fixed number of parameters.

I Complexity of parametric model remains fixed regardless of
the size of our training data set.

I For a non-parametric model the required number of
parameters grows with the size of the training data.

Covariance Functions and Mercer Kernels

I Mercer Kernels and Covariance Functions are similar.

I the kernel perspective does not make a probabilistic
interpretation of the covariance function.

I Algorithms can be simpler, but probabilistic interpretation is
crucial for kernel parameter optimization.

Covariance Functions and Mercer Kernels

I Mercer Kernels and Covariance Functions are similar.

I the kernel perspective does not make a probabilistic
interpretation of the covariance function.

I Algorithms can be simpler, but probabilistic interpretation is
crucial for kernel parameter optimization.

Covariance Functions and Mercer Kernels

I Mercer Kernels and Covariance Functions are similar.

I the kernel perspective does not make a probabilistic
interpretation of the covariance function.

I Algorithms can be simpler, but probabilistic interpretation is
crucial for kernel parameter optimization.

Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k
(
x, x′

)
= α exp

(
−||x− x′||2

2`2

)

I Covariance matrix is built
using the inputs to the
function t.

I For the example above it
was based on Euclidean
distance.

I The covariance function is
also know as a kernel.

n

m

5 10 15 20 25

5

10

15

20

25 −1

−0.5

0

0.5

1

Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: Exponentiated quadratic kernel with ` = 0.3, α = 1

Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: Exponentiated quadratic kernel with ` = 1, α = 1

Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: Exponentiated quadratic kernel with ` = 0.3, α = 4

Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: Linear covariance function, α = 16.

Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: MLP covariance function, σ2
w = 100, σ2

b = 100, α = 8.

Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: MLP covariance function, σ2
w = 100, σ2

b = 0, α = 8.

Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: Bias term, α = 4

Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: Exponentiated quadratic ` = 0.3, α = 1 plus bias term
with α = 1 plus white noise with α = 0.01.

Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: Ornstein-Uhlenbeck (stationary Gauss-Markov)
covariance function ` = 1, α = 4.

Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Noise Models

Graph of a GP

I Relates input variables, x,
to vector, y, through f
given kernel parameters θ.

I Plate notation indicates
independence of yi |fi .

I Noise model, p (yi |fi) can
take several forms.

I Simplest is Gaussian
noise.

yi

x

fi

θ

i = 1 . . . n

Figure: The Gaussian process
depicted graphically.

Gaussian Noise

I Gaussian noise model,

p (yi |fi) = N
(
yi |fi , σ

2
)

where σ2 is the variance of the noise.

I Equivalent to a covariance function of the form

k(xi , xj) = δi ,jσ
2

where δi ,j is the Kronecker delta function.

I Additive nature of Gaussians means we can simply add this
term to existing covariance matrices.

Gaussian Process Regression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

logN (y|0,K) = −n

2
log 2π − 1

2
log |K| − y>K−1y

2

Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

logN (y|0,K) = −n

2
log 2π − 1

2
log |K| − y>K−1y

2

Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

logN (y|0,K) = −n

2
log 2π − 1

2
log |K| − y>K−1y

2

Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

logN (y|0,K) = −n

2
log 2π − 1

2
log |K| − y>K−1y

2

Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

logN (y|0,K) = −n

2
log 2π − 1

2
log |K| − y>K−1y

2

Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

logN (y|0,K) = −n

2
log 2π − 1

2
log |K| − y>K−1y

2

Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

logN (y|0,K) = −n

2
log 2π − 1

2
log |K| − y>K−1y

2

Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

logN (y|0,K) = −n

2
log 2π − 1

2
log |K| − y>K−1y

2

Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

logN (y|0,K) = −n

2
log 2π − 1

2
log |K| − y>K−1y

2

Outline

Gaussian Distributions and Processes

Covariance from Basis Functions

Basis Function Representations

Bayesian Review

Building on Regression

Conclusions

General Noise Models

Graph of a GP

I Relates input variables, x,
to vector, y, through f
given kernel parameters θ.

I Plate notation indicates
independence of yi |fi .

I In general p (yi |fi) is
non-Gaussian.

I We approximate with
Gaussian
p (yi |fi) ≈ N

(
mi |fi , β

−1
i

)
.

yi

x

fi

θ

i = 1 . . . n

Figure: The Gaussian process
depicted graphically.

Gaussian Noise

0

1

2

-3 -2 -1 0 1 2 3 4

p (f∗|x, x∗, y)

Figure: Inclusion of a data point with Gaussian noise.

Gaussian Noise

0

1

2

-3 -2 -1 0 1 2 3 4

p (f∗|x, x∗, y)

p (y∗ = 0.6|f∗)

Figure: Inclusion of a data point with Gaussian noise.

Gaussian Noise

0

1

2

-3 -2 -1 0 1 2 3 4

p (f∗|x, x∗, y)

p (y∗ = 0.6|f∗)

p (f∗|x, x∗, y, y∗)

Figure: Inclusion of a data point with Gaussian noise.

Expectation Propagation

Local Moment Matching

I Easiest to consider a single previously unseen data point,
y∗, x∗.

I Before seeing data point, prediction of f∗ is a GP, q (f∗|y, x).

I Update prediction using Bayes’ Rule,

p (f∗|y, y∗, x, x∗) =
p (y∗|f∗) p (f∗|y, x, x∗)

p (y, y∗|x, x∗)
.

This posterior is not a Gaussian process if p (y∗|f∗) is
non-Gaussian.

Classification Noise Model

Probit Noise Model

0

0.5

1

-4 -2 0 2 4

p
(y

i|f
i)

fi

yi = −1 yi = 1

Figure: The probit model (classification). The plot shows p (yi |fi) for
different values of yi . For yi = 1 we have

p (yi |fi) = φ (fi) =
∫ fi

−∞N (z |0, 1) dz .

Expectation Propagation II

Match Moments

I Idea behind EP — approximate with a Gaussian process at
this stage by matching moments.

I This is equivalent to minimizing the following KL divergence
where q (f∗|y, y∗, x, x∗) is constrained to be a GP.

q (f∗|y, y∗x, x∗) = argminq(f∗|y,y∗x,x∗)KL (p (f∗|y, y∗x, x∗) ||q (f∗|y, y∗, x, x∗))

I This is equivalent to setting

〈f∗〉q(f∗|y,y∗,x,x∗) = 〈f∗〉p(f∗|y,y∗,x,x∗)〈
f 2
∗
〉

q(f∗|y,y∗,x,x∗) =
〈
f 2
∗
〉

p(f∗|y,y∗,x,x∗)

Expectation Propagation III

Equivalent Gaussian

I This is achieved by replacing p (y∗|f∗) with a Gaussian
distribution

p (f∗|y, y∗, x, x∗) =
p (y∗|f∗) p (f∗|y, x, x∗)

p (y, y∗|x, x∗)

becomes

q (f∗|y, y∗, x, x∗) =
N
(
m∗|f∗, β−1

m

)
p (f∗|y, x, x∗)

p (y, y∗|x, x∗)
.

Classification

0

1

2

3

-3 -2 -1 0 1 2 3

p (f∗|x, x∗, y)

Figure: An EP style update with a classification noise model.

Classification

0

1

2

3

-3 -2 -1 0 1 2 3

p (f∗|x, x∗, y)

p (y∗ = 1|f∗)

Figure: An EP style update with a classification noise model.

Classification

0

1

2

3

-3 -2 -1 0 1 2 3

p (f∗|x, x∗, y)

p (y∗ = 1|f∗)
p (f∗|x, x∗, y, y∗)

Figure: An EP style update with a classification noise model.

Classification

0

1

2

3

-3 -2 -1 0 1 2 3

p (f∗|x, x∗, y)

p (y∗ = 1|f∗)
p (f∗|x, x∗, y, y∗)

q (f∗|x, x∗, y)

Figure: An EP style update with a classification noise model.

Ordinal Noise Model

Ordered Categories

0

0.5

1

-4 -2 0 2 4

p
(y

i|f
i)

fi

yi = −1 yi = 1yi = 0

Figure: The ordered categorical noise model (ordinal regression). The
plot shows p (yi |fi) for different values of yi . Here we have assumed three
categories.

Ordinal Regression

0

1

2

3

4

-3 -2 -1 0 1 2 3

p (f∗|x, x∗, y)

Figure: An EP style update with an ordered category noise model.

Ordinal Regression

0

1

2

3

4

-3 -2 -1 0 1 2 3

p (f∗|x, x∗, y)

p (y∗ = 0|f∗)

Figure: An EP style update with an ordered category noise model.

Ordinal Regression

0

1

2

3

4

-3 -2 -1 0 1 2 3

p (f∗|x, x∗, y)

p (y∗ = 0|f∗)
p (f∗|x, x∗, y, y∗)

Figure: An EP style update with an ordered category noise model.

Ordinal Regression

0

1

2

3

4

-3 -2 -1 0 1 2 3

p (f∗|x, x∗, y)

p (y∗ = 0|f∗)
p (f∗|x, x∗, y, y∗)

q (f∗|x, x∗, y)

Figure: An EP style update with an ordered category noise model.

The Informative Vector Machine

Reduce Complexity

I Including n data points through ADF still leads to an O
(
n3
)

complexity.

I IVM algorithm resolves these problems with a sparse
representation for the data set.

I Inspiration: the support vector machine.

I IVM use a simple selection heuristic to incorporate d most
informative points (Lawrence et al., 2003; Seeger, 2004;
Lawrence et al., 2005).

I Computational complexity: O
(
n3
)

to O
(
d2n
)

.

I Infromation theoretic (Chaloner and Verdinelli, 1995) criteria
used to select points.

Data Point Selection

Entropy Criterion

I Original IVM criterion inspired by support vectors being those
that reduce the size of the ‘version space’ most.

I The equivalent Bayesian interpretation is volume of the
posterior: measured by entropy.

I Entropy change associted with a data point is simple and
quick to compute.

I For jth inclusion of ith data point:

∆Hj,i = −1

2
log |Σj,i |+

1

2
log |Σj−1|

= −1

2
log |I− Σj−1diag (νj)|

= −1

2
log (1− νj,i ςj−1,i) . (2)

IVM Parameter Updates

Optimising Kernel Parameters

I Need to express the marginal likelihood for optimization.

I Seeger (2004) achieves by expressing the likelihood in terms of
both the active and inactive sets.

I We simply express the likelihood in terms of the active set
only.

I Given the active set, I , and the site parameters, m and β,
optimise approximation wrt kernel parameters using gradient
methods.

I Active set and kernel parameters are interdependent: active
set is reselected between optimisations of kernel parameters.

Results

Toy Problems

I Two toy data sets for classification with probit noise. First
uses an ARD set up and one irrelevant direction.

I A second demonstation: sampled 500 data points uniformly
from a unit square in two dimensions.

I Sample then made from a GP prior of a function at these
points.

I This function was ’squashed’ by a cumulative Gaussian and a
class assigned according to this probability.

IVM Classification

Classification

−4 −2 0 2 4
−10

−5

0

5

10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure: Contours: Red solid line at p (y |x) = 0.5 , blue dashed lines at

p (y |x) = 0.25 and p (y |x) = 0.75. Active points are blue dots. Left: data

sampled from from a mixture of Gaussians. Right: Data uniformly sampled on

the 2–dimensional unit square. Class labels are assigned by sampling from a

known Gaussian process prior.

Ordered Categories

Ordered Categories

I Two results from two problems on ordered categorical data.

I First example the categories are separable linearly.

I Second example: sampled ordered categorical data in polar
co-ordinates.

Ordered Categories

Toy Problems

−3 −2 −1 0 1 2 3

−10

−5

0

5

10

−20 −10 0 10 20

−20

−10

0

10

20

Figure: .Left: a linear solution is found. Right: this categories in this
example were sampled in polar co-ordinates.

USPS digits

Large Data Set

I USPS digit data set of 16× 16 greyscale images.

I Contains 7291 training images and 2007 test images.

I Three different kernels with the IVM algorithm.

I For each data-set we used a ‘base kernel’ consisting of a linear
part, a white noise term and a bias part.

I Three variations on this base kernel were then used: it was
changed by adding first an RBF kernel, then an MLP kernel
and finally a variant of the RBF ARD kernel.

I Set d = 500.

USPS digits

Classification error %

0 1 2 3 4 5 6 7 8 9 Overall

RBF 0.65 0.70 1.40 1.05 1.49 1.25 0.75 0.60 1.20 0.75 4.58

MLP 0.55 0.70 1.49 1.20 1.64 1.25 0.80 0.60 1.20 0.75 4.78

RBF ARD 0.55 0.60 1.49 1.10 1.79 1.20 0.80 0.60 1.20 0.85 4.68

Table: Table of results on the USPS digit data. A comparison with a
summary of results on this data-set Schölkopf and Smola (2001, Table
7.4) shows that the IVM is in line with other results on this data.
Furthermore these results were achieved with fully automated model
selection.

Incorporating Invariances

Virtual Support Vectors

I Invariances present: rotations, translations.

I Could augment the original data set with transformed data
points.

I This leads to a rapid expansion in the size of the data set.

I Schölkopf et al. (1996) suggest augmenting only support
vectors.

I Augmented points known as ‘virtual support vectors’.

I This algorithm gives state-of-the-art performance on the
USPS data set.

USPS with Virtual Informative Vectors

Virtual Informative Vectors

I Schölkopf et al. (1996): biggest improvement using
translation invariances.

I Applied standard IVM classification algorithm to the data set
using an RBF kernel combined with a linear term.

I Took the active set from these experiments and aumented it:

I original active set plus four translations: up down lweft and
right

I results in an augmented active set of 2500 points.

I Reselect active set of size d = 1000 for final results.

Performance on USPS

Classification Error %

0 1 2 3 4

0.648± 0.00 0.389± 0.03 0.967± 0.06 0.683± 0.05 1.06± 0.02

5 6 7 8 9 Overall

0.747± 0.06 0.523± 0.03 0.399± 0.00 0.638± 0.04 0.523± 0.04 3.30± 0.03

Table: Experiments are summarised by the mean and variance of the %
classification error across ten runs with different random seeds. Results
match those given by the virtual SVM but model selection was automatic
here.

Probabilistic Model

Semi-supervised Noise Model

I New noise model: the null category noise model.

I Derives from the general class of ordered categorical models
(or ordinal regression).

p (yi |fi) =


φ
(
−
(
fi + w

2

))
for yi = −1

φ
(
fi + w

2

)
− φ

(
fi − w

2

)
for yi = 0

φ
(
fi − w

2

)
for yi = 1

,

Ordinal Noise Model

Ordered Categories

f�

p(y
�|f�)

y�=1
y�=0y�=-1

Figure: The ordered categorical noise model (ordinal regression). The
plot shows p (yi |fi) for different values of yi . Here we have assumed three
categories.

Null Category Noise Model

Noise Model for Semi-supervised Learning

I Indicator variable, zi = 1 if data point is unlabeled.

I We impose the constraint:p (zi = 1|yi = 0) = 0.

I Assign missing label probabilities p (zi = 1|yi = 1) = γ+ and
p (zi = 1|yi = −1) = γ−.

�� � � ����

Null Category Noise Model

Noise Model for Semi-supervised Learning

I From the graphical representation zi is d-separated from xi ,:.

I When yi is observed, the posterior process is updated by using
p (yi |fi).

I When the data point is unlabeled the posterior process is
updated by

p (zi = 1|fi) =
∑

yi

p (yi |fi) p (zi = 1|yi) .

I The “effective likelihood function” for a single data point,
L (fi), therefore takes one of three forms:

L (fi) =


H
(
−
(
fi + 1

2

))
for yi = −1, zi = 0

γ−H
(
−
(
fi + 1

2

))
+ γ+H

(
fi − 1

2

)
for zi = 1

H
(
fi − 1

2

)
for yi = 1 zi = 0

.

Null Category Noise Model

Noise Model for Semi-supervised Learning

I The constraint imposed by p (zi = 1|yi = 0) = 0 implies that:

I An unlabeled data point never comes from the class yi = 0.

I This is equivalent to a hard assumption that no data comes
from the region around the decision boundary.

I The labeled data only comes from the classes yi = 1 and
yi = −1, so we never obtain any evidence for data with yi = 0.
We therefore refer to this category as the null category and the
overall model as a null category noise model (NCNM).

Null Category Noise Model

Null Category

f�

p(y
�|f�)

y�=1
y�=0y�=-1

Figure: The null category noise model (semi-supervised
classification).Standard noise model for labelled points (yi = 0 is never
observed). yi marginalised for unlabelled points.

Null Category Noise Model

Null Category

fnp(y
n|f n) yn=1

yn=0yn=-1
Figure: The null category noise model (semi-supervised classification).
Effective noise model with yi marginalised for unlabelled points.

Sparse Approximations

epPointUpdate(’ncnm’, NaN, -0.3, .1, 0, 1e-2)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

Figure: An EP style update with a classification noise model. Blue:

p (f∗|x, x∗, y).

Sparse Approximations

epPointUpdate(’ncnm’, NaN, -0.3, .1, 0, 1e-2)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

Figure: An EP style update with a classification noise model. Blue:

p (f∗|x, x∗, y), Red: p (y∗ 6= 0|f∗) .

Sparse Approximations

epPointUpdate(’ncnm’, NaN, -0.3, .1, 0, 1e-2)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

Figure: An EP style update with a classification noise model. Blue:

p (f∗|x, x∗, y), Red: p (y∗ 6= 0|f∗) , Magenta: p (f∗|x, x∗, y, y∗).

Sparse Approximations

epPointUpdate(’ncnm’, NaN, -0.3, .1, 0, 1e-2)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

Figure: An EP style update with a classification noise model. Blue:

p (f∗|x, x∗, y), Red: p (y∗ 6= 0|f∗) , Magenta: p (f∗|x, x∗, y, y∗), Green: q (f∗|x, x∗, y).

Sparse Approximations

epPointUpdate(’ncnm’, NaN, 0, .1, 0, 1e-2)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure: An EP style update with a classification noise model. Blue:

p (f∗|x, x∗, y).

Sparse Approximations

epPointUpdate(’ncnm’, NaN, 0, .1, 0, 1e-2)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure: An EP style update with a classification noise model. Blue:

p (f∗|x, x∗, y), Red: p (y∗ 6= 0|f∗) .

Sparse Approximations

epPointUpdate(’ncnm’, NaN, 0, .1, 0, 1e-2)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure: An EP style update with a classification noise model. Blue:

p (f∗|x, x∗, y), Red: p (y∗ 6= 0|f∗) , Magenta: p (f∗|x, x∗, y, y∗).

Sparse Approximations

epPointUpdate(’ncnm’, NaN, 0, .1, 0, 1e-2)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure: An EP style update with a classification noise model. Blue:

p (f∗|x, x∗, y), Red: p (y∗ 6= 0|f∗) , Magenta: p (f∗|x, x∗, y, y∗), Green: q (f∗|x, x∗, y).

The Null Category

Low Data Density at Decision Boundary

I When a data point is unlabeled the effect will depend on the
mean and variance of p (fi |xi ,:).

I If this Gaussian has little mass in the null category region, the
posterior will be similar to the prior.

I If the Gaussian has significant mass in the null category region,
the outcome may be loosely described in two ways:

1. If p (fi |xi,:) “spans the likelihood”, leading to a bimodal
posterior: the variance of the posterior will be greater than the
variance of the prior.

2. If p (fi |xi,:) is “rectified by the likelihood”, then the mass of the
posterior will be pushed in to one side of the null category.

I Note that the posterior is pushed out to one side or both sides
of the null category region.

The Posterior Process

Inference

fn fn
Figure: Two situations of interest. Diagrams show the prior distribution
over fi (blue dashes) the effective likelihood function from the noise
model when zi = 1 (red dashes) and a schematic of the resulting
posterior over fi (green line). Left: The posterior is bimodal and has a
larger variance than the prior. Right: The posterior has one dominant
mode and a lower variance than the prior. In both cases the process is
pushed away from the null category.

Toy Problem

Crescent Data

I We considered two-dimensional data in which two
class-conditional densities interlock.

I There were 400 points in the original data set. Each point was
labeled with probability 0.1, leading to 37 labeled points.

I A standard IVM classifier was trained on the labeled data only.

I We then used the null category approach to train a classifier
that incorporates the unlabeled data.

I The resulting decision boundary finds a region of low data
density and more accurately reflects the underlying data
distribution.

Crescent Data

Standard IVM vs Semi-supervised

−10 −5 0 5 10
−10

−5

0

5

10

−10 −5 0 5 10
−10

−5

0

5

10

Figure: Data points: small blue dots, are labeled with probability 0.1.
Labelled data-points: red circles and green crosses. Active set: large blue
dots. Left: Learning with standard IVM. Right: Learning with the
NCNM. Lines show centre and edge of null category.

High-dimensional example

USPS Data 3 vs 5

I As a higher dimensional example we return to the USPS data
set.

I Separate the digit 3 from 5: vary probability of unlabelled
data between 0.2 and 1.25× 10−2.

I Compare four classifiers:

I standard IVM
I standard SVM
I semi-supervised IVM,
I transductive SVM.

I Each run was completed ten times with different random
seeds.

USPS Data

AUC Results

10
−2

10
−1

0.8

0.9

1

prob. of label present

ar
ea

 u
nd

er
 R

O
C

 c
ur

ve

Figure: Mean and standard errors shown. IVM (red solid line), the
NCNM (blue dotted line), the SVM (green dash-dot line) and the
transductive SVM (pink dashed line).

USPS Data

Digits Results

I Below a label probability of 2.5× 10−2 both the SVM and
transductive SVM outperform the NCNM.

I In this region the estimate θ1 provided by the NCNM was
sometimes very low leading to occasional very poor results
(note the large error bar).

I Above 2.5× 10−2 a clear improvement is obtained for the
NCNM over the other models.

Outline

Gaussian Distributions and Processes

Covariance from Basis Functions

Basis Function Representations

Bayesian Review

Building on Regression

Conclusions

Conclusions

Faster GPs through Sparsity

I We have reviewed Gaussian Processes

I Considered approaches to non-Gaussian likelihoods.

I We’ve shown how we can:

I learn invariances
I do semi-supervised learning
I do multi-task learning

I Next time: further extensions.

References I

K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statistical Science, 10(3):273–304, 1995.

N. D. Lawrence and J. C. Platt. Learning to learn with the informative vector machine. In R. Greiner and
D. Schuurmans, editors, Proceedings of the International Conference in Machine Learning, volume 21, pages
512–519. Omnipress, 2004. [PDF].

N. D. Lawrence, J. C. Platt, and M. I. Jordan. Extensions of the informative vector machine. In J. Winkler, N. D.
Lawrence, and M. Niranjan, editors, Deterministic and Statistical Methods in Machine Learning, volume 3635
of Lecture Notes in Artificial Intelligence, pages 56–87. Springer-Verlag, Berlin, 2005. [Google Books] .

N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The informative vector
machine. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing
Systems, volume 15, pages 625–632, Cambridge, MA, 2003. MIT Press.

J. Oakley and A. O’Hagan. Bayesian inference for the uncertainty distribution of computer model outputs.
Biometrika, 89(4):769–784, 2002.

B. Schölkopf, C. J. C. Burges, and V. N. Vapnik. Incorporating invariances in support vector learning machines. In
Artificial Neural Networks — ICANN’96, volume 1112, pages 47–52, 1996.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2001.

M. Seeger. Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error Bounds and Sparse
Approximations. PhD thesis, The University of Edinburgh, 2004.

C. K. I. Williams. Computation with infinite neural networks. Neural Computation, 10(5):1203–1216, 1998.

ftp://ftp.dcs.shef.ac.uk/home/neil/mtivm.pdf
http://books.google.com/books?as_isbn=3-540-29073-7

Outline

Consistency of Gaussian Processes

Predictive Distribution

Consistency

Consistency of a Gaussian Process

I Predictions remain the same regardless of the number and
location of the test points.

p (f∗|f) =

∫
p (f∗, f+|f) df+,

I For the system to be consistent this conditional probability
must be independent of the length of f+.

I In other words.

p (f∗|f) =

∫
p (f∗, f+|f) df+ =

∫
p
(

f∗, f̂+|f
)

d f̂+

Outline

Consistency of Gaussian Processes

Predictive Distribution

Joint Distribution

Joint Distribution

I The covariance function provides the joint distribution over
the instantiations.

I Write down the conditional distribution provides predictions.

I Denote the training set as f and test set as f∗.

I Predict using p (f∗|f).

The Conditional Distribution

Partioned Inverse

I Use partitioned inverse to find conditional.

K =

[
Kf,f Kf,∗
K∗,f K∗,∗

]
I Partitioned inverse is then

K−1 =

[
K−1

f,f + K−1
f,f Kf,∗Σ

−1K∗,fK
−1
f,f −K−1

f,f Kf,∗Σ
−1

−Σ−1K∗,fK
−1
f,f

−̊1

]

where
Σ = K∗,∗ −K∗,fK

−1
f,f Kf,∗.

Joint Distribution

Take Log of the Joint

I Logarithm of the joint distribution:

log p(f, f∗) = −1

2
f>K−1

f,f f − 1

2
f>K−1

f,f Kf,∗Σ
−1K∗,fK

−1
f,f f

+ fK−1
f,f Kf,∗Σ

−1f∗ −
1

2
f>∗ Σ−1f∗ + const1

I Conditional is found by dividing joint by the prior,
p(f) = N (f|0,Kf,f).

Conditional Distribution

Deriving the Conditional

I In log space this is equivalent to subtraction of

log p (f) = −1

2
f>K−1

f,f f + const2

giving

log p (f∗|f) = log p (f∗, f)− log p (f) = logN
(
f∗ |̄f∗,Σ

)
.

where f̄ = K∗,fK
−1
f,f f and Σ = K∗,∗ −K∗,fK

−1
f,f Kf,∗.

Making Predictions

I If we observe points from the function, f.

I We can predict the locations of functions at as yet unseen
locations.

I The prediction is also a Gaussian process, with mean f̄ and
covariance Σ.

I Often observe corrupted version of function.

	Gaussian Process Review
	Gaussian Distributions and Processes
	Two Dimensional Gaussian Distribution
	Distributions over Functions
	Two Point Marginals
	Covariance Functions
	Covariance from Basis Functions

	Basis Function Representations
	Bayesian Review
	An Alternative Analysis
	An Infinite Basis
	Parametric Models are a Bottleneck
	GP Interpolation
	GP Regression
	Parameter Optimization
	Learning Kernel Parameters

	Building on Regression
	Sparse Approximations
	Semi-supervised Learning
	Multi-task Learning

	Conclusions
	References
	Appendix
	Consistency of Gaussian Processes
	Predictive Distribution

